
Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia

Departamento de Informática

A Debugging Engine for

Parallel and Distributed

Programs

João Manuel dos Santos Lourenço

Dissertação apresentada para a obtenção

do Grau de Doutor em Informática pela

Universidade Nova de Lisboa, Faculdade

de Ciências e Tecnologia.

Lisboa
(2003)

This dissertation was prepared under the supervision of

Professor José Cardoso e Cunha,

of the Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa.

ii

To my wife, Teresa

my son, Miguel

and my daughter, Rita

[This page was intentionally left blank]

iv

Acknowledgements

I would like to express my gratitude to all those that, directly or indirectly, have con-

tributed to make this thesis possible.

First and foremost, to my supervisor, José Cardoso e Cunha, to whom I’m in debt

for the necessary guidance on my research work and, at the same time, for providing

me with the desired freedom to pursue my own path. He was also the local task le-

ader for the research projects which motivated this research work, and I owe him for

including me in his working team. The chance I was given to participate in the project

meetings and to know and discuss my work with other researchers were invaluable

contributions to the maturity of my research.

To Vítor Duarte, who was my closest research companion, and has always been a

kind friend, ready to attend me in is office room, no matter the reason was research,

teaching, systems administration or a light chat.

To Pedro Medeiros and Paulo Lopes, who have volunteered to fulfill some of my

teaching duties, providing me with some extra time to write this dissertation. Pedro

also shares the office room with me, and he contributes to our informal, friendly and

respectful working environment.

to Cecília Gomes, who kindly made a review of a draft of this dissertation; and to

Jorge Custódio for the friendly companionship.

To all my colleagues at Departamento de Informática of FCT/UNL, for their contri-

bution to make every working day a pleasant journey.

To those that worked with me in the development and validation of Fiddle, namely

Ricardo Anastácio, Pedro Augusto and Vítor Moreira, when students at Universidade

Nova de Lisboa; and Denise Stringini and Mairo Pedrini, from Universidade Federal

do Rio Grande do Sul, Brazil. Mairo deserves a special reference, for his courage in

“digging” into the source code of Fiddle and his wiseness in correcting some of the

remaining known bugs.

Finally, my very special thanks to my family. To my wife, Teresa, for her love,

support and permanent understanding; to my son, Miguel, for his unconditional love,

joy and tenderness; and to my newborn daughter, Rita, for bringing another lighting

star to my life. I love you all.

v

I also would like to acknowledge the following institutions for their financial sup-

port: Departamento de Informática and Faculdade de Ciências e Tecnologia of the Uni-

versidade Nova de Lisboa; Centro de Informática e Tecnologias da Informação of the

FCT/UNL; Reitoria da Universidade Nova de Lisboa; Fundação Calouste Gulbenkian;

Fundação Luso-Americana para o Desenvolvimento; Fundação para a Ciência e Tecno-

logia through CIÊNCIA and PRAXIS-XXI Programmes, projects PROLOPPE (Contract

3/3.1/TIT/24/94) and SETNA-ParComp (Contract 2/2.1/TIT/1557/95); Instituto de

Cooperação Científica e Tecnológica Internacional; French Embassy in Portugal; Eu-

ropean Union Commission through the Copernicus Programme, projects SEPP (Con-

tract CIPA-C193-0251) and HPCTI (Contract CP-93-5383); and to Digital Equipment

Coorporation through the European External Research Programme, project PADIPRO

(Contract no P-005).

vi

Summary

In the last decade a considerable amount of research work has focused on distributed

debugging, one of the crucial fields in the parallel software development cycle. The

productivity of the software development process strongly depends on the adequate

definition of what debugging tools should be provided, and what debugging method-

ologies and functionalities should these tools support.

The work described in this dissertation was initiated in 1995, in the context of two

research projects, the SEPP (Software Engineering for Parallel Processing) and HPCTI

(High-Performance Computing Tools for Industry), both sponsored by the European

Union in the Copernicus programme, which aimed at the design and implementation

of an integrated parallel software development environment. In the context of these

projects, two independent toolsets have been developed, the GRADE and EDPEPPS

parallel software development environments.

Our contribution to these projects was in the debugging support. We have de-

signed a debugging engine and developed a prototype, which was integrated the both

toolsets (it was the only tool developed in the context of the SEPP and HPCTI projects

which achieved such a result). Even after the closing of those research projects, further

research work on distributed debugger has been carried on, which conducted to the

re-design and re-implementation of the debugging engine.

This dissertation describes the debugging engine according to its most up-to-date

design and implementation stages. It also reposts some of the experimental work made

with both the initial and the current implementations, and how it contributed to vali-

date the design and implementations of the debugging engine.

vii

[This page was intentionally left blank]

viii

Sumário

Na última década uma quantidade considerável de trabalhos de investigação focaram

a sua atenção na depuração distribuída, um dos tópicos cruciais no ciclo de desenvolvi-

mento de programas paralelos. A produtividade do processo de desenvolvimento de

software depende fortemente da definição adequada das ferramentas de depuração

que deverão ser disponibilizadas, e de quais as funcionalidades e metodologias de

depuração que deverão ser suportadas por essas ferramentas.

O trabalho descrito nesta dissertação for iniciado em 1995, no contexto de dois pro-

jectos de investigação, SEPP (Software Engineering for Parallel Processing) e HPCTI

(High-Performance Computing Tools for Industry), ambos patrocinados pela União

Europeia no contexto do programa Copernicus, e que visavam o desenvolvimento

de um ambiente integrado de desenvolvimento de aplicações paralelas. No contexto

destes projectos, foram desenvolvidos dois ambientes disjuntos de desenvolvimento

de aplicações paralelas e distribuídas, o GRADE e o EDPEPPS.

A nossa contribuição para estes projectos concentrou-se no suporte à depuração.

Desenhámos e implementámos um protótipo de um depurador paralelo, que foi inte-

grado em ambos os ambientes de desenvolvimento de aplicações paralelas (foi a única

ferramenta desenvolvida no contexto daqueles projectos a fazê-lo). Mesmo depois do

término daqueles projectos, a investigação em depuração distribuída continuou, con-

duzindo ao redesenho e re-implementação do depurador distribuído.

Esta dissertação descreve o depurador distribuído na seu estágio mais actual. Tam-

bém reporta algum do trabalho experimental levado a cabo com ambas as implemen-

tações, e como ele contribuiu para a validação do desenho e implementação do depu-

rador distribuído.

ix

[This page was intentionally left blank]

x

Sommaire

Dans la dernière décade, une quantité considérable de travaux de recherche se sont

focalisés sur le débogage distribué, un des principaux aspects du cycle de développe-

ment de programmes parallèles. La produtivité du procès de développement de logi-

ciel dépend beaucoup de la définition correcte des outils de débogage qui devront être

disponibles. Il faut aussi définir les capacités et les méthodologies qui devront être

soutenues par ces outils.

Le travail décrit dans cette thèse a été commencé en 1995, dans le contexte des

deux projets de recherche, SEPP (Software Engineering for Parallel Processing) et

HPCTI (High-Performance Computing Tools for Industry), avec l’appui de l’Union Eu-

ropéenne, dans le contexte du programme Copernicus, et qui cherchaient à développer

un environnement intégré de développement d’applications parallèles. Dans le con-

texte de ces projets-là, on a développé deux différents environnements de développe-

ment d’applications paralèlles distribuées, le GRADE et le EDPEPPS.

Notre apport pour ces projets s’est centré sur le support du débogage. On a dessiné

et on a mis en oeuvre un prototype d’un débogueur parallèle, qui a été intégré dans les

deux environnements de développement d’applications parallèles (c’était le seul outil

développé dans le contexte de ceux projets-là à faire ça). Même après la fin des projets,

la recherche sur le débogage distribué ne s’est pas arrêtée, conduisant à une nouvelle

mise en oeuvre de l’épurateur distribué.

Cette thèse décrit le débogueur distribué dans son état le plus actuel. Elle s’en

occupe aussi d’une partie du travail expérimental réalisé dans les deux mises en oeuvre

du déboguer et de la façon dont il a contribué pour la validation du dessin et de la mise

en oeuvre du débogueur distribué.

xi

[This page was intentionally left blank]

xii

Contents

1 Introduction 1

1.1 Introduction . 2

1.2 Motivation . 5

1.3 Contributions of this Thesis . 7

1.4 Outline of the Dissertation . 9

2 Debugging of Parallel and Distributed Programs 11

2.1 Basic Concepts . 12

2.1.1 The Program Specification and Behavior 13

2.1.2 Program Correctness . 14

2.2 Distributed Computations . 19

2.2.1 Observation of Global States . 22

2.2.2 Detection of Global Predicates . 23

2.3 Distributed Debugging Methodologies . 24

2.3.1 Interactive Debugging of Remote Processes 24

2.3.2 Trace, Replay and Debugging . 25

2.3.3 Integrated Testing, Active Control and Debugging 25

2.3.4 Automated Detection of Global Predicates 26

2.3.5 Distributed Debugging Based on Static Analysis 26

2.3.6 Distributed Debugging Based on Dynamic Analysis 27

2.3.7 Distributed Debugging Based on Postmortem Analysis 27

3 Fiddle: a Distributed Debugging Engine 29

3.1 Introduction . 30

3.2 Techniques for Distributed Debugging . 30

3.2.1 Sequential Debugging Techniques 31

3.2.2 Distributed Debugging Techniques 31

3.2.3 Tool Integration Issues . 32

3.3 A Proposal for a Distributed Debugging System 33

3.4 The Debugging System Components . 35

xiii

CONTENTS

3.4.1 The Target Program and Processes 36

3.4.2 The Client Tools . 36

3.4.3 The Debugging Engine Core . 37

3.4.4 The Debugging Engine API . 39

3.5 The Architecture of the Debugging Engine 42

3.5.1 Layer0s . 42

3.5.2 Layer0m . 43

3.5.3 Layer1m . 44

3.5.4 Layer2m . 45

3.5.5 Layer3m . 46

3.6 Extending the Debugging Engine . 47

3.6.1 Internal extensibility . 47

3.6.2 External Extensibility . 48

3.6.3 Cooperation and Integration Ability 49

3.7 Summary . 50

4 The Fiddle Architecture and Implementation 51

4.1 Introduction . 52

4.2 The DDBG Distributed Debugger . 52

4.2.1 The DDBG Architecture . 53

4.2.2 Evaluation of DDBG . 54

4.3 The Fiddle Debugging Engine . 55

4.3.1 Fiddle Software Architecture . 55

4.3.2 Internal Communication in Fiddle 64

4.4 Summary . 72

5 Validation of the Debugging Engine 75

5.1 Introduction . 76

5.2 Internal Validation . 77

5.2.1 Functional and Operational Dependencies Between Layers 77

5.2.2 Fiddle_J: A Java Object Oriented Wrapper for Fiddle Libraries . . 78

5.3 Debugging Consoles . 79

5.4 Fiddle Graphical User Interfaces . 80

5.4.1 Fiddle Graphical Interface (FGI) . 81

5.4.2 PArallel Debugger Interface (PADI) 84

5.5 Composition of Testing and Debugging Tools 85

5.5.1 Deterministic Execution and Interactive Program Analysis (DEIPA) 87

5.6 Integration in Software Development Environments 89

5.6.1 Integration of DDBG in GRADE 90

5.6.2 Integration of DDBG in EDPEPPS 92

5.6.3 DDBG vs. Fiddle Support for Debugger Integration in PSDE . . . 94

xiv

CONTENTS

5.7 Integration with a Visualizer . 97

5.8 Summary . 98

6 Conclusions and Future Work 101

6.1 Conclusions . 102

6.2 Future Work . 102

A The Fiddle API 105

A.1 Fiddle Utilities Library . 106

A.1.1 Double Linked List (chain_t) . 106

A.1.2 Warning or Fatal Error Message Display 110

A.2 Fiddle Layer0s Services . 110

A.2.1 Basic Data Types . 110

A.2.2 Management Services . 115

A.2.3 Process Control Services . 116

A.2.4 Process Inspection Services . 118

A.2.5 Thread-related Services . 119

A.2.6 Miscellaneous Services . 120

A.3 Fiddle Layer0m Services . 120

A.3.1 Management Services . 120

A.3.2 Process Control Services . 121

A.3.3 Process Inspection Services . 122

A.3.4 Thread-related Services . 123

A.3.5 Miscellaneous Services . 123

A.4 Fiddle Layer1m Services . 123

A.4.1 Management Services . 123

A.4.2 Process Control Services . 124

A.4.3 Process Inspection Services . 125

A.4.4 Thread-related Services . 126

A.4.5 Miscellaneous Services . 126

A.5 Fiddle Layer2m Services . 126

A.5.1 Management Services . 126

A.5.2 Process Control Services . 127

A.5.3 Process Inspection Services . 128

A.5.4 Thread-related Services . 129

A.5.5 Miscellaneous Services . 129

xv

CONTENTS

[This page was intentionally left blank]

xvi

List of Figures

1.1 State vs. temporal perspective of a distributed program 6

2.1 Definition of “bug” . 16

2.2 Specification and programming bugs . 17

2.3 Process-time diagram with consistent and inconsistent cuts 20

2.4 distributed debugging methodologies . 24

2.5 distributed debugging methodologies . 27

3.1 The debugging engine logical organization 35

3.2 The debugging engine layered architecture 37

3.3 The debugging engine logical layers . 39

3.4 The Layer0s software architecture . 43

3.5 The Layer0m software architecture . 44

3.6 The Layer1m software architecture . 44

3.7 The Layer2m software architecture . 45

3.8 Internal extensibility of the debugging engine 48

3.9 External extensibility of the debugging engine 48

3.10 Cooperation ability of the debugging engine 49

3.11 Integration ability of the debugging engine 49

4.1 The DDBG software architecture . 53

4.2 The Layer0s software architecture . 56

4.3 The Layer0s internal data flow and processing 56

4.4 The Layer0m software architecture . 57

4.5 The Layer0m internal data flow and processing 58

4.6 The Layer1m software architecture . 59

4.7 The Server0m internal data flow and processing 59

4.8 The Layer1m internal data flow and processing 60

4.9 The Layer2m software architecture . 62

4.10 The Server1m internal data flow and processing 62

4.11 The Layer2m internal data flow and processing 63

xvii

LIST OF FIGURES

4.12 The tkin structure . 65

4.13 The tkout structure . 66

4.14 The tkin structure . 68

4.15 The tkout structure . 68

4.16 Serialization of tkout into JML and XML formats 70

4.17 Codification from JML and XML formats into binary tkout 70

4.18 Processing times for XML file . 71

4.19 Sofwtare metrics for Fiddle . 73

5.1 A debugging engine as the center of a testing and debugging environment 77

5.2 Java object oriented wrapper for Fiddle libraries (Fiddle_J) 78

5.3 Two Fiddle (Layer2m) consoles operating upon the same target process . . 79

5.4 The interaction between the debugging consoles and Fiddle 80

5.5 Fiddle Graphical Interface (FGI) . 81

5.6 FGI support for debugging PVM programs 83

5.7 PArallel Debugger Interface (PADI) . 85

5.8 Relationship between PADI and Fiddle . 86

5.9 Tool composition of STEPS and Fiddle using DEIPA 87

5.10 Sample PVM programs and TeSS file . 88

5.11 The integration of DDBG within GRADE 91

5.12 Support of long time running debugging services in GRED 92

5.13 The EDPEPPS PVMDebug main window 94

xviii

List of Tables

3.1 The debugging engine internal layers and their functionalities 38

3.2 The debugging engine API . 41

4.1 Items subject to performance evaluation 69

xix

LIST OF TABLES

[This page was intentionally left blank]

xx

1
Introduction

Contents

1.1 Introduction . 2

1.2 Motivation . 5

1.3 Contributions of this Thesis . 7

1.4 Outline of the Dissertation . 9

This Chapter introduces the motivation to the debugging activity and its role as one
important task in the software development process, enumerates the main contribu-
tions of this thesis and presents an outline of the dissertation, with a brief summary of
each of the remaining Chapters.

1

1. INTRODUCTION 1.1. Introduction

1.1 Introduction

There is a long and hard way to go, since someone realises that there is a problem

which could be solved with the aid of a computer, until the moment the computer

is contributing towards such goal. One of the most important steps in such a path

is the design and development of a computer program which will correctly meet the

requirements of the problem to be solved.

Developing a computer program is, indubitably, a complex task. There is the need

to analyse the application requirements and to produce a valid model which describes

a solution. Such model will then be carefully specified in a programming language and

refined successively until its description fits the machine language of a specific com-

puter architecture. Once such stage is reached, the specification (computer program)

will be executed by the computer.

If there were no mistakes in any of the software development stages, the computer

program will, supposedly, be correct and will implement a solution for the initial prob-

lem. However, experience shows that, frequently, there were mistakes or misconcep-

tions at some of the stages. Such mistakes or misconceptions will not only compromise

some of the activities at that specific stage but also in the following ones. The final pro-

gram will then be an inadequate, incomplete, and/or erroneous solution to the initial

problem.

Defining program correctness isn’t an easy task. Like beauty, program correctness

strongly depends on the eye of the beholder. A program may be correct from the point

of view of the implementer if it satisfies all the previously defined requirements, but

may be incorrect from the client perspective if the requirements were incomplete or

incorrectly defined. To minimize the risk of building useless computer programs, a

software development methodology should be followed [Roy70]. Even when such a

software development methodology is carefully followed, there may be discrepancies

between the theoretically correct value or behavior and the computed or observed be-

havior. In such cases the program is said to contain an error (or a set of errors).

The final aim is, ideally, to generate bug free programs at the first try. However,

often this is not the case and, thus, a careful testing of the individual program compo-

nents (unit testing) and of the full program (program testing) is mandatory. Whenever

an unexpected behavior is observed, additional verifications are required to determine

if, although unexpected, the observed behavior is or isn’t acceptable. In the latter, a de-

bugging methodology should then be followed to diagnose and correct the undesired

behavior.

A computer program may present different kinds of malfunctions, or even not to

operate at all, due to program errors. According to their nature, such errors may be

classified in the following categories:

a) Specification errors result from an inadequate characterization of the problem or from

2

1. INTRODUCTION 1.1. Introduction

an ambiguous or incomplete definition of the requirements of the proposed solu-

tion;

b) Algorithmic errors result from the application of an inadequate algorithm to imple-

ment the devised specification;

c) Logical errors result from the inadequate comprehension of the algorithm and lead to

a faulty implementation, which may cause the program to fail intermittently due to

a conjunction of factors, or to fail permanently, by not implementing the algorithm

at all;

d) Coding errors result from an inadequate understanding of the programming lan-

guage being used or from mistakes when writing the source code. Unpredictable

behavior due to unpredicted input, wrong array indexing and use of uninitialized

variables are examples of such errors;

e) Architectural errors are those due to the underlying system layers, such as the oper-

ating system or message passing libraries, typically out of the control of the appli-

cation software developers.

Many of the above errors could be avoided or, at least, minimized, if a formal spec-

ification language could be used to specify the desired program behavior and, later,

have its behavior observed and automatically matched against that specification. Re-

search has been conducted towards such goals [Jac02, Abr96, Spi95, Cho78] but is usu-

ally limited to small examples, and some authors argue that writing such formal de-

scriptions for larger programs is impracticable [Fet88].

Some coding errors, such as lexical and syntactical errors, may be efficiently de-

tected by a compiler-based static analysis of the source code and reported to the soft-

ware developer as a compiler fatal-error, forcing its immediate elimination. Even other

non-trivial errors, such as the potential usage of uninitialized variables may be de-

tected by static analysis and reported to the software developer as a compiler warning

(non-fatal error).

Just a subset of the coding errors are commonly detected at compile-time. All the

others rely on the software developer perception to detect any misbehaviors, to analyse

the program source code and to devise a possible correction.

The term debugging is usually associated with the process of locating, diagnosing

and correcting errors of the logical and coding classes which are only detectable during

program execution.

Non-intrusive debugging is based on the static analysis of the source code and on

a symbolic execution. Such symbolic execution may be performed by the software

developer, which reads the source code and mentally simulates its execution, or by

some tool, which also analyses the program source code without running it [Fau03].

Based on the input and output data, the symbolic execution will allow to hypothesize

3

1. INTRODUCTION 1.1. Introduction

about the error and to devise a correction. This approach, however, strongly depends

on the cause of the error and on the software developer skills for such analysis and,

frequently, the nature of the error can’t be found this way.

Intrusive debugging modifies the program behavior by changing the program itself

or, at least, by controlling its execution, and can only be used in reproducible errors,

when subsequent runs of the program behave identically wrong. Changing the pro-

gram itself, by adding a few memory dump commands (e.g., printing variable values)

is, by far, the most common approach for program debugging. Even if acceptable for

very simple programs, such an approach is of very limited effectiveness for larger and

more complex programs. The most effective approach to intrusive debugging is based

in the usage of debuggers.

Debugger (n.)

A program for locating operational errors in another program. The debugger usu-

ally enables the developer to step through the malfunctioning portion of the pro-

gram to examine data and check operational conditions.

In http://docs.sun.com/db/doc/805-4368/6j450e60d

Debuggers depend on the computer hardware, operating system and also on the

programming language. This last dependency is more relevant if the debugger sup-

ports source-level debugging, i.e., allow the software developer to use the source code as

the basic reference for debugging instead of the target machine code.

For a given set of input data, sequential programs are typically deterministic and

their errors are reproducible. Such characteristics make them the perfect targets for

controlled execution by a debugger, single stepping over the sequence of machine in-

structions (or source-lines, in case of a source-level debugger) and examining process

core memory (including variable values) whenever needed. Although there is always

space for innovation, the techniques and technologies behind the debugging of sequen-

tial programs are quite stable and of widespread use nowadays.

Concurrent programs are intrinsically non-deterministic and repeated executions of

the same program with the same input data may originate different behaviors. As such,

their controlled execution by a debugger may pose an unacceptable degree of intrusion

and hide/mask an error. The simple act of observing the execution of a concurrent

program is another source of intrusion, which may have serious implications on a non-

deterministic program behavior.

Distributed programs bring additional difficulties to the debugging activity be-

cause they run on a distributed system architecture, which lacks a global clock, making

it impossible to have instantaneous snapshot of all the processes and communication

channels of the distributed program. As the observation of the distributed program

state is non-atomic, in the time elapsed between observing one program component

and another, the state of the first one may have changed. The resulting global state

4

1. INTRODUCTION 1.2. Motivation

obtained in such a way is outdated and may even be inconsistent, precluding reason-

ing about the program behavior. To avoid such situations, special concerns must be

considered to ensure that all the reasoning about the program state is based on valid

(consistent) global states.

Global states are built based on observations of the execution of program compo-

nents. What should be observed and how, depends on the abstraction level and the

programming model being used. Different abstraction levels may be considered, and

the debugging activity may focus in individual processes or their interactions. For

example, one may be interested in knowing the state of the communication channels

at a certain point or in a temporal perspective reporting the processes and messages

associated with those channels in specific time intervals.

Typically, although not always, one would like to observe the program state at the

same abstraction level as the one used for the program development. For example, if

the used programming language allowed the software developer to ignore the proces-

sor registers level, normally it should also be ignored during debugging. However this

is not always true, and the debugger should provide the means to deal with the mul-

tiple abstraction-levels associated with the program and its execution environment,

giving the software developer the freedom to chose, at any point, which ones should

be considered and which ones should be left out.

A distributed program is a collection of sequential processes which interact among

themselves. As such, debugging a distributed programs encompasses all the difficul-

ties of debugging sequential programs and, additionally, many new ones, such as the

need to deal with multiple flows of control (multiple threads and/or processes), pro-

cess interactions, non-determinism, additional failure sources, multiple programming

models and abstractions, and the lack of production quality software development en-

vironments with specific support for concurrency, parallelism and/or distribution.

Although there are a few commercial distributed debuggers [Etn00, Mos88], dis-

tributed debugging is still a fruitful research topic with much ongoing work in dif-

ferent points of the globe. The international conferences specifically dedicated to the

topic of (distributed) debugging, such as the past ACM/ONR Workshops on Paral-

lel and Distributed Debugging (1989 [acm89], 1991 [acm91] and 1993 [acm93]) and

the International Workshops on Automated Debugging (1993 [Fri93], 1995 [Duc95],

1997 [Duc97], 2000 [Duc01] and 2003 [RB03]), are rich information resources about the

ongoing research on this field and confirm its relevance as a specialized research topic.

1.2 Motivation

The usage of symbolic debuggers to help in the location and identification of program

errors is a major step over more ad-hoc methodologies, such as inserting variable print-

ing statements into the source code, recompiling and rerunning the program, and then

5

1. INTRODUCTION 1.2. Motivation

browsing the (potentially) large amount of output produced by those print statements.

Symbolic debuggers for sequential programs are, essentially, state based. This means

they support a debugging methodology based on stopping the program execution at

specific points and examining its computation state (variables, stack, registers, etc).

Program development for distributed systems has motivated the redesign of some

programming languages and models, and the development of new ones. Understand-

ing distributed computations in both state and temporal perspectives (see Figure 1.1)

involves a set of new difficulties, such as non-determinism, lack of global components

(memory, clock, etc.), multiple execution flows, and variable communication delays.

As debuggers are expected to help the software developer understanding the program

behavior, distributed debuggers should help the developer to cope with such new dif-

ficulties.

��������
������	
���

��	���
����

�������

�
�
�
������	
���

����

Figure 1.1: State vs. temporal perspective of a distributed program

The first and more natural approach to distributed debugging is to extend a se-

quential debugger to interact with more than one process, providing the software de-

veloper with a single debugging interface to access all the processes of the distributed

program. However, the considerable number of adaptations needed to allow a set

of sequential debuggers to operate upon distributed programs, and the even larger

number of new features that should be addressed and supported, would have strong

implications upon the size and complexity of the debugger program itself, with the

consequent difficulties in its maintenance.

It is common for a sequential debugger to be unable to interact with the software de-

veloper while the controlled process is running, the interaction being resumed as soon

as the process stops. Distributed debuggers, however, can’t impose such restriction

on the user interface, as while some of the processes are running the developer may

have a significant activity to perform upon the remaining ones. Such requirement sug-

gests that the user interface should operate asynchronously regarding the distributed

debugger. One of the easiest ways to support such asynchronous operation is to make

the debugging interface multi-threaded, having a set of threads to control the target

processes and another set to control the user interface.

6

1. INTRODUCTION 1.3. Contributions of this Thesis

Another basic requirement for distributed debuggers is to provide transparent ac-

cess to remote processes, using a global naming scheme independent of process local-

ization and freeing the software developer from the burden of knowing which process

is running where.

The complexity of a distributed debugging tool will increase as the number of re-

quired debugging functionalities grows or changes over time. An approach to reduce

considerably the overall complexity of the distributed debugger, is to precisely defin-

ing the core functionalities as a minimal set of services, and support an extension mech-

anism. Additional services, developed as external modules, can then be incorporated

into the distributed debugger as extensions.

One basic requirement to support extensions, is to decouple the debugging engine

from the debugging user interface. In such a way, the functionalities provided by the

debugging engine may grow incrementally and independently from the user interface;

and multiple independent user interfaces can be allowed to operate concurrently upon

the same target processes, exploring the basic functionalities provided by the debug-

ging engine and some of the functionalities provided by one or more extensions.

For a better understanding of the distributed computation, it is desirable for the

software developer to have multiple perspectives of the target program, probably pro-

vided by different tools. For example, having a graphical editor of a visual parallel

programming language providing an high-level view of the source code, a distributed

debugger providing a state-based view, and a computation visualizer providing a

time-based view. Different tools have different coordination requirements and oper-

ate accordingly to different coordination models, from loosely-coupled cooperations

with simple interactions, to tightly-coupled integrations with complex data and con-

trol interactions.

The debugging engine proposed in this thesis follows the line of thinking presented

above, aiming at the provision of basic debugging services for distributed programs

and the support for interoperability and integration with other software development

tools. It provides a complete set of process-level services, such as breakpointing and

single-stepping, which was extended to include additional distributed debugging ser-

vices, such as monitoring and replaying, the possibility to cooperate with other tools,

such as computation visualizers, and the ability to be integrated in parallel software de-

velopment environments.

1.3 Contributions of this Thesis

We may summarize the research work discussed in this thesis as:

Studied the main requirements for the debugging of distributed programs, defined

a debugging engine which tries to fulfill those requirements, designed a software

architecture which supports the defined debugging engine, implemented this soft-

7

1. INTRODUCTION 1.3. Contributions of this Thesis

ware architecture in Linux based machines, and evaluated the debugging engine

by designing, implementing and evaluating a set of experiments which explore its

functionalities.

The above contributions can be further detailed as:

a) Requirements for the debugging of distributed programs. We have studied how the

software development and execution environments influence the functionalities re-

quired from a distributed debugger, and how the testing methodology and user’s

(software developer’s) perspective influences how those functionalities may be ex-

plored;

b) Definition of the debugging engine. We have focused in the definition of a debugging

engine which would satisfy three main requisites:

b.1) Minimalism. To include a set of core basic services which are essential to the

debugging of distributed programs and to the support of the other requisites;

b.2) Extensibility. To allow the evolution of the distributed debugger, the support

of more complex functionalities, and the adaptation of the debugger to specific

needs;

b.3) Interoperability and Integrability. To support the exchange of data and control in-

formation with other software development tools. We define interoperability

as a loosely-coupled cooperation and integrability as a tightly-coupled coop-

eration between two tools;

c) Design of a software architecture for the debugging engine. The defined debugging en-

gine was structured in (five) functional layers, each new layer based upon the pre-

vious one and incrementally providing a new set of services;

d) Implementation of the debugging engine. We have made two major implementations

of the debugging engine: DDBG, which implemented an initial specification of the

debugging engine; and Fiddle, which implemented the specification and used the

software architecture that is described in this dissertation;

e) Design and implementation of extensions to the debugging engine. The debugging en-

gine was defined to incorporate a minimal core set of services, and to provide the

means for other services to be incorporated as extensions. In this context, a set

of extensions providing complementary services were designed, implemented and

incorporated into the debugging engine;

f) Evaluation of the debugging engine. A considerable number of experiments using

both prototypes, DDBG and Fiddle, have been performed both locally (at UNL) and

by other external research groups. Some of these experiments explored the exten-

sibility of the debugging engine to incorporate new services, while some others

8

1. INTRODUCTION 1.4. Outline of the Dissertation

involved the full development of client tools which explored the available function-

alities. In both cases, they allowed to validate the design and the implementation

of the debugging engine.

1.4 Outline of the Dissertation

This dissertation contains seven chapters, whose contents are summarized below:

Chapter 1. This Chapter introduces the motivation to the debugging activity and its

role as one important task in the software development process, enumerates the

main contributions of this thesis and presents an outline of the dissertation, with

a brief summary of each of the remaining Chapters;

Chapter 2. In this Chapter a brief overview is presented of the main dimensions in-

volved in the debugging of parallel and distributed programs;

Chapter 3. This Chapter introduces the main requirements for distributed debugging

and how traditional debugging services fulfill some of those requirements, fol-

lowed by presentation of the software architecture of a debugging engine which

fulfills some of those requirements, and how this debugging engine may be ex-

tended with complementary functionalities which may cover the remaining re-

quirements;

Chapter 4. This Chapter illustrates how the debugging engine described in the pre-

vious Chapter has been instantiated in two prototypes: the DDBG (Distributed

DeBuGger) and Fiddle (Flexible Interface for Distributed Debugging: Library and

Engine);

Chapter 5. This Chapter presents a set of case studies, where one of the debugging

engine implementations (DDBG or Fiddle) have been used, and how they con-

tributed to the operational and functional validations of the debugging engine

and its implementations; and

Chapter 6. This Chapter summarizes the achievements of research work described in

this thesis, and lists some still open issues, which should and will ground our

future research work.

9

1. INTRODUCTION 1.4. Outline of the Dissertation

[This page was intentionally left blank]

10

2
Debugging of Parallel and Distributed

Programs

Contents

2.1 Basic Concepts . 12

2.2 Distributed Computations . 19

2.3 Distributed Debugging Methodologies 24

Program debugging is one of the fundamental activities in the software development
process. In the past two decades there were continuous efforts towards improving the
debugging of concurrent, parallel and distributed programs. In this Chapter, a brief
overview is presented of the main dimensions involved in the debugging of parallel
and distributed programs.

11

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.1. Basic Concepts

2.1 Basic Concepts

A computer program is defined in the Lectric Law Library’s Lexicon [Lex] as,

Computer Program — A set of statements or instructions to be used directly or

indirectly in a computer in order to bring about a certain result.

According to the Hyper Dictionary [Dica], computer programs may be split in two

groups, system software and applications, defined as

System Software — System software is any software required to support the pro-

duction or execution of application programs but which is not specific to any partic-

ular application. Examples of system software would include the operating system,

compilers, editors and sorting programs;

Applications — A complete, self-contained program that performs a specific func-

tion directly for the user. Examples of application programs would include an ac-

counts package or a CAD program.

Relying on the above definition of computer program, a process can be defined

as [Dica]

Process — The sequence of states of an executing program. A process consists of

the program code (which may be shared with other processes which are executing

the same program), private data, and the state of the processor, particularly the

values in its registers. It may have other associated resources such as a process

identifier, open files, CPU time limits, shared memory, child processes, and signal

handlers.

Associated to the execution of a process is the concept of current state, which implies

the knowledge of what has already been done, what is currently being done, and what

still remains to be done.

The same computer program may be executed again and again, each time in a new

process, so that each new process provides a new execution context. It is also possi-

ble to have multiple instances of the same or different computer programs executing

concurrently in the same computing node, in a multitasking system.

Multitasking — A technique used in an operating system for sharing a single

processor between several independent jobs. [. . .] A multitasking operating system

should provide some degree of protection of one task from another to prevent tasks

from interacting in unexpected ways such as accidentally modifying the contents

of each other’s memory areas.

Such multitasking systems are, in general, capable of isolating and hiding each pro-

cess from the others, providing an execution environment which simulates exclusive-

ness on the access to the computing and computer resources.

In [Dica], a thread is defined as

12

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.1. Basic Concepts

Thread — A control (execution) flow in a process.

When a process contains a single control flow, i.e., a single thread, it is common

to associate the single control flow to the process itself and omit the references to the

thread. However, some programs may use multiple control flows evolving concur-

rently “inside” the execution environment provided by the process. Such programs

are said to be multi-threaded.

In [Dica] multithreading is defined as

Multithreading — Differs from multitasking in that threads share more of

their environment with each other than do processes under multitasking.

Threads may be distinguished only by the value of their program counters

and stack pointers while sharing a single address space and set of global

variables. There is thus very little protection of one thread from another, in

contrast to processes in multitasking.

Summarizing, one can say that programs are a passive entity and contain a set of in-

structions to be executed by the computer. Processes are active entities, resulting from

particular instantiations of programs being executed. The programs directed towards

the end-user are called applications, while those associated with the management of

system (computer) resources are called system programs. Some processes contain a

single control flow while some others do contain multiple control flows, and are said

to be single- or multi-threaded processes respectively. Systems that allow the time

sharing of the CPU between multiple processes (and their control flows) are said to

support multitasking.

Due to the isolation factors, usually it makes no difference whether a program is

being executed in a single or in a multitasking environment. In what concerns to mul-

tithreading, the situation is quite different, and the program must be aware of the mul-

tiple control flows and use them explicitly.

2.1.1 The Program Specification and Behavior

A computer program has, necessarily, a goal, which depends on the accomplishment of

a set of (intermediate) objectives. Such set of objectives informally define the intended

program behavior.

Frequently, such behavior model exists uniquely in the mind of the developer, being

constructed, adapted, extended and corrected as the need arises. Even when there is

an initial written specification of such intended behavior, it is frequently done in a very

high-level description language with no formal grounding, such as natural language.

This results in incomplete, ambiguous or even inconsistent behavior descriptions, with

negative implications to the program development process and its assessment.

Ideally, the programming language would be able to fully capture and express the

intended semantics for the program being developed and, therefore, its intended be-

13

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.1. Basic Concepts

havior. Unfortunately this is not the usual case and, to be able to express the intended

program behavior, the developer has to perform abstraction and simplification efforts,

recurring to a limited number of concepts and under the syntactic and semantics re-

strictions and limitations of the programming language.

Programming language is defined in [Dica] as

Programming Language — A formal language in which computer programs are

written. The definition of a particular language consists of both syntax (how the

various symbols of the language may be combined) and semantics (the meaning of

the language constructs).

Languages are classified as low level if they are close to machine code and high level

if each language statement corresponds to many machine code instructions.

Programs are converted to machine code (CPU instructions) by compilers or inter-

preters, defined in [Dica] as

Compiler — A program that converts another program from some source language

(or programming language) to machine language (object code) which is output to

a file for later execution. Some compilers output assembly language which is then

converted to machine language by a separate assembler.

A compiler is distinguished from an assembler by the fact that each input statement

does not, in general, correspond to a single machine instruction or fixed sequence

of instructions.

Interpreter — A program which executes other programs. [. . .]]It may be possible

to execute the same source code either directly by an interpreter or by compiling it

and then executing the machine code produced.

The compilers and interpreters verify that the program strictly complies to the syn-

tactic rules of the programming language and also do some simple semantic verifica-

tions, such as detecting that a variable is used before being initialized. However, such

semantic verifications are quite far from the intended program behavior in the mind of

the programmer.

Due to the limitations of programming languages in the expressiveness of the in-

tended program behavior, and of compilers/interpreters in its verification, one can

(and should) also verify the program behavior during execution, the observed behavior,

against the intended behavior specification. The success in such verification simply

allows the developer to have “some confidence” that its specification (program) was

correct, but does not constitute a formal proof of program correctness.

2.1.2 Program Correctness

The complex nature of the problem, the inability of the programmer to conceive a valid

solution, the adequacy of the programming language to express such solution, and the

14

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.1. Basic Concepts

software development tools available, are some examples of the many factors that may

influence the correction of a computer program.

Program errors result from a mental mistake made by the programmer, and are

defined in [Dica] as,

Error — A discrepancy between a computed, observed, or measured value or con-

dition and the true, specified, or theoretically correct value or condition.

Incorrect steps, processes and data definitions are examples of errors. The execution

of a program containing errors may originate faults, defined in [Dica] as,

Fault — A manifestation of an error in software.

Sometimes programs are able to handle some predicted faults. In these cases, al-

though they are still manifestations of program errors, these faults are benign, as they

allow the program execution to proceed. Serious or unpredicted faults may be the

origin of process (or even system) failures. A failure is defined in [Dica] as,

Failure — The inability of a system or system component to perform a required

function within specified limits.

Errors in software are generically called bugs, and the process of locating, diagnos-

ing and correcting software errors called debugging.

In [Dicb] there is a definition of bug which includes some interesting historical ref-

erences. Such definition is duplicated in Figure 2.1 on the next page.

Bugs can also be classified according to the way they behave or manifest them-

selves. The following definitions are also from [Dicb].

i) Bohr bug (n.) [from quantum physics]

A repeatable bug; one that manifests reliably under a possibly unknown but

well-defined set of conditions. Antonym of heisenbug.
In http://info.astrian.net/jargon/terms/b/Bohr_bug.html

ii) Mandelbug (n.) [from the Mandelbrot set]

A bug whose underlying causes are so complex and obscure as to make its

behavior appear chaotic or even non-deterministic. This term implies that the

speaker thinks it is a Bohr bug, rather than a heisenbug.
In http://info.astrian.net/jargon/terms/m/mandelbug.html

iii) Heisenbug (n.) [from Heisenberg’s Uncertainty Principle in quantum

physics]

A bug that disappears or alters its behavior when one attempts to probe or

isolate it. (This usage is not even particularly fanciful; the use of a debug-

ger sometimes alters a program’s operating environment significantly enough

that buggy code, such as that which relies on the values of uninitialized mem-

ory, behaves quite differently.) Antonym of Bohr bug; see also mandelbug,

15

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.1. Basic Concepts

Figure 2.1: Definition of “bug”

16

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.1. Basic Concepts

schroedinbug. In C, nine out of ten heisenbugs result from uninitialized auto

variables, fandango on core phenomena (esp. lossage related to corruption of

the malloc arena) or errors that smash the stack.
In http://info.astrian.net/jargon/terms/h/heisenbug.html

iv) Schroedinbug (n.) [MIT: from the Schroedinger’s Cat thought-experiment

in quantum physics]

A design or implementation bug in a program that doesn’t manifest until

someone reading source or using the program in an unusual way notices that

it never should have worked, at which point the program promptly stops work-

ing for everybody until fixed. Though (like bit rot) this sounds impossible, it

happens; some programs have harbored latent schroedinbugs for years.
In http://info.astrian.net/jargon/terms/s/schroedinbug.html

The correctness of a program is related to some specification of its intended be-

havior. Ideally, in order to ensure program correctness, we would like to have a well-

defined formal notation to describe application behaviour rigorously and without am-

biguity. Such an approach would allow the automatic generation of correct program

code. In order to achieve a reasonable level of efficiency, such an approach usually re-

lies upon a series of program transformations, from the high-level specification down

to the executable code, with the guarantee of always generating equivalent program

representations. In such an approach, bugs can only appear at the level of the applica-

tion specification, in relation to its intended behavior: specification bugs.

However, such an approach cannot be applied in general, so a programmer be-

comes responsible for the mappings from some expression (formal or informal) of the

intended behaviour, that is converted to a program code. Depending on the expres-

siveness of the programming model and language used, such task can be greatly facil-

itated. However, such an activity gives the opportunity to introduce another kind of

bugs, programming bugs. Figure 2.2 illustrates such concepts.

specification
bugs

programming
bugs

Application

specification
Programapplication

behavior

Intended

Figure 2.2: Specification and programming bugs

The lack of a formal specification of program behaviour makes the debugging ac-

tivity extremely complex, as specification and programming bugs both tend to appear

mixed at the program code level.

The debugging task becomes more difficult also due to the multiple internal soft-

ware layers of a computing system. Namely, operating system and machine code lev-

els can also contribute to the appearance of misbehaviors that are usually beyond the

programmer’s control.

17

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.1. Basic Concepts

In the past fifty years, there was a huge amount of work concerning the debug-

ging of sequential applications. Several significant debugging techniques were devel-

oped, addressing both specification and programming bugs, depending on the kind

of programming models and languages (e.g., imperative or declarative). In order to

analyse the behaviour of a sequential program, a state-based approach is appropriate,

supported by an interactive debugger. This allows the inspection of the succession

of computation states (steps), also aided by placing breakpoints at desired conditions

or regions of code. Due to its deterministic behavior, it is easy to re-execute the pro-

gram under a given set of input conditions in order to repeatedly examine its behavior

in detail. Sequential debugging is also made simpler because the program execution

follows only one thread of control.

The observation of the program execution during debugging does not change the

original program behaviour, except for real-time applications.

Parallel and distributed applications introduce several distinct aspects that make

them much more difficult to debug.

A distributed program consists of a collection of sequential processes which cooperate

by using some communication model. This definition also includes the concept of

a parallel program, although the latter term is more usually applied when there is a

need to meet the application performance requirements by exploiting simultaneous

execution of program units in distinct physical processors. In this text, the term parallel

and distributed is often used, in order to highlight the use of multiple processors, on one

hand, and in order to focus our attention on distributed architectures without global

clock, no global shared memory, and no bounds on message transmission times, on the

other hand.

The following aspects make distributed debugging much more difficult than se-

quential debugging:

i) The large number of concurrent and interacting entities;

ii) The intrinsic non-deterministic behavior of a distributed program;

iii) The difficulties of constructing accurate, up-to-date, and consistent observations

of the global states of a distributed computation;

iv) The perturbation due to the observation and control mechanisms.

The concept of a distributed computation represents possible behaviors which result

from executing a distributed program in a distributed systems (that is, supported by

the operating system plus the hardware layers).

In order to analyse the correctness of a distributed program, a possible strategy

would be to observe all distributed computations which are generated when running

the program. In such a way, a set of correctness predicates can be evaluated in mean-

ingful computation states, to give us confidence about program correctness.

18

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.2. Distributed Computations

In the following section of Chapter, a brief survey is presented of the theory of

distributed computations in order to explain the reasons why it is so difficult to debug

distributed programs. In the remaining sections of the Chapter, an overview of the

main distributed debugging approaches is presented.

2.2 Distributed Computations

Depending on the programming language used, the operational semantics of a dis-

tributed program can be defined in terms of events that correspond to process control

and communication actions. Such active computational entities (e.g., processes) and

their state transitions, described by events, are mapped into the lower level primitive

events defined by the underlying architecture of the distributed system.

Usually, for the study of distributed computations, a distributed program (system)

is defined as a collection of processes that communicate using a basic message-passing

model with the classical send and receive primitives. Such a system has asynchronous

characteristics, with arbitrary process speeds and message transmission delays, and

lacks a global physical time reference.

Such nondeterminism makes it very difficult to evaluate correctness properties that

should hold for all possible executions of a distributed program, and not only for one

observed execution. Also the generated computation usually follows distinct execu-

tion paths when repeatedly running the same distributed program, with a given set of

input conditions.

There are two main concepts for helping us to describe all possible execution runs

of a distributed program. One is the concept of local history of each sequential process

that is involved in the execution of the distributed program. The other concept is the

causal precedence ordering of events, defined by the sequential process ordering and

the event dependences originated in process interactions.

A process Pi is defined as a sequence of events, which defines its local history hi. Two

main types of events are considered: internal events represent local state transitions

made by Pi alone, not involving any other processes; interaction events represent pro-

cess communications corresponding to message send and receive actions. The totally

ordered events in Pi’s local history represent the evolution of the values of all the Pi’s

variables and of the interactions involving Pi in a distributed execution.

hi = {e0
i ,e

1
i , ...,e

f
i }

A process starts with its event e0
i , that is the initialization event of Pi. It defines

the process initial state, denoted by s0
i . In general, the kth event in the process his-

tory, denoted by ek
i , produces the local state sk

i , as the state immediately right after ek
i

occurrence. One can assume e
f
i is the termination event of Pi, and s

f
i is Pi’s final state.

A prefix of hi, for example up to and including the kth event, is denoted by hk
i and it

represents the partial history of Pi, up to a certain point in Pi’s computation.

19

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.2. Distributed Computations

A global history (H) is defined by the union of all local histories.

A fixed number (n) of processes is usually assumed without loss of generality.

Among all the event orderings represented by H, only some of them can possibly

occur that are compatible with the causal precedence relationship (7→) as defined by

Lamport [Lam78]. Event e 7→ e′ iff e causally precedes e′. Event e || e′ iff neither e 7→ e′

nor e′ 7→ e.

A distributed computation is formally defined as a partially ordered set (poset)

defined by the (H, 7→) pair. Intuitively, this reflects all physically feasible event com-

binations that must be obeyed by all possible executions of a distributed program by

a distributed system. Distributed computations may be represented by a process-time

diagram where the event causality chains replace the classical notion of instant physi-

cal time in a centralized system with a global clock.

e
1
0 e

1
1 e

1
2 e

1
3 e

1
4

e
2
0

e
3
0

e
2
1 e

2
2 e

2
3 e

2
4

e
3
1 e

3
2 e

3
3

P1

P2

P3

1FC 2FC

C1 1FCevents in cut corresponding to

2FCfrontier of a consistent cut

1FCfrontier of an inconsistent cut

Figure 2.3: Process-time diagram with consistent and inconsistent cuts

Distributed debugging relies upon the observation of the global states of a dis-

tributed computation. A global state is a n-tuple of local states of all involved processes.

S = s1 ∪ s2 ∪ . . .∪ sn

where si is the local state of Pi (1 ≤ i ≤ n) corresponding to some prefix of Pi’s local

history. The initial global state (denoted by S0) of a distributed computation is defined

by the initial local states of all processes i.e. s0
i for 1 ≤ i ≤ n. The final global state

of a distributed computation (denoted by S f) is defined by the final local states of all

processes i.e. s
f
i for 1 ≤ i ≤ n. The difficulty with the intermediate global states is that

all combinations of local state tuples cannot occur in real executions of a distributed

program.

In relation to a process-time diagram like in Figure 2.3, the concept of a cut is de-

fined as a subset of the global history, that represents a partial global history. The

frontier of a cut is the n-tuple of the last events in each prefix of hi for all 1 ≤ i ≤ n. The

20

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.2. Distributed Computations

frontier of a cut intuitively represents a view of the global progress up to a certain point

in the execution in terms of the last occurred events. For example, in Figure 2.3 on the

facing page there is a well-defined unique global state corresponding to each frontier

of a cut, that gives the last occurred local states for each process.

However, only consistent cuts are significant for the purpose of meaningful obser-

vations. A consistent cut is left closed under the 7→ relationship, i.e.

∀e,e′ ∈ H : e ∈Cc ∧ e′ 7→ e ⇒ e′ ∈Cc

Intuitively, a consistent cut incorporates all the past of its own events. A cut that

would include some event e and not all events causally preceding e, cannot correspond

to a possible view of a distributed execution.

A consistent global state is the global state defined by the frontier of a consistent cut.

A consistent global state represents a global state that can possibly occur during a

distributed program execution because it represents a view of the global state that

respects the causal precedence among events. In Figure 2.3 on the preceding page FC2

is a consistent global state and FC1 is not.

The consistent cut and consistent global state concepts can be used as a basis to de-

fine observation models for distributed computation that can be used for distributed

debugging purposes. An intuitive notion of the current state of a distributed compu-

tation can be visually caught by considering the events (and states) to the left of a

consistent cut, as equivalent to a past history, and the events to the right of a consistent

cut, as the ones in the future. This suggests one could consider an incremental pro-

gression of the distributed computation, followed by the user under the control of a

distributed debugger, where successive consistent global states would be examined for

evaluation of correctness predicates. Indeed this is an important research direction in

distributed debugging, but it has several inherent difficulties that will be discussed in

the following.

In order to understand the behavior of a distributed program one has to consider

all intermediate consistent global states that can possibly occur starting by the initial

state S0 until the final state S f . For each execution of a distributed program, a distinct

set of consistent global states may be followed so each execution generates a distinct

sequences of states, due to the nondeterminism of a distributed system. However,

to ensure correctness, one needs to reason in terms of all such possible sequences of

consistent global states.

The concept of consistent run represents a possible observation of a distributed com-

putation where all the events appear in a total ordering that extends (i.e. is compatible

to) the partial ordering defined by Lamport’s causal precedence relation.

The arbitrary event ordering in a consistent run is due to the nondeterminism. In

order to generate all possible sequences of consistent global states, one has to consider

the set of all possible consistent runs, that is the set of all paths from S0 to S f [BM93]. An

exhaustive traversal of such paths would be necessary to verify or detect correctness

21

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.2. Distributed Computations

properties of a distributed program. This approach is in general infeasible due to the

large combinatory of global states that would have to be examined. Moreover, the

problem of constructing individual global states poses additional difficulties.

More complete presentations of these concepts may be found in [BR94,CL85,Mat89]

2.2.1 Observation of Global States

The intuitive notion of global state of a distributed computation corresponds to a col-

lection of local states that could be viewed by some ideal external observer. In a dis-

tributed system, an external observer can only build such a view through message

exchange with each remote individual process. The following aspects are related to

this observation problem:

i) The global state can be obsolete at the time the global view is actually constructed

by the external observer. This occurs in case the observation is performed online,

during actual execution. If the observation is performed offline, in a postmortem

analysis of the global histories, this problem does not arise.

ii) The observed global state must be a consistent cut of the distributed computation.

Observation of inconsistent cuts may occur due to the unpredictable message de-

livery orderings in a distributed system. An inconsistent sequence of events may

be built by the observer that does not preserve the causal precedence relationship.

Algorithms to build consistent cuts are thus required [BFR95, CL85].

iii) Multiple independent observers may build distinct views of the same distributed

computation. The presentation of uniform views of a distributed computation

to multiple concurrent and independent observers requires an adequate coordina-

tion between them.This is an issue that has not been considered in most of existing

distributed debugging tools. However, it has high relevance due to the emergence

of integrated development environments where several concurrent tools act as ob-

servers (and sometimes controllers) of an ongoing distributed computation.

The difficulties of the observation depend on the adopted distributed debugging

approach:

i) Off-line. In this approach, it is possible to analyse global histories that were gen-

erated by a previous execution or by a simulation of the program model. These

methods always deal with complete histories.

ii) Online. In this approach, it is necessary to develop algorithms to construct global

states or consistent runs during an actual execution. These methods deal with

partial histories.

22

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.2. Distributed Computations

The main approaches to construct observations of a distributed computation use

an online external observer or monitor process. All existing approaches make specific

assumptions on the message delivery rules that should be enforced by the distributed

system, ranging from FIFO ordering between pairs of processes to causal delivery of

messages. A discussion of the implementation of such delivery rules is beyond the

scope of our work. A complete survey may be found in [BM93, Clá03].

2.2.2 Detection of Global Predicates

A general method underlies the work by several authors to support the distributed

debugging activity, according to the three following steps.

i) Global predicate specification. This step starts by the identification of desired or

undesired program properties corresponding to a set of correctness criteria. These

properties are then expressed as global predicates which are boolean expressions

involving conditions on the local variables of multiple processes or on the states

of communication channels.

ii) Evaluation of global predicates. This step is responsible for the detection of global

predicates using off-line or online approaches. The problem of evaluating gen-

eral forms of global predicates has been studied and found NP-hard, so several

authors have focused on the evaluation of restricted forms of global predicates,

such as conjunctive and disjunctive. Although restricted, such global predicates

are still useful in distributed debugging. An important distinction is established

among stable properties, such as deadlock and termination, and unstable properties

of a distributed program, which may dynamically change their truth values dur-

ing the computation. The detection of unstable properties is obviously more dif-

ficult. It cannot be ensured by online observations based on the global snapshot

approach, as the constructed state may miss the point of the computation where

that property holds. Concerning the online construction of consistent run, even

if the property holds for a certain consistent global state in that constructed run,

this does not gives information about how it behaves in other possible runs. Ex-

tended forms of global properties have been proposed by several authors that try

to express the program behavior in terms of the entire distributed computation, in-

stead of related to a single global state.Several authors have exploited approaches

for building and traversal the entire space of consistent global states, which are ad-

equate for evaluation of both stable and unstable predicates. Other authors have

tried to exploit specific and simplified forms of global predicates, e.g., consistent

global predicates, in order to avoid an exhaustive search of that space. These ap-

proaches are further discussed in [CG98, CM91, HPR93, BM93, GCMK96, TG93].

iii) Reaction on detection of a global predicate. Depending on the user interpretation

of the logical condition that was evaluated, a particular action may be necessary.

23

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.3. Distributed Debugging Methodologies

For example, if the detected global predicate corresponds to a bug situation, a dis-

tributed debugger should be able to stop the execution and restore the local states

of all processes in a meaningful consistent global states that satisfy the detected

global predicate.

2.3 Distributed Debugging Methodologies

Distributed debugging methodologies can be classified according to the level of sup-

port they provide to the user concerning the activities of global predication specifica-

tion and detection, and the search for the causes of the bugs.

to obtain
reproducible behavior

the result of applying each method

the required aspect
provided by the following method in the chain

to analyze
alternative paths

to evaluate
local correctness properties

correctness
predicate
specification

state based debugging

deterministic re−execution

systematic state exploration

Interactive debugging

of remote processes

and debugging

Trace, replay

Integrated testing,
active control
and debugging

active control
and debugging

GP detection,

Figure 2.4: distributed debugging methodologies

In the following, these approaches are successively discussed, starting from the

simpler approaches to the more complex ones. These approaches are complementary

to each other, in the sense that each approach tries to overcome a limitation of the

previous approach in the sequence.

2.3.1 Interactive Debugging of Remote Processes

Conventional sequential debugging commands can be extended to allow individual

online observation and control of the execution of remote processes. This is a limited

approach that only allows to examine local histories of individual processes of a dis-

tributed program. As each local history only describes the evolution of each process

in terms of its internal and interaction events, it is the programmer’s task to build the

global picture of the corresponding distributed computation. However, as such basic

remote debugging mechanisms are required to enable more sophisticated approaches,

they are supported by almost all existing commercial or academic debuggers. The

24

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.3. Distributed Debugging Methodologies

main distinction between existing distributed debuggers of this kind is related to the

functionalities and design of their architectures.

This approach is important as a first step. However, it does not handle the nonde-

terminism behavior of a distributed program.

2.3.2 Trace, Replay and Debugging

In order to address the nondeterminism, this approach is based on collecting a trace

of the relevant events generated by a distributed computation, during a first program

run. The trace describes a computation path (a consistent run) that can be analysed at a

postmortem stage. If erroneous situations are found, the program can be re-executed un-

der the control of a supervisory mechanism. This mechanism uses the traced sequence

of events to force the execution to follow the same path as the ones in the previous

run. This allows the user to examine the behavior of that path within a cyclic inter-

active debugging session, in a reproducible way. In such a session, the user may use

the observation and control functionalities provided by the previous approach. The

trace and replay technique has been the focus of intensive research in the past decade,

mostly concerning the reduction of the probe effect and of the volume of the traced

information [Net94, Net93, FCdK95, LMC87, RK98, Wit88, RBC+03]. However, not all

commercial debuggers include such a facility.

From the view point of distributed debugging, there is a limitation in this approach

if it gives no support to analyse other computation paths besides the traced one. If

the first run which is used to collect the trace is a ’free’ run i.e. under the control of

no supervisory mechanism, the resulting trace describes only a randomly occurring

path from the large set of possible paths. This gives no guarantee that such is an (the)

interesting path to consider for analysis. Indeed, it is highly unlikely this will be the

case.

Although this approach improves on the first one, it still needs to be complemented

by the following approach.

2.3.3 Integrated Testing, Active Control and Debugging

This approach tries to overcome the above mentioned limitation of a simple passive

trace and replay approach. Multiple authors have proposed approaches for the active

control of distributed program execution for debugging purposes. They try to provide

a facility to enforce the execution of specific runs of a distributed computation in order

to ease the location of erroneous situations. They differ in the way they generate and

specify the desired consistent run that a controlled execution should follow. In the

following, one of these approaches is briefly described for illustrative purposes.

The approach considers two separate phases in the distributed debugging activ-

ity. It is based on the integration of a static analysis and testing phase and a dynamic

25

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.3. Distributed Debugging Methodologies

analysis and debugging stage. The goal of the testing phase is to assist the user in the

generation of interesting runs that may exhibit violations of correctness properties. In

general it is not feasible (or even possible) to provide a completely automated testing

phase. An interactive testing tool is useful to cooperate with the user to specify and

refine the conditions and regions of program code that should be considered for anal-

ysis. The testing phase is then used to generate a sequence of commands that will be

used to drive a program run, in order to exercise the paths defined by the above test-

ing scenarios. Such a run can then be the subject of a trace and replay approach, and

integrated in a cyclic debugging session.

The main advantage of this methodology is that it allows the user to interactively

’walk’ through the testing and debugging phases, until one is convinced about the sat-

isfaction of the correctness properties that are being investigated. Another advantage

of this approach is that it combines the advantages of static and dynamic analysis in

order to help the user to understand program behavior (cf below).

The main problem with this approach is that it basically relies upon the user convic-

tion that all relevant scenarios were specified and generated, tested and analysed, so

that one gets confidence on distributed program correctness. There is no full guarantee

that no important situations went unnoticed. Still, this approach has been the basis of

intensive research and has produced interesting results [LCK+97].

2.3.4 Automated Detection of Global Predicates

This approach is an attempt to help the user increasing the confidence on the re-

sults of the previous approach, by allowing the specification of the correctness cri-

teria in terms of global predicates. Such global predicates are then automatically

evaluated by detection algorithms, working off-line or on-line distributed debug-

ging [Bat95, Bat88, CG98, CM91, Clá03]. As the efficient evaluation of global predi-

cates is limited to restricted classes of global predicates, this approach may be seen

as complementary to the testing and debugging approach. Their integration seems a

promising research direction to improve.

2.3.5 Distributed Debugging Based on Static Analysis

This approach uses the program code as a basis and it does not require actual program

execution. It relies on formal models of program behavior that can be used to check

certain kinds of properties, usually expressed as temporal logic formulas. However,

model checking techniques can only be used to analyse certain properties and do not

give information on dynamic properties that depend on actual runtime program be-

havior, e.g., termination. Also, they usually incur great computational costs in their

search for all allowable state transitions in the modelled computation space.

Still, static analysis of the program source code is one approach that can reveal

26

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.3. Distributed Debugging Methodologies

Off−line
post−mortem

analysis

Analyze trace

Perform
complex event

processing

dynamic or static
analysis

Request further

On−line

analysis
dynamic

Observe
testing

scenarios

Check dynamic

on−the−fly
properties

trace info

Generate
dinamic

/ generating
testing scenations

Help identifying /

Verify program
source static
propertiesOff−line

static
analysis

Figure 2.5: distributed debugging methodologies

itself as of great importance for distributed debugging, if adequately combined with

complementary approaches.

2.3.6 Distributed Debugging Based on Dynamic Analysis

Due to the mentioned limitation of static analysis, one needs to use online approaches

that help evaluating the actual program behavior on-the-fly. Such approaches rely

upon online observation techniques so they must deal with the difficulties of accu-

rate construction of consistent global states. Once a specific program behavior pattern

was detected, these approaches also require adequate control mechanisms to help the

user inspecting the individual computation states of interest. This approach must deal

with the probe effect, in order to ensure that the observed computation path exhibits

the same logical behavior as the original computation would, when running with no

observation mechanisms.

Dynamic and static analysis approaches can be combined in order to provide the

distributed debugger with functionalities as the ones required by the mentioned inte-

grated testing, active control and debugging approach.

2.3.7 Distributed Debugging Based on Postmortem Analysis

Postmortem analysis approaches provide an effective way to analyse program behav-

ior because they rely upon previously collected traces of the processes’ local histories.

On one hand, it becomes easier to construct a consistent global state, out of these local

27

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.3. Distributed Debugging Methodologies

histories, by regenerating the causal precedence chains. This reduces the runtime over-

head incurred by online approaches. It also enables facilities for analysis of complete

computation histories, with the help of a diversity of event analysis and visualization

tools. On the other hand, postmortem techniques can be integrated with online tech-

niques, in order to exploit tracing, replay and debugging methods, to address the non

reproducibility issue. Incremental methods consisting of online and postmortem stages

also allow to handle the potentially large volume of traced information. A first run is

used to collect only the minimum amount of information to ensure reproducible re-

execution, and further postmortem analysis can determine the need to collect further

information on successive runs.

The summary of how such approaches are complementary to each other:

i) Off-line. Verify certain properties using static analysis and help identifying rele-

vant scenarios for testing

ii) Online. Check dynamic properties on-the-fly, and observe testing scenarios, under

an actively controlled execution

iii) Postmortem. Analyse traces of complete global histories, perform more complex

event processing (e.g., high level event abstractions) and visualization. Use the

results of such analysis to determine further runs and dynamic analysis.

Further discussion on the classification of distributed debugging approaches can be

found on [CLD01a].

28

3
Fiddle: a Distributed Debugging Engine

Contents

3.1 Introduction . 30

3.2 Techniques for Distributed Debugging 30

3.3 A Proposal for a Distributed Debugging System 33

3.4 The Debugging System Components 35

3.5 The Architecture of the Debugging Engine 42

3.6 Extending the Debugging Engine . 47

3.7 Summary . 50

This Chapter introduces the main requirements for distributed debugging and how
traditional debugging services fulfill some of those requirements, followed by presen-
tation of the software architecture of a debugging engine which fulfills some of those
requirements, and how this debugging engine may be extended with complementary
functionalities which may cover the remaining requirements

29

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.1. Introduction

3.1 Introduction

There is a large diversity of approaches commonly used to locate bugs in programs,

depending on the hardware, the operating system, the programming model, the pro-

gramming language and, most of all, on the program developer.

Traditionally, the software developer has the possibility to execute a program under

control of a debugger. This allows to inspect the process core image, e.g., the memory

contents, and to have a detailed control over program execution by using techniques

such as breakpointing and single-stepping. However, they are less effective for dis-

tributed programs, composed by multiple processes executing on multiple computing

nodes, due to the intrinsic non-determinism of the corresponding computations.

3.2 Techniques for Distributed Debugging

Errors in distributed programs may, naturally, be due to unplanned process interac-

tions as well as errors in sequential code in any of the processes. Distributed debug-

gers should not neglect the latest kind of errors as, although easier to locate and correct,

their frequency in distributed programs is much higher then those resulting from un-

wanted process interactions.

Different classes of techniques may be used to debug distributed programs:

i) Sequential debugging techniques. Distributed programs also include sequential sec-

tions of code, and such sections are not, necessarily, bug free. Sequential debug-

ging services, such as breakpointing, single-stepping and inspecting/changing

process variables, are also a basic requirement for distributed debugging;

ii) Distributed debugging techniques. Distributed programs are composed of interact-

ing processes, whose behaviors reflect mutual interdependencies. The need to

understand these interdependencies puts specific requirements upon distributed

debuggers;

iii) Information sharing and tool cooperation. Distributed programs are considerably

more complex than their sequential counterparts, and the software developer fre-

quently relies on different tools to analyse the distributed program behavior. Us-

ing such tools separately forces the software developer to a permanent “context

switch” in the working environment every time a different tool is used. Most im-

portant, this puts a strong demand upon the software developer to analyse and

correlate the data gathered from multiple tools.

This motivates the requirement to support a set of software tools which are able

to cooperate with each other, by exchanging data and control information and, if

possible, to coexist and be accessed through uniform and consistent user inter-

faces.

30

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.2. Techniques for Distributed Debugging

The above identified techniques to support distributed debugging are discussed in

the following sections.

3.2.1 Sequential Debugging Techniques

Sequential debugging techniques can be applied to the debugging of the sequential

sections of code of a distributed program. These techniques can be organized into the

following main classes of services.

i) Breakpointing services. To stop program execution at points corresponding to spe-

cific source code locations or on read/write accesses to specific memory locations;

ii) Control services. To control the program execution, through the classical step, next

and continue operations;

iii) Data services. To examine and change the program core image, for example, to

access local and global variables contents;

iv) Stack services. To inspect and manipulate the program execution stack;

v) File services. To inspect and control the source and executable files associated to a

target program;

vi) Management services. To support the management of the debugging tool itself, such

as initiating and terminating the distributed debugging tool.

These services allow the software developer to examine and debug the individual

processes of a distributed program, but do not consider the additional needs resulting

from distribution and process interaction, which are covered by the next class.

3.2.2 Distributed Debugging Techniques

The software development environments, and the distributed debugging system in

particular, must address the difficulties introduced by distributed computations. Con-

cerning the debugging activity, the following list of functionalities contribute to handle

such difficulties.

i) Behavior record and replay. Due to the inherent non-determinism of distributed

computations, the simple act of observing a distributed computation may mod-

ify its behavior, changing or even hiding a bug manifestation. This is frequently

called the probe effect or the Heisenbug effect.

The undesired effects of such changes in the program behavior can be reduced

by registering and recording the distributed program behavior in a first run. The

same distributed program can then be replayed, i.e., re-executed and forced to fol-

low the same steps which were registered in the first run. This allows to perform

31

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.2. Techniques for Distributed Debugging

the required inspection and even control operations during the replayed execu-

tion.

ii) Controlled execution. A specification of the intended program behavior can be gen-

erated from annotations introduced in the source code by the software developer,

or by a testing tool which analyses the distributed program and its source files.

Inspecting a distributed computation generated by a distributed program under

controlled execution will not influence its behavior, as it is being forced to follow

well specified paths corresponding to a specification of such intended behavior;

iii) Checkpointing. For long time runs, it may be unacceptable to re-run the application

from the very beginning once a program failure is detected. In such cases, it is

common to periodically perform execution checkpoints, where the global state of

the distributed computation is saved. Once a failure is detected, the computation

may be resumed to a previously saved state, and proceed from that point on;

iv) Inspection and control of system level entities. A distributed program frequently de-

pends on third party software packages, e.g., communication libraries, or runtime

or operating system “objects”, e.g., semaphores and mutexes. The ability to exam-

ine and change such external entities is necessary for a better understanding of the

distributed program behavior and, therefore, for the identification and correction

of its errors;

v) Log analysis and error detection. By analysing a log file where the behavior of a

distributed program was registered, and correlating that information to the source

code, many program errors can be detected, e.g., some race conditions, even before

they actually generate a fault and a failure.

The distributed debugging techniques enumerated above, when adequately sup-

ported by a debugging environment, allow the software developer to reach a better

understanding and control of the distributed program behavior, and of the interac-

tions between its processes. However, the tools providing those services should be

able to share information and cooperate with each other, as discussed in the following.

3.2.3 Tool Integration Issues

The development of distributed programs encompasses a hierarchy of abstraction lev-

els, supported by a diversity of models and tools. Such models and tools may con-

siderably help the software developer to understand the process interactions and the

global application behavior, and may include:

i) High(er)-level programming languages. To allow problem specification and coding;

32

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.3. A Proposal for a Distributed Debugging System

ii) High(er)-level programming languages editors. To support the effective development

of programs on those languages;

iii) Code generators and compilers. To convert the high(er)-level programs into interme-

diate and executable code;

iv) Simulators. To help predicting and evaluating the program behavior without the

need of a real execution;

v) Mapping and load balancing tools. To define the initial distribution of processes on

the computing nodes, and to balance during execution;

vi) Performance evaluators. To analyse and optimise the overall program performance;

vii) Computation visualizers. To graphically represent the behavior of computation

nodes and processes, and display their interactions;

viii) Debuggers. To help detecting, locating and correcting program errors, by providing

the means to inspect and control the distributed program behavior.

The above tools are, often, developed by different tool-makers, thus having limited

compatibility and interaction capabilities. The result is, typically, a complex devel-

oping environment, where the software developer has to constantly switch between

different tools to edit, compile, test and debug the distributed program.

The difficulties of using such development environments, where multiple tools

from different origins and vendors are used together, motivated the efforts towards

the specification of standard services and interfaces [LWSB97], and increased the rele-

vance of tool integration and interoperability issues.

Frequently, the interoperability of a distributed debugger with other tools in a soft-

ware development environment, such as graphical program editors and computation

visualizers, is a key requirement.

3.3 A Proposal for a Distributed Debugging System

Many of the distributed debugging tools available from both the research and the com-

mercial communities have a stronger emphasis on the distributed debugging services,

partially (or even completely) neglecting the other two classes, the sequential debug-

ging services and the tool cooperation and integration services.

In this dissertation we propose a different approach. We start with a minimalist

debugging engine, which supports some basic sequential debugging services for dis-

tributed programs. This debugging engine can thus be extended with additional ser-

vices, that can be integrated in a debugging software architecture. New services can be

defined by an adequate combination of those already available, or by implementing a

new set of servers and libraries and linking them to the debugging engine.

33

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.3. A Proposal for a Distributed Debugging System

We use the term “debugging engine” and not “distributed debugger” because its

definition is restricted to the debugging services to be supported and not how they

should and will be used. Consequently, the proposed engine does not include any

specification of a built-in user interface, neither graphical nor text oriented.

By separating the definition of the user interface from the specification of the debug-

ging engine, we allow the development of a diversity of user interfaces with different

targets and goals. Other important characteristic of the proposed debugging engine is

the tool interoperability and integration facilities.

In summary, the proposed debugging engine aims at:

i) Allowing the access and control of multiple distributed processes. Distributed programs

are composed of a set of cooperating processes, and the debugging engine will be

able to access and control all or some of those processes;

ii) Allowing the access and control of multi-threaded processes. In the last years there

has been a trend towards thread-based programming models, and thread-based

programming is an issue which is also addressed by the debugging engine;

iii) Supporting symbolic process identifiers. The debugging engine supports a symbolic

process naming mechanism, allowing to abstract from the physical location of the

processes under debugging;

iv) Providing a minimalistic set of debugging functionalities. There is such a diversity of

distributed execution environments, regarding the hardware, the operating sys-

tem, the communication libraries, and the distributed programimg models, that

the range of supported execution environments by each debugging engine are

considerably restricted. Attempts to design a debugging engine in order to accept

a wider scope of execution environments may lead to a huge and unmaintainable

tool. We opted to provide just a minimalistic set of debugging functionalities in

the debugging engine core. Tis has the effect of limiting its size and easing its

maintenance. It also allows to provide a common set of basic functionalities that

may be useful in distinct environments;

v) Being extensible. The minimalist set of debugging functionalities may not be

enough for a particular use of the debugging engine or for a particular execution

environments. The debugging engine should be adaptable to particular execution

environments or to support specific needs. This should be achieved by design-

ing and implementing debugging engine extensions which are incorporated into the

debugging engine core;

vi) Supporting a diversity of user interfaces. Typically, a distributed debugger includes

a generic (sometimes graphical) user interface, which allows to generically debug

different classes of programs, but lacks the ability to adapt to the specific needs

imposed by each application or by the execution environment;

34

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.4. The Debugging System Components

This desired adaptability and flexibility of the debugging engine can be achieved

by decoupling its core from the user interface. In such a way, besides any generic

debugging user interface available in the debugging engine distribution, both

generic and customized debugging user interfaces can be developed and inte-

grated into the debugging engine;

vii) Supporting for multiple concurrent user interfaces. Multiple debugging user inter-

faces to coexist and operate concurrently, being involved in the task of debugging

the same distributed program. This is achieved by keeping each debugging user

interface as a small and simple unit, and by building more complex user interfaces

through the composition of the simpler units.

3.4 The Debugging System Components

Three main components are involved in the debugging of a distributed program: the

client tools, the debugging engine and the target application processes. These compo-

nents are discussed in the following.

� � � � � � � � �
� � � � � �

� � � �
� � � � � �

 � � � !

� � � � � �
 � � � "

$ $ � � % & � � � �
' � � % � (("

$ $ � � % & � � � �
' � � % � ((!

$ $ � � % & � � � �
' � � % � (()

� � � � � �
 � � �)

' *

� � � � � � � � � (& � � � � # $ $ � � % & � � � �� � � + � � � � � � � � � � & � , # ' *

Figure 3.1: The debugging engine logical organization

i) The target program. The execution of a distributed program involves the execution

of a set of interacting processes (possibly) running on different nodes. Debugging

such a program involves observing and controlling not only some of its processes

but also their interactions;

ii) The client tools (debugging user interfaces). Provide access to the debugging func-

tionalities supported by the debugging engine;

iii) The debugging engine. Implements the basic debugging functionalities which can

be accessed from the client tools. The debugging engine is defined by:

35

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.4. The Debugging System Components

a) The debugging engine core. This is the center of all the debugging operations.

It manages, among other things, the status of the target processes. It also in-

terprets the debugging service requests, and handles their application to the

target processes;

b) The application programming interface (API). The specification of how the client

tools can access the services provided by the debugging engine core.

In the following, each of these components is discussed further.

3.4.1 The Target Program and Processes

When testing a distributed program, we may believe that a certain misbehavior is be-

ing originated in one (or in a subset of) the processes of that distributed program. In

this case, we may be interested in debugging just this subset and not all the processes.

A program under debugging is called the target program. The subset of its processes

under debugging are called the target processes. Target processes are said to be local

or remote, depending on whether they are executing in the same physical node as the

client tool (user debugging interface) or in some other (remote) node, respectively.

3.4.2 The Client Tools

The debugging engine provides a set of debugging services, each set being accessible

through an API, but the engine does not provide the interface for the software devel-

oper to access those services. Each client tool must implement this bridge between the

software developer and the debugging engine, providing a user interface to access a

subset of the services available in the debugging engine.

The debugging engine does not specify the kind of functionalities to be provided

by the client tools, neither how will they be accessed and presented to the software de-

veloper. The functional and operational specifications of the client tools are completely

left open to their developers.

In Figure 3.1 on the preceding page, three different kinds of client tools are depicted:

i) A controller (client tool 1), whose main function is to act upon the target applica-

tion, by changing its internal state or controlling its behavior;

ii) An observer (client tool 2), whose main function is to collect and display informa-

tion about the application status and behavior; and

iii) An interactive tool (client tool 3), which acts simultaneously as both a controller and

an observer.

The debugging engine services are made available to all the client tools through

an API (described in Section 3.4.4). In our experimental work, such services were ac-

tually explored by a wide range of tools, from text oriented and graphical debugging

36

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.4. The Debugging System Components

interfaces, such as Fiddle consoles (described in Section 5.3) and FGI (described in Sec-

tion 5.4), to automated debugging tools, such as DEIPA (described in Section 5.5), and

even to parallel software development environments, such as GRADE and EDPEPPS

(both described in Section 5.6).

According to the above classification for the client tools, DEIPA is a possible exam-

ple of a controller. Any program visualizer, such as Pajé (whose possible cooperation

with our debugging engine is discussed in Section 5.7), may be classified as an ob-

server. Finally, any debugging interface, such as Fiddle consoles and FGI, belongs to the

interactive tool category.

3.4.3 The Debugging Engine Core

The debugging engine core is internally organized in multiple functional layers, as

depicted in Figure 3.2. The set of services available successively extend the debugging

functionalities as we move from the lower to the higher layers of the debugging engine.

- . / 0

1 2 3 4 5 6 0

1 2 3 4 5 6 7

1 2 3 4 5 8 7

1 2 3 4 5 9 7

1 2 3 4 5 : 7

; 2 5 < 4 = - > > ? @ A 2 = @ B C

D ? @ 4 C = ; B B ? 0

Figure 3.2: The debugging engine layered architecture

The functionalities provided by each layer have a well defined API that gives access

to an associated service library (there is one service library for each layer). There are

only minor differences between the APIs of all layers. The exception is Layer3m, which

differs considerably from the others, both syntactically and semantically, due to the

nature of the services it provides.

There is a minimum set of functionalities, common to all layers, which are always

available: support for one or more client tools (depending on the layer being used),

support for multiple target processes (both local and remote, also depending on the

layer being used), where each of the target processes may be single- or multi-threaded.

37

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.4. The Debugging System Components

Besides the above common features for all the layers, there are some others which

are specific to each layer, as summarized in Table 3.1.

Layer0s Layer0m Layer1m Layer2m Layer3m

Multiple target processes Yes Yes Yes Yes Yes

Multi-threaded target processes Yes Yes Yes Yes Yes

Multi-threaded client(s) No Yes Yes Yes Yes

Remote debugging No No Yes Yes Yes

Multiple concurrent clients No No No Yes Yes

Events and call-back routines No No No No Yes

Table 3.1: The debugging engine internal layers and their functionalities

Any layer may be directly used by a client tool, as long as the set of services pro-

vided by that layer are enough for the tool needs.

i) Layer0s. Provides debugging services at a single local node. By local we mean

that both the target processes and the client tool must be executing in the same

computing node. Only a single thread in the client tool may be issuing service

requests to this layer. The debugging engine gives a symbolic identifier to each

target process, and this identifier must be used by the client tools to identify each

process that is targeted by their service requests;

ii) Layer0m. Extends the services provided by Layer0s to guarantee a thread-safe en-

vironment. When accessing this layer, a multi-threaded client tool may issue con-

current requests to the debugging engine, which will be executed concurrently if

directed to different target processes, otherwise they will be applied sequentially;

iii) Layer1m. Extends the services provided by Layer0m to provide transparent debug-

ging services to remote target processes. At this level all symbolic identifiers are

made global in the distributed system and can, therefore, refer to any process in-

dependently from their physical location;

iv) Layer2m. Extends the services provided by Layer1m to allow multiple concurrent

client tools. By using this layer, it is possible to have as many client tools as de-

sired, all of them concurrently issuing debugging requests to the same set of target

processes. Such multiple client tools may provide complementary views and de-

bugging functionalities over the target program, by exploiting and manipulating

different (but not exclusive) sets of debugging services;

v) Layer3m. Was designed to support a common shared knowledge to all client tools.

This common shared knowledge would include the status of the target applica-

tion and of the debugging engine itself. To accomplish this goal, an event noti-

fication mechanism was introduced by this layer, such that changes in the target

38

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.4. The Debugging System Components

application data or execution state, or changes in the state of the debugging en-

gine core, may originate events which will trigger the execution of event handlers

in the client tools. Client tools may react to those events by changing their own

state or by storing the event details in an internal database for later access.

The hierarchical structure of the debugging engine architecture implies that each

layer L i (i>0) is a direct client of layer L i−1 (see Figure 3.3). In this figure, Layer3m has

two client tools (CT3m

2 and CT3m

1), Layer2m also has two client tools CT2m

1 and Layer3m),

and each of the remaining layers has a single client tool (the immediately above layer).

Target ApplicationFiddle

Client Tools

CT3m

2

CT3m

1

CT2m

1

TP1

TP2

TP3L
ay

er
0

s

L
ay

er
0

m

L
ay

er
1

m

L
ay

er
2

m

L
ay

er
3

m

Figure 3.3: The debugging engine logical layers

When a service is requested by a client tool, it will be interpreted and passed to

the successively underlying layers, until Layer0s is reached. At this point, the request

is applied to the target process. The result of such an operation is also successively

passed back to the upper layers until the client tool gets the reply. In the meanwhile,

the invoking thread in the client tool is blocked waiting for the reply, except for a

Layer3m client, which may define a reply handler for this service request and proceed

with its computation.

3.4.4 The Debugging Engine API

All the services provided by the debugging engine core have well defined semantics

and application programming interfaces. Such services provide a set of basic function-

alities which operate upon individual processes and may be classified into the follow-

ing main categories:

i) Internal services. Management services related to the debugging engine itself and

not to the target program;

ii) Breakpointing services. To set different kind of breakpoints in the target processes,

so that they will stop at specific code locations, unconditionally or when certain

conditions are verified;

39

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.4. The Debugging System Components

iii) Running services. To control the execution of target processes, such as single-

stepping or proceed with program execution until a breakpoint is reached;

iv) Data services. To examine or change the target processes core state, such as local

and global variables;

v) Stack services. To inspect and manipulate the target processes’ stack contents;

vi) File services. To inspect and control the source files associated to the target pro-

cesses;

vii) Thread services. To operate upon process threads;

viii) Miscellaneous services. For those services that do not fit in any of the previous

classes.

Other classes of services, such as operations upon groups of processes, record and

replay of distributed computations, checkpointing, etc. . . may be implemented as ex-

tensions to the debugging engine core and its API. The works on RPVM [LC98b] and

PADI [SNC00] are examples of such extensions to the debugging engine. RPVM extends

the debugging engine with the ability for deterministic replay of distributed programs.

PADI extends the debugging engine with a set of services which operate upon process

groups, and a graphical interface to access those services.

Similar services at different layers have only minor differences in their syntax

and/or semantics. For example, services f0m_step() and f1m_step() only have a mi-

nor semantic difference, as the former is only applicable to local processes and the

latter also applies to remote processes; and services f0m_attach() and f1m_attach()

have minor differences in both syntax and semantics, as the latter receives one more

argument than the former.

The API for all layers, except Layer3m, have an invocation semantics which follows

a synchronous model. This means that, for the majority of the layers, when a thread

in a client tool issues a debugging request by invoking a function from the API, it

will remain blocked until the debugging engine handles the request and generates a

reply. The handling of a service may require the arguments of the called service to be

encoded, packed and transfered to a remote node, and the reply to follow a similar

path, but in the opposite direction. Once received, the reply is unpacked, copied to the

output arguments of the API function call, and passed back to the caller.

Table 3.2 on the facing page presents a list of the basic services provided by all

layers. For each functional layer of the debugging engine there is a programming li-

brary which implements its API. For each library, the “X” in the service name prefix

on Table 3.2 is changed to the layer’s name, e.g., for Layer1m API, fX_initialize() is

changed to f1m_initialize(). Full details of the syntax and semantics of these ser-

vices are presented in [LC99].

40

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.4. The Debugging System Components

Internal services

fX_initialize() Initialize the debugging engine
fX_terminate() Terminate debugging engine
fX_clients() List active clients of the debugging engine
fX_tids() List the IDs of currently available target processes

Breakpointing services

fX_break() Set a breakpoint
fX_delete() Delete a breakpoint
fX_info_break() Get info about current breakpoints

Running services

fX_attach() Attach to a running process
fX_detach() Detach from a running process
fX_kill() Kill a target process
fX_file() Load program and symbols into memory
fX_symbol_file() Specify where to find program symbols
fX_run() Run a program
fX_step() Execute until the next instruction
fX_next() Execute until the next instruction (considering a function call as a single

instruction)
fX_continue() Continue the execution
fX_finish() Execute until returning from current stack frame
fX_call() Call a function in the current context of the process
fX_signal() Send a signal to a process

Data services

fX_set_variable() Change the contents of a variable
fX_evaluate() Evaluate an expression in the current context of the target process
fX_display() Evaluate and display an expression every time the process execution

stops
fX_undisplay() Undisplay an expression
fX_info_display() Get info about current display expressions
fX_info_locals() Get name and value of local variables
fX_info_args() Get name and value of function argument

Stack services

fX_info_stack() Get info about current stack frames
fX_up() Go up in the stack frame list
fX_down() Go down in the stack frame list
fX_frame() Select a specific stack frame

File services

fX_list() List the process source code
fX_info_line() Get info about current line
fX_info_program() Get info about current program

Thread services

fX_thread() Select a thread
fX_info_threads() Get info about the existing threads

Miscellaneous services

fX_tty() Set a TTY for future IO
fX_sendto() Send a command directly to a node debugger, bypassing the debugging

engine

Table 3.2: The debugging engine API

41

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.5. The Architecture of the Debugging Engine

3.5 The Architecture of the Debugging Engine

The debugging engine is, itself, a distributed program, consisting of a set of processes

and libraries which cooperate to provide a set of distributed debugging services. The

debugging engine is structured in functional layers whose functionalities and architec-

ture are discussed in detail along this section.

3.5.1 Layer0s

This is the first (lowest) layer. It defines a set of debugging functionalities available in

a single node (node-level services), namely:

i) Attach and detach the debugging engine to/from processes running on the local

node;

ii) Launch new processes under the control of the debugging engine;

iii) Inspect the target processes, which may be single- or multi-threaded processes;

iv) Manipulate the execution status and memory map contents of the target processes,

through operations such as breakpointing, single-stepping and the change of pro-

gram variables.

This layer also provides some additional functionalities besides the above ones:

iv) Symbolic naming of local processes. For each target process, a symbolic identifier is

generated by the debugging engine which will be used during an entire debug-

ging session to refer to that process;

v) Concurrent debugging of multiple local processes. The debugging engine can be at-

tached to more than one process, as long as they are executing in the same physical

node as the debugging engine;

All the above functionalities are available through a well defined API and imple-

mented in a software library, which must be linked to the client tool (the debugging

user interface), as depicted in Figure 3.4 on the next page.

The main components of Layer0s software architecture are:

i) Node debuggers. Attached to each target process there is a node debugger. Each

node debugger carries out the debugging operations upon its associated target

process. New node debuggers are dynamically launched by the debugging engine

core as required and terminated when no longer needed. The debugging engine

core ensures these operations are fully transparent to the user.

Any existing sequential or parallel debugger which runs on the host where the

process is being executed may be used as a node debugger. The only requirement is

42

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.5. The Architecture of the Debugging Engine

Client Tool

tool
Debugging

application
Target

Layer 0s

Target Process

Target Process

Node Debugger

Node Debugger

F0s−Lib

Figure 3.4: The Layer0s software architecture

that it supports some form of interaction with other programs, either by providing

an API or by using a text oriented command language. This is, indeed, a minimal

requirement for tool interaction. Still, several existing commercial tools only pro-

vide graphical user interfaces, thus are not amenable to interaction neither to be

used as node debuggers in the debugging engine.

ii) Layer0s service library (F0s-Lib). This library implements the API as defined for

this layer, plus all the internal management services, such as launching and ter-

minating node debuggers whenever needed. At any time, only one thread in the

client tool may be calling services from this library and, therefore, issuing service

requests to the debugging engine.

To support the API, this service library must manipulate and adapt the API func-

tion call arguments, by converting them into a set of commands which are under-

standable by each node debugger. Also, the replies from the node debugger must

be processed and transformed into return arguments to the API function call.

3.5.2 Layer0m

The system components known to this layer are identical to those known to Layer0s, as

depicted in Figure 3.5 on the following page. The only difference is that there is a new

service library which implements the new features supported by this layer.

There is a single new system component in Layer0m:

iii) Layer0m service library (F0m-Lib). This service library stands between the client tool

and the Layer0s library (F0s-Lib in Figure 3.5 on the next page), provides thread-

safe access to the debugging engine.

For example, multi-threaded client tools may explore this layer by using an indi-

vidual thread to control each target process. Each of these threads may independently

issue service requests to the debugging engine.

43

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.5. The Architecture of the Debugging Engine

application
Target

tool
Debugging

Node Debugger Target Process

Node Debugger Target Process

Layer 0m

F0m−Lib

Client Tool

F0s−Lib

Figure 3.5: The Layer0m software architecture

3.5.3 Layer1m

This layer extends Layer0m by providing support for the debugging of remote pro-

cesses. Its software architecture is presented in Figure 3.6.

F0s−Lib
F0m−Lib

F0m−Server

Node Debugger Target Process

Node Debugger Target Process

Node Debugger Target Process

F0s−Lib
F0m−Lib

F0m−Server

application
Target

tool
Debugging

Layer 1m

Client Tool

F1m−Lib

Figure 3.6: The Layer1m software architecture

The system components known to this layer include all of the above described for

the previous layers, plus:

iv) Node server (F0m-Server). On each physical node there is a node server which man-

ages all the local node debuggers. It is up to the node server to launch new node

debuggers, to establish the communication channels to these new node debug-

gers, and to terminate the node debuggers when no longer needed. It is also up to

the node server to manage the communication channel to the client tool. From the

perspective of the client tool, the node server is the only intermediary for all the

target processes in that node.

44

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.5. The Architecture of the Debugging Engine

v) Layer1m service library (F1m-Lib). This service library provides a (multi-threaded)

client tool with transparent access to remote target processes. It also introduces a

symbolic global naming mechanism for all target processes.

3.5.4 Layer2m

This layer extends Layer1m by providing support for multiple concurrent client tools.

Its software architecture is presented in Figure 3.7.

F0s−Lib
F0m−Lib

F0m−Server

Node Debugger Target Process

Node Debugger Target Process

Node Debugger Target Process

F0s−Lib
F0m−Lib

F0m−Server

F1m−Server

F1m−Lib

Client Tool

F2m−Lib

Client Tool

F2m−Lib

tools
Debugging

application
Target

Layer 2m

Figure 3.7: The Layer2m software architecture

The system components known to this layer include all of the above described for

Layer1m, plus:

vi) Main server (F1m-Server). The main server acts as the access point to the debug-

ging engine. It centralizes all the client connections at one point, and plays the role

of a router, forwarding the service requests to the appropriate node server and re-

sending the replies back to the client. It should be noticed that no heavy processing

is done in this main server, avoiding it to become a bottleneck and allowing the

number of clients and servers to scale;

vii) Layer2m service library (F2m-Lib). This service library provides a (multi-threaded)

client tool with a non-exclusive access to the debugging engine. In this way,

multiple client tools may be concurrently operating upon the same set of target

processes, possibly (and hopefully) providing the developer with complementary

views of the target application and extended debugging functionalities.

45

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.5. The Architecture of the Debugging Engine

3.5.5 Layer3m

Layer3m is only partially defined. It aims at supporting an asynchronous calling model.

Services requested to this layer will never block the caller, but return immediately a

service-request-id to the client tool.

Such request-id may then be used by the client tool to inquire the debugging en-

gine about the status of the associated service, or given as an argument to a call-back

function which will be activated when the processing of the service terminates.

Call-back functions (if defined) will be executed when the processing of a service

is terminated. Additionally, the client tool may also define call-back functions to be

executed when the status of the debugging engine changes (e.g., there is a new client

tool connected to the debugging engine) or when the status of one of the target pro-

cesses changes (e.g., one process hit a breakpoint and switched from the running to the

stopped state).

As such, four different classes of events relevant to the debugging activity were

identified:

i) A service was requested by another client tool . Service requests from a client tool

may, or may not, have consequences upon the other client tools. Thus, client tools

should have the means to be notified and, therefore, to react, to other tools’ activ-

ity;

ii) The processing of a service request is terminated. Some service requests may have no

implications in the target application state neither in the debugging engine state.

In such cases, it may be interesting to receive an acknowledge that the service was

completed;

iii) The target application state has changed. This change may result from a change in its

execution state, such when a breakpoint is reached, or from a change in its core

image, such as when a program variable receives a new value;

iv) The debugging engine state has changed. This may be due to management tasks, such

as when a new client tool connects to the debugging engine, or to program activity,

such as when a new process is spawned.

Any of the above identified relevant occurrences are propagated to the debugging

engine and to the remaining client tools as events. Client tools may define handlers to

react to those events, changing their own state or storing event details in an internal

queue/database for later processing.

Events may be processed by the client tools synchronously, where the debugging

engine keeps the notification of the event pending until the client tool explicitly re-

quests it, or asynchronously, where the tool defines event handlers, which are triggered

by the event notification and executed by a new thread. In both cases, a description of

46

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.6. Extending the Debugging Engine

the event is passed as an argument to the handling function, so it can react appropri-

ately to the event.

3.6 Extending the Debugging Engine

The architecture of a distributed debugging system generally imposes strong limita-

tions on its ability to cooperate with other tools and to adapt to specific developer (or

system) needs.

Multiple tools are used toward the software development of a distributed program.

When these tools have different origins it is, in general, a programmer’s task to make

the bridge between these tools at both, conceptual and operational levels. Integrated

development environments aim at providing a consistent set of tools which are able

to exchange data and control information, and that ease the task of establishing the

correspondence between concepts at distinct abstraction levels.

Aiming at facilitating such integrated developer environments, the debugging en-

gine includes some relevant features, namely:

i) Internal extensibility. By changing the existing debugging engine libraries or by

adding new ones. To keep the complexity of the debugging engine low, such kind

of extensions should only be used to support new (and simple) basic services. For

more complex services, external extensions should be used;

ii) External extensibility. By adding new modules to the debugging engine. Being

less dependent from the debugging engine core, adding such modules will not

increase significantly the complexity of the debugging engine. Thus, such external

extensions are, therefore, appropriate to implement more complex services;

iii) Cooperation and integration ability. The debugging engine supports multiple client

tools acting concurrently upon the same target processes. By making use of such

feature, other software development tools may have access to debugging services

by registering themselves as client tools of the debugging engine, share informa-

tion with the debugging engine and get notifications from the debugging engine

on state changes in the target processes.

In the following we discuss how such features are supported by the software archi-

tecture of the debugging engine.

3.6.1 Internal extensibility

The debugging engine is structured in functional layers and new layers can be added to

provide additional functionalities. In this sense, Layer0s is extended by Layer0m which,

in turn, is extended by Layer1m, and so on. Additional facilities, such as process and

47

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.6. Extending the Debugging Engine

thread groups management or API wrappers to other languages, can easily be added

to the debugging engine as (internal) extensions. Figure 3.8 illustrates how internal

extensions are incorporated into the debugging engine software architecture.

EFG
HIJKLLMNLONLMNI

PQRLISETTUMVQSMWN

XUMINSPWWUY

OZSINYMWN
[I\EFG

Figure 3.8: Internal extensibility of the debugging engine

Our experimental work on Fiddle_J (see Section 5.2.2), which implements an object-

oriented API for the Java programming language, is a good example of an internal

extension to the debugging engine.

3.6.2 External Extensibility

Although some new functionalities may be provided as internal extensions to the de-

bugging engine, others require or recommend the client tool to have explicit knowl-

edge or even to directly interact with some of the additional components of the new

layer. These are called external extensions and are illustrated in Figure 3.9.

]̂_
àbcddefdgfdefa

hijdak]llmenikeof

pmeafkhoomq

grkafqeof
sat]̂_

Figure 3.9: External extensibility of the debugging engine

Our experimental work on DEIPA2 (reported in Section 5.5) is an example of such

and external extension. DEIPA was developed as an intermediary between a testing tool

and the debugging engine, aiming at supporting the testing and debugging sub-cycle

of the software development process.

48

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.6. Extending the Debugging Engine

3.6.3 Cooperation and Integration Ability

The adequate combination of software development tools, sharing information and

control data (see Figure 3.10) may contribute to make the software development pro-

cess more effective.

For example, combining a program visualizer and a distributed debugger in order to

cooperate by sharing data and control instructions may originate very interesting re-

sults. The former may present the software developer with an high-level view of the

distributed program, focusing on processes interactions and state changes. The latter

may provide the mechanisms for fine inspection and control of those processes, and to

identify and locate their errors.

uvwxyz{||}~�vz~��

�z�yw
u��}

�~�zw~��zy�
�y��xxyw

�vzvy���v�xy

Figure 3.10: Cooperation ability of the debugging engine

Some efforts have already been made (although not completed yet) in providing

a close cooperation between the debugging engine and the Pajé visualizer, developed

at ID-IMAG, France. The benefits (and difficulties) of such cooperation are further

discussed in Section 5.7.

Parallel software development environments aim at providing the software devel-

oper with a consistent and uniform set of tools. These tools should be able to cooper-

ate and exchange data and control information. The proposed debugging engine may

play a relevant goal in such integrated development environments, as illustrated in

Figure 3.11.

�����
�����

�����������������

�����������
��������

�����
�����

�����
����

�����
����¡

�������������������������

Figure 3.11: Integration ability of the debugging engine

Previous experimental work was done towards the integration of the debugging

engine with graphical program editors, which were also used to provide animation of

49

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.7. Summary

the program execution to give debugging support to the developer. Such work on the

integration of the debugging engine in GRADE and EDPEPPS is reported in Section 5.6.

3.7 Summary

Distributed debugging has to deal with an increased set of difficulties, when compared

to sequential debugging, such as non-determinism, lack of global components (mem-

ory, clock, etc.), multiple execution flows, and variable communication delays.

The first and more natural approach to distributed debugging is to extend a sequen-

tial debugger to interact with more than one process, providing the software developer

with a single debugging interface to access all the processes of the distributed program.

Such an approach, however, needs to be complemented with services and functional-

ities which deal with the inherent characteristics of distributed programs and compu-

tations. In such a way, it is possible to provide the software developer with a complete

debugging environment, which will help in the understanding of process interactions

and, therefore, in localizing, isolating and correcting the errors in the distributed pro-

gram.

In this Chapter we have presented a debugging engine for distributed programs.

The services and functionalities proposed for the debugging engine were strongly sug-

gested by the requirements posed by parallel software development environments

which supported visual parallel programming languages and models.

This debugging engine was described in detail, by discussing its aims, software

architecture, and how this software architecture allowed to fulfill those aims. One of

the aims that deserved particular attention was extensibility, which motivated the lay-

ered software architecture of the debugging engine. The debugging engine provides

a basic set of debugging functionalities and allows these functionalities to be comple-

mented with others, which can be developed anew and integrated into the debugging

environment.

50

4
The Fiddle Architecture and

Implementation

Contents

4.1 Introduction . 52

4.2 The DDBG Distributed Debugger . 52

4.3 The Fiddle Debugging Engine . 55

4.4 Summary . 72

This Chapter illustrates how the debugging engine described in the previous Chapter
has been instantiated in two prototypes: the DDBG (Distributed DeBuGger) and Fiddle

(Flexible Interface for Distributed Debugging: Library and Engine).

51

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.1. Introduction

4.1 Introduction

The debugging engine proposed in the previous Chapter was the result of an evolu-

tionary process which started with DDBG [CLD98, CLD01b, CLA99], our first design

and implementation of a distributed debugger, followed by PDBG [LC98a, CLV+98],

TDBG [LC98c] and, finally, Fiddle [LCM03, LC01, LC99].

Although being the first design/implementation of the debugging engine, DDBG

already included many of its significant features. Much was learned with our experi-

ences with DDBG, and a reevaluation of the debugging engine functionalities, specially

concerning the basic services that should be provided and how they should be sup-

ported. This has driven to the design of DAMS and PDBG.

After our experiences with DDBG, the DAMS [CLV+98] (Distributed Application

Monitoring System) research project was started. DAMS was much more ambitious

than DDBG, aiming at becoming a distributed monitoring and control infrastructure,

defining low level mechanisms which could be extended to support a set of services,

such as distributed debugging. Any service using the DAMS infrastructure could access

methods from other the services, easily exchanging data and control operations.

PDBG [CLV+98] (Process-level Debugger), a process-level distributed debugger

that was defined as a DAMS service, aiming at validating the DAMS architecture

and providing a distributed debugger would supersede the DDBG functionalities.

TDBG [LC98c](Thread-level Debugger) design aimed at extending PDBG to support

multi-threaded processes.

The first versions of DAMS and PDBG, although promising as research topics, had

very unstable implementations, limiting considerably the exploitation of their poten-

tial as research topics. Research work on DAMS has been continued in [Dua04]. TDBG

design relied on DAMS (like PDBG) as a basic infrastructure. The instability of the first

DAMS prototype and their repercussions on the stability of PDBG allowed to infer that

we would have similar repercussions on TDBG.

With Fiddle, we returned to a simpler software architecture and to a functionally

much closer to the original DDBG, targeted exclusively to debugging.

This Chapter contains a brief discussion (description and evaluation) of DDBG and

its software architecture, followed by a similar, although more detailed, discussion of

Fiddle.

4.2 The DDBG Distributed Debugger

Being a predecessor of Fiddle, DDBG has, indubitably, some historical interest in the

context of our research work. However, besides the historical interest, DDBG was a

major step in our work, as most of the main features of the distributed debugging

engine described in the Chapter 3 were already available in this tool.

52

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.2. The DDBG Distributed Debugger

4.2.1 The DDBG Architecture

The software architecture of DDBG has a distributed organization, consisting of mul-

tiple monitor/debugger instances which are scattered on the nodes of a distributed

computing platform. Figure 4.1 illustrates such software architecture with three differ-

ent kinds of processes involved: the target processes, the DDBG processes, and the user

interface (client tool) processes.

DDBG
library

User machine

Machine 2

Main daemon

Controller library

Machine 1

Local daemon

Client tools Target processesDDBG

Front−end

Graphical
interface

Central
controller

Debugging
text console

Other
user tools

Debugger

Process P3

Debugger

Process P1

Process P2

Front−end

Debugger

Figure 4.1: The DDBG software architecture

DDBG has a basic client-server architecture which follows the lines of the p2d2 de-

sign [Hoo96]. The client processes are depicted in Figure 4.1 as user debugging in-

terfaces and other (debugging related) tools. These client processes are linked to the

DDBG Library, which provides access to the central controller and to all DDBG debug-

ging functionalities.

The target processes belong to the application being debugged. These application

processes may be spread over multiple nodes, and nodes may have different hardware

and/or operating systems. Heterogeneity concerns are handled by DDBG at the level

of its internal communication layer. It uses PVM [GBD+98] for supporting the commu-

nication between the central controller and the local daemons and uses UNIX sockets

for the interactions between each client tool and the central controller. Heterogene-

ity is also handled by allowing multiple possible types of local node debuggers to be

integrated into the DDBG architecture.

The DDBG architecture internally consists of several component processes:

i) Central Controller. Coordinates the handling of the client requests, converting them

into a set of commands and distributes them to the relevant local node debuggers.

53

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.2. The DDBG Distributed Debugger

It is also responsible for processing the local node debuggers’ replies, and for send-

ing them back to the client processes;

ii) Local Front-ends. There is one of these processes in each physical node with at

least one target process. Besides some local interpretation of the debugging com-

mands, it distributes them to the local debuggers and gets their answers back. The

collected answers are then passed unprocessed to the central controller;

iii) Local Node Debuggers. A system-dependent sequential debugger, for a specific pro-

gramming language and the underlying hardware. There is a local node debug-

ger attached to each process of the target application processes, that applies the

inspection and control commands to that process.

iv) The Interface Library. Any user tool can access the DDBG system as a client pro-

cess that uses an interface library to interact with the central debugging controller.

Through this interface library, client tools may control the DDBG system itself, the

target processes, and even interact with the other client tools.

The debugging services provided by the central controller to operate upon the

target processes are similar to those typically available in sequential debugging,

such as breakpointing and single stepping. However, the central controller may

access/control multiple target processes simultaneously. A detailed list of those

services is provided in [CLA96b, CLA96a].

Detailed information about DDBG software architecture and its services may be

found in [CLD01b].

4.2.2 Evaluation of DDBG

DDBG was used in a large set of experiments, where its design options have been tested

and validated, some of them described in Chapter 5. From those experiments, we could

conclude that:

i) The clear separation between the debugging engine and the user interface(s) pro-

vided the necessary freedom to allow the usage of DDBG in a wide (in scope and

complexity) set of experiments;

ii) The library, as provided by DDBG, could be used by simple distributed debugging

user interfaces as well as for supporting loosely-coupled interactions with third

party tools;

iii) Integration of DDBG with other tools, which require much tightly-coupled re-

lationships, required support for asynchronous event-based interactions. Such

mechanisms were not included in the initial planning of the debugging engine;

54

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

iv) To use sequential debugging requirements as the basis to define a minimal set of

services has proved to be an acceptable choice, as long as new (and more complex)

services could be defined and integrated into the debugging engine;

v) Different clients have different requirements and needs concerning the debugging

services to be supported by the debugging engine. To use a single layered software

architecture has proved to be acceptable but also to lack the flexibility necessary

to allow the extension of the debugging engine with new services;

vi) Experience has also shown that a stable implementation/prototype was a major

requirement for further evaluation and validation of the debugging engine and

for the development of its functionalities.

Based on the above analysis, we have redesigned the debugging engine software

architecture. The result was described in Chapter 3 as the Fiddle debugging engine,

whose internals of the software architecture will be analysed in the following.

4.3 The Fiddle Debugging Engine

The Fiddle debugging engine is, itself, a distributed program, and its multiple soft-

ware layers are supported by a set of processes (daemons) and libraries which are

distributed over the executing nodes.

The transfer of information between Fiddle layers implies the exchange of data be-

tween Fiddle components (libraries and daemons). Section 4.3.1 will discuss the Fiddle

software architecture, with a detailed analysis of each component and some of the most

relevant implementation issues. Section 4.3.2 focus in the discussion of how that data

is exchanged between Fiddle components. This discussion includes the performance

evaluation of two alternative communication protocols.

4.3.1 Fiddle Software Architecture

Functionally, each Fiddle layer supersedes the preceding one. Fiddle software archi-

tecture reflects this functional organization into layers, with each layer enclosing the

software architecture of the preceding one. In the following, the software architecture

is discussed in a bottom-up perspective, including a detailed explanation of each layer,

its components and their interactions.

The Layer0s

In simple words, we can say that Layer0s, the lowest layer, provides a function-based

interface to access a set of local node debuggers1.

1The GNU GDB is the only node debugger supported in current Fiddle implementation.

55

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

The software architecture of this layer is presented in Figure 4.2, in the center, to-

gether with two target processes on the right side and a client tool on the left. In this

example, the client tool (a debugging interface) is using Fiddle Layer0s library to operate

upon two local multi-threaded target processes.

Client Tool

tool
Debugging

application
Target

Layer 0s

Target Process

Target Process

Node Debugger

Node Debugger

F0s−Lib

Figure 4.2: The Layer0s software architecture

The Layer0s Library (F0s-Lib). Using Layer0s, it is possible to transparently launch

a node debugger and attach it to a process already in execution, or to launch a new

process under the control of a new node debugger. In both cases, the final result will

always be identical: the target process will be stopped with a node debugger attached

to it, and under the control of Fiddle.

Any bidirectional local communication channel can implement the links between

the Fiddle Layer0s library and the node debuggers. As an alternative to a bidirectional

channel, two unidirectional channels may also be used. In the current implementation

of Layer0s, these communication links are alternatively supported by Unix pipes or

Unix named pipes (fifos), selectable at compile time.

The internal data flow in the Layer0s library follows the scheme described in Fig-

ure 4.3.

A
P

I
(0

s)

Command

Generator

Parser

IO Manager

In

Out

Layer 0s Library

P2
Node

Deb

P1
Node

Deb

P3
Node

Deb

<launch>1 2 3

4
5

6
78

Figure 4.3: The Layer0s internal data flow and processing

Service requests arrive in the input port in the form of a function call [1], whose

arguments depend on the service requested. The service name and its arguments are

passed to a command generator [2], which creates the appropriate command for the

56

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

node debugger being used to control the target process. This string is then forwarded

to the IO manager [3], which is in charge of the communication with the node debug-

gers. The IO manager sends the command [4] to the appropriate node debugger and

waiting for its reply [5]. It then forwards the received reply to the parser [6], which

extracts all the relevant data in the reply into a tkout data structure. This structure is

then returned to the caller of the service function [7] and [8].

It is assumed that there is only one execution flow (process/thread) interacting with

Fiddle by using Layer0s. If this is not the case, e.g., when multiple threads need to issue

service requests simultaneously, then one of the upper layers must be used.

The Layer0m

The Layer0m is backwards compatible with Layer0s, including the same set of services,

with identical syntax and very similar semantics. The only significant difference is the

additional support for simultaneous service requests from multiple programs flows

(threads) in the single client tool. Figure 4.4 describes the software architecture of this

layer (please note that, although very similar, Figures 4.4 and 4.2 are not identical).

application
Target

tool
Debugging

Node Debugger Target Process

Node Debugger Target Process

Layer 0m

F0m−Lib

Client Tool

F0s−Lib

Figure 4.4: The Layer0m software architecture

The Layer0m Library (F0m-Lib). Relying upon Layer0s, the Layer0m is an internally

multi-threaded library, which multiplexes the service requests from the multiple pro-

gram flows of a Fiddle client tool to the multiple local target processes and vice-versa.

Figure 4.5 on the next page describes the execution and data flows of the Layer0m.

Layer0m contains one input and one output queue for each target process being de-

bugged, each holding the service requests to a specific target process and their replies

respectively. An additional pair of input/output queues is reserved for general service

requests which are not specific to any target process (yet), e.g., attaching Fiddle to a run-

ning process, or for services which deal with Fiddle internal status, e.g., list of processes

currently under debugging with their names, and their real and symbolic process IDs.

As in Layer0s, the client tool service requests arrive in the input port in the form

of a function call [1], whose arguments depend on the service being requested. The

arguments are then packed into a structure (the tkin structure) which is enqueued in

57

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

A
P

I(
0

m
)

Layer 0m Library

Request Queues

Process 2

IO Manager

Process 1

IO Manager

Out

Out

Out

In

In

In

Reply Queues

Main

Manager

L
a
y
er

 0
s

L
ib

ra
ry

1 2

<launch>

3
a

b c

5

4

f

gh

8
9

6

7

d

e

Figure 4.5: The Layer0m internal data flow and processing

the appropriate request queue [2] and the calling thread will block waiting for the reply

to be available in the reply queue [8].

If the service requested by the client tool is not specific to any target process, it is

directed to the main manager [3]. Some of the services processed by this component

will add a new target process into Fiddle and, in these cases, a new IO manager thread is

created [4], that will manage all future service requests directed to that specific target

process. The main manager will then ask the lower layer (Layer0s) to process the ser-

vice [5] and [6] and, once completed, the reply is enqueued into the output queue [7].

The original thread will then be unblocked and will receive the reply for the requested

service [8] and [9].

However, the vast majority of the client tool service requests are directed to a spe-

cific processes [a] and, in this case, the request will be enqueued to the process specific

request queue [b]. The IO manager thread, which was blocked waiting for requests to

arrive on its queue, is resumed [c] and requires the lower layer (Layer0s) to process

the service [d] and [e]. The received reply is enqueued in the process reply queue [f]

and the IO Manager thread blocks again waiting for new service requests in its queue.

The calling thread will then be resumed and will receive the reply for the requested

service [g] and [h].

By holding requests (and replies) in thread-safe queues, it is possible to ensure the

internal queues consistency even when multiple client tool threads try to enqueue ser-

vice requests simultaneously. As there is a dedicated IO Manager for each target pro-

cess, we also ensure that, at any time, at most one service request is being applied to a

target process.

The Layer1m

The Layer1m is functionally backwards compatible with the previous layers (Layer0m

and Layer0s), but with minor syntax and semantic changes. The semantic differences

reflect the ability to debug remote processes, and the syntactic differences are limited to

58

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

the addition of one extra argument (with the node ID) to some of the services, namely

those which refer to target processes that do not have (yet) a process symbolic identi-

fier, e.g., attach Fiddle to a running process.

Figure 4.6 describes the software architecture of this layer.

F0s−Lib
F0m−Lib

F0m−Server

Node Debugger Target Process

Node Debugger Target Process

Node Debugger Target Process

F0s−Lib
F0m−Lib

F0m−Server

application
Target

tool
Debugging

Layer 1m

Client Tool

F1m−Lib

Figure 4.6: The Layer1m software architecture

The Server0m (F0m-Server). The Server0m is a small application that behaves as a

Layer0m client, multiplexing its input port into as many output ports as target processes

running on the local node. This means it forwards all service requests arriving in the

local node to the appropriate target process, and sends back the associated replies.

Figure 4.7 describes the execution and data flows in Server0m.

P
ro

to
co

l
/

A
P

I

L
a

y
er

 0
m

 L
ib

ra
ry

Server 0m

Main Request

Manager

In

Out

Request

Executor

<launch>

1 2

3
4

5

67

8 Request

Executor

Figure 4.7: The Server0m internal data flow and processing

In Server0m, the client tool service requests arrive to its input port (a TCP/IP socket)

as a serialized tkin [1]. This record is converted from the serialized representation

into its internal (binary) format and given to the main request manager thread [2]. For

each service request received by the main request manager, a new request executor thread

59

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

will be launched [3]. The request executor will receive the tkin record [4] and process

the request [5] by directing it to the underlying layer (Layer0m). The reply received

from Layer0m [6] is sent to the output port [7] and [8] and the request executor thread

terminated.

The Layer1m Library (F1m-Lib). This library directs the service requests coming from

the client tool to the appropriate Server0m (the one located in the same node as the

processed targeted by the service). If the client tool is a multi-threaded program, this

library is also able to deal with concurrent service requests being issued by different

threads in the client tool. The replies received from the servers (Server0m) are also

forwarded back to the waiting thread in the client tool.

Figure 4.8 describes the execution and data flows of the Layer1m library, and its

relation with Server0m.

Request Queues

Layer 1m Library

Main

Manager
F0m

Server 1

Remote Node 1

F0m

Server 2

Remote Node 2

3

7

h

A
P

I(
0

m
)

Out

Out

Out

In

In

In

Reply Queues

1 2

a

b

k

l

12
13 Node 2

Manager

Request

Executor

Request

Executor

Request

Executor

<launch>

<launch>

<launch>

8

9

10

11

4

d
f

g

i

j

Node 1

Manager

e

6
5

c

Figure 4.8: The Layer1m internal data flow and processing

Layer1m library contains a set of input and output queues, one for each Server0m.

The input queues hold the service requests and the output queues hold the replies.

Just like in Layer0m, there is also an additional pair of input/output queues for

general service requests which deal with Fiddle internal status, e.g., list of processes

currently under control of Fiddle, and for service requests which deal with processes

that do not have yet a Fiddle process ID, e.g., attaching Fiddle to a running process.

The service request will be processed by either the main manager or one of the node

managers. The main manager will process the requests which do not have a specific

target node (yet), e.g., obtain the list of all symbolic process identifiers, or access to

processes in a node where a Server0m is not running yet. All the other services are

processed by the node manager associated to the appropriate node.

Service requests arrive to the input port in the form of a function call [1]. The

arguments of such function call are packed into a structure (the tkin structure) which

is enqueued in the appropriate queue [2] and the calling thread is blocked waiting for

the reply [13].

60

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

All queues are being monitored by the main manager. Once a request is found [3],

a new request executor thread is created [4]. The request executor will live while the

service is being processes, and will die afterwards. The request data (a tkin structure)

is sent to the request executor, which will launch a node manager thread [6] if needed,

and pass it the request data [7]. This request data will then be converted to an external

data representation (XDR) format and sent to the Server0m [8] in the appropriate node.

Once a reply coming from the Server0m is received in the node manager [9], it is for-

warded to the request executor [10] which will enqueue it in the right output queue [11]

and will die afterwards. The reply will be extracted by the waiting thread [12] who

made the service request [13].

If the service has a well defined target [a] and [b], it is also processed by the main

manager [c], which will launch a new request executor [d], and pass it the request

arguments [e]. The request executor will forward the data to the (already existing)

node manager [f], which, as before, will convert it to an external data representation

format and sent it to the appropriate node manager [g]. As before, once a reply is

received by the node manager [h], it is forwarded to the request executor [i], which

will enqueue it on the appropriate reply queue [j] and die afterwards. The reply will

be extracted by the waiting thread [k] who made the service request [l].

It is assumed that the underlying layer (Layer0m in this case) is able to cope with

multiple concurrently services requests targeting the same or different process. By

creating a new request executor thread for each request that arrives in the queue, all

service requests are processed concurrently.

The Layer2m

The Layer2m extends Layer1m to support multiple tools connecting simultaneously to

Fiddle and concurrently issue services requests to the same target program, as shown

in Figure 4.9 on the next page, which describes the software architecture for this layer.

The Server1m (F1m-Server). Layer1m accepts a single client multi-threaded client, but

such functionality may not be enough for some applications. In Section 5.4.1 we can

find an example were we need multiple client tools connected to the same target

process). Server1m is a small application that multiplexes the client tools requests to

Layer1m and demultiplexes the replies back to the client tools.

Server1m initializes itself by initiating a connection to Layer1m and then waits for-

ever for connection requests from client tools. Once a client tools connects to this

server, it can issue debugging service requests to Fiddle. While one client tool is ac-

cessing Fiddle, other client tools may also connect and operate concurrently with the

existing ones, all of them making service requests to Fiddle and targeting the distributed

program.

Figure 4.10 on the following page shows execution and data flows in Server1m.

61

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

F0s−Lib
F0m−Lib

F0m−Server

Node Debugger Target Process

Node Debugger Target Process

Node Debugger Target Process

F0s−Lib
F0m−Lib

F0m−Server

F1m−Server

F1m−Lib

Client Tool

F2m−Lib

Client Tool

F2m−Lib

tools
Debugging

application
Target

Layer 2m

Figure 4.9: The Layer2m software architecture

P
ro

to
co

l
/

A
P

I

L
a

y
er

 1
m

 L
ib

ra
ry

Server 1m

Main Request

Manager

In

Out

Request

Executor

<launch>

3 4

5
6

7

8
9

10
Request

Executor

<new>

<connection>
In

1 2

Figure 4.10: The Server1m internal data flow and processing

62

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

Processes register themselves as Fiddle clients by establishing a TCP/IP connection

to a well defined (although configurable) port of a well defined (also configurable) host

where Server1m is running.

In Server1m, connection requests arrive to its connection port [1] (a TCP/IP socket

which is automatically replicated by the underlying OS), originating a new exclusive

connection port [2]. Through each dedicated connection, Server1m handles service re-

quests from a specific client, by receiving the service data in a tkin structure, coded in

a network independent representation [3]. The received data is converted to the struc-

ture internal (binary) format and given to the client manager thread [4]. For each service

request received, the client manager will launch a new request executor thread [5], which

will receive the tkin structure [6] and will process the service requested by calling the

services in Layer1m [7]. The reply received [8] is written into the process exclusive out-

put port [9] and [10], and the request executor thread terminated.

The Layer2m Library (F2m-Lib). Any program linked to this library may act as a Fid-

dle client tool, issuing debugging service requests to the Fiddle debugging engine. This

access to Fiddle services is not exclusive, and any other program linked to this same

library may also act concurrently as a Fiddle client tool.

The Layer2m library operation is limited to establish a connection with the unique

(to Fiddle) Server1m server, redirect any service request from the client tool to the server

and wait for the reply from the server. It is assumed that the execution flow which

issued the service request will remain blocked waiting for the reply. If such execution

flow is a thread, then just this thread in the client tool will be blocked.

Figure 4.11 describes the execution and data flows of the Layer2m Library.

F1m

Server 1

(Remote Node)

<launch>

A
P

I(
2

m
)

Layer 2m Library

Request Queue Main

Manager
<launch>

In

Request 2

Executor

Request 1

Executor

1

Out

Reply Queue

<launch>

2
3

1011

9

4

5

6

7

8

Figure 4.11: The Layer2m internal data flow and processing

Layer2m Library contains a single input queue and another single output queue,

both common to all client tool threads. Any thread aiming at accessing a debugging

service from Fiddle will enqueue its request in the unique input queue and will receive

a request ID. Then, the client tool thread will block waiting for the reply associated to

that specific request ID to arrive in the output queue.

63

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

The service requests arrive in the input port in the form of a function call [1]. The

function call arguments are then stored in a structure (the tkin structure) which is

enqueued [2] and the calling thread blocked in the output queue [11], waiting for the

reply. Replies are sent back to the calling thread as soon as they become available,

independently of the order in which the services were requested. This may cause a

reply to a second service request, which was available before, to be returned before the

reply to the first service request, which was available only after. The calling thread will

remain blocked until the reply to his service request becomes available.

Meanwhile, the service request will be processed by the main manager thread [3].

Each time a new service is requested, the main manager launches a new request executor

thread [4] that receives the service data [5] and will be in charge of its execution. If the

Server1m is not running, it may be transparently launched by the Layer2m [6]. Once the

Server1m is running, the request executor sends it the request data [7] and blocks waiting

for the reply [8].

Once the reply is available, it is enqueued in the reply queue [9], from where it will

be removed by the calling thread [10] and [11].

Creating a request executor for each new request arriving to the queue, ensures that

all service requests are processed concurrently. It is up to the lower layers (Layer1m in

this case) to take care of concurrent requests directed to the same target processes.

Although not represented in Figure 4.11 on the preceding page, the Server1m ac-

cept simultaneous connections from multiple Layer2m libraries, which also means from

multiple client tools.

The Layer3m

Layer3m implementation is too immature, so we will refrain ourselves from specula-

tively discussing the implementation issues of this level.

4.3.2 Internal Communication in Fiddle

In the layers where Fiddle provides access to remote processes, i.e., from Layer1m up-

wards, service requests and their replies must be transmitted over the network be-

tween Fiddle components (i.e., between the library and the daemons). The service re-

quests are originated in the client tools by calling a library function. Inside this library

function, the identifier of the requested service and its arguments are packed into an

input token (a tkin record, described below) and sent to Fiddle core. The reply to such

service request is also packed into an output token (a tkout record, also describe below)

and sent back to the client tool.

In the following we will discuss the internal (binary) formats for such input and

output tokens, how their transmission over the network is operated, and also evaluate

the performance of such transmission.

64

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

The input and output tokens

The input token (tkin record) aggregates all the necessary information to represent a

debugging service request, namely the service identifier and its arguments. Such token

is packed in the library linked to the client tool and sent to the Fiddle core. Figure 4.12

shows a graphical representation of the input token.

tid

code

data

Process symbolic identifier

Code of the service requested

Request data (arguments)

. . .

Alternative contents for the ’data’ field

req_attach req_info_linereq_break

tkin

Figure 4.12: The tkin structure

Being represented by a quite simple structure, the transfer of input tokens over the

network does not raise major difficulties, and the ones raised are a subset of those

raised by the transfer of the output token, which is discussed below.

The output token (tkout record) aggregates all the information needed for replying

to a service request. Considering that the service request may fail at library, debugging

engine, or node debugger levels, and may also succeed with a considerable number

or different replies, the output token structure will, necessarily, be quite more complex

than its input counterpart.

A graphical representation of the tkout structure is presented in Figure 4.13 on the

following page.

We will concentrate our study and discussion in the output token, as its complexity

and the problems raised by its transfer over the network are a superset of the ones

raised by the input token.

Fiddle external data representation

As shown in Figure 4.13 on the next page, the output token contains sub-structures

which may contain dynamic lists and lists of lists. So, the tkout structure which rep-

resents the token is not contiguous in memory, and its transfer over the network de-

mands a serializing service on the sender. This converts this complex structure into a

plain stream of bytes, and an assembling service on the receiver converts the byte stream

into a tkout structure again.

In an homogeneous environment, the serializing service could generate a binary

stream, but this would not be acceptable in an heterogeneous environment where,

most probably, the binary representation of the serialized token would be different

in distinct nodes. In this sense, heterogeneity adds another degree of complexity, as

data must be converted from internal (binary) representation to some form of architec-

ture independent external data representation (XDR) prior to the emission, and converted

back to the internal (binary) representation upon reception.

65

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

in the source code
The current position

The reply
from the

node debugger
(processed)

tid Part of ’output’ which is
relevant to the reply

r_info_line1 r_info_line2

Single position
data element

Data relevant for this
out−of−band

Data relevant for this
out−of−band

o_display1 o_display 2

o_bphit 1 o_bphit 2

status

output

rep

Process symbolic identifier

The success/failure status
The reply from the node
debugger (unprocessed)

The reply to the command

Out of band information

The reply to the command

pos

err

oob

.

.

.

L
is

t
o

f
o

u
t−

o
f−

b
a
n

d
 e

le
m

e
n

ts

code

str

data

Error code

Part of ’output’ which is
relevant to the error

Data relevant for the error

code

str

data

Position code

Part of ’output’ which is

Data relevant for the position

relevant to the position

tkout

code

str

data . . .

List of reply data elementsReply code

Data relevant from the reply

e_error

1

p_position

Single error
data element

code

str

data . . .

Out−of−band code

Part of ’output’ which is
relevant to this out−of−band

code

str

data . . .

Out−of−band code

Part of ’output’ which is
relevant to this out−of−band

List of out−of−band data elements

List of out−of−band data elements

Figure 4.13: The tkout structure

Existing message passing systems, such as PVM [GBD+98] and MPI [For94], could

provide both a protocol independent communication layer and a XDR data format for

transferring data in heterogeneous environments. Nevertheless, these systems would

just look too complex for such a simple job. Therefore, and assuming that Fiddle in-

ternal communication performance was not a main issue, the choice for the XDR data

format has fallen to a text based, human readable, format. Such format also has the

advantage of easiness of debugging.

Eight (four plus four) basic functions were developed to convert tkin and tkout

structures from binary to text and vice-versa.

i) tkin_2_jml(), jml_2_tkin(), tkout_2_jml() and jml_2_tkout(); and

ii) tkin_2_xml(), xml_2_tkin(), tkout_2_xml() and xml_2_tkout().

The first set of these serializing functions uses a proprietary (non-standard) text-

based encoding for those structures, in a format named ’JML’2. The second set uses

an alternative encoding in XML [W3C98], using a parser based in the SAX [Meg00]

technology. Both encoding formats were studied in detail, their performance analyzed

and reported succinctly here. A more detailed analysis may be found in [Mor02].

2The name ’JML’ (João’s Markup Language), was suggested by the student who developed the alterna-
tive codification based in the ’XML’ standard.

66

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

Current Fiddle implementation supports both encoding formats, and the choice of

the format to use can be done at Fiddle startup time, by using command line arguments

or by setting an environment variable.

The JML format When developing the JML format for external data representation

of Fiddle basic structures tkin and tkout, attention was focused in human readability

and easiness of debugging rather than performance. In this sense, an indented text

based format was defined.

Figure 4.14(a) on the following page shows an example of an input token coded

in JML format, which represents an “info_break” service request. This service requests

Fiddle to report on all current breakpoints set in all target processes.

Figure 4.15(a) on the next page shows an output token containing a possible reply

to the above service request, also encoded in the JML format. The reply contains a list

with details on the current active breakpoints in the target application.

The XML format Being in a proprietary format, the JML codification raised serious

difficulties to external agents (human or software) who were interested in the trans-

mitted data. This would require a reverse-engineering process to decode the commu-

nication protocol and data format for all possible service requests and replies. As JML

is a proprietary data format, any slight change in its specification would require more

reverse-engineering work and consequent changes in the agents to support the new

version.

To minimize these difficulties, an alternative codification to the tkin and tkout

structures was developed using the XML [W3C98] standard and implemented using

the SAX technology. In addition, the usage of a standard for information exchange

between Fiddle components also facilitates the interaction with other tools which, for

some reason, are not able to use Fiddle libraries. Almost every programming language

nowadays has support for generation and processing of XML files.

Figure 4.14(b) on the following page shows an example of an input token codified

in the XML format. This token represents exactly the same service request as the one

on Figure 4.14(a) on the next page, although in a different format.

Figure 4.15(b) on the following page shows a possible reply to the service request

described by this tkin, by presenting a tkout structure also encoded in the XML for-

mat. This token represents exactly the same reply as the one on Figure 4.15(a) on the

next page.

By comparing Figures 4.14 and 4.15, it is easy to find the similarities (and the dif-

ferences) between the JML and XML data representation formats. Both formats are

syntactically very similar and semantically equivalent.

67

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

1 tkin = {
2 t i d = 1
3 code = 31
4 info_break = {
5 }
6 }

(a) JML format

1 <?xml v ers ion = " 1 . 0 " standalone =" yes "? >
2 <tkin >
3 < t id >1</ t id >
4 <code >31</code>
5 <data/>
6 </tkin >

(b) XML format

Figure 4.14: The tkin structure

1 tkout = {
2 t i d = 1
3 s t r = 193 Num Type Disp Enb \
4 Address What
5 1 breakpoint keep y 0 x080484aa \
6 in main at /home/jml/ I n f i n i t o . c : 3 8
7 2 breakpoint keep y 0 x08048414 \
8 in s fake at /home/jml/ I n f i n i t o . c : 1 6
9

10 s t a t u s = 0
11 rep = {
12 s t r = 149 1 breakpoint keep y \
13 0 x080484aa in main at /home/jml/ I n f i n i t o . c : 3 8
14 2 breakpoint keep y 0 x08048414 \
15 in s fake at /home/jml/ I n f i n i t o . c : 1 6
16

17 code = 66
18 chain [2] : data = {
19 info_break = {
20 bpid = 1
21 type = 10 breakpoint
22 disp = 4 keep
23 enabled = 1
24 address = 0 x80484aa
25 function = 4 main
26 f i l e = 20 /home/jml/ I n f i n i t o . c
27 l in e = 38
28 h it_cou n ter = −1
29 ign_counter = −1
30 condition = 0
31 }
32 info_break = {
33 bpid = 2
34 type = 10 breakpoint
35 disp = 4 keep
36 enabled = 1
37 address = 0 x8048414
38 function = 5 sfake
39 f i l e = 20 /home/jml/ I n f i n i t o . c
40 l in e = 16
41 h it_cou n ter = −1
42 ign_counter = −1
43 condition = 0
44 }
45 }
46 }
47 chain [0] : oob = {
48 }
49 pos = {
50 }
51 e r r = {
52 }
53 }

(a) JML format

1 <?xml v ers ion = " 1 . 0 " standalone =" yes "? >
2 <tkout >
3 < t id >1</ t id >
4 < s t a t u s />
5 < st r >Num Type Disp Enb \
6 Address What
7 1 breakpoint keep y 0 x080484aa \
8 in main at /home/jml/ I n f i n i t o . c : 3 8
9 2 breakpoint keep y 0 x08048414 \

10 in s fake at /home/jml/ I n f i n i t o . c : 1 6
11 </st r >
12 <rep >
13 <code >66</code>
14 < st r >1 breakpoint keep y \
15 0 x080484aa in main at /home/jml/ I n f i n i t o . c : 3 8
16 2 breakpoint keep y 0 x08048414 \
17 in s fake at /home/jml/ I n f i n i t o . c : 1 6
18 </st r >
19 <data >
20 <node>
21 <r_info_break >
22 <bpid>1</bpid>
23 <type >breakpoint </type >
24 <disp >keep</disp >
25 <enabled >1</enabled>
26 <address >134513834</ address >
27 <function >main</function >
28 < f i l e >/home/jml/ I n f i n i t o . c</ f i l e >
29 < l ine >38</ l ine >
30 <ign_counter >−1</ ign_counter >
31 <condition/>
32 </r_info_break >
33 </node>
34 <node>
35 <r_info_break >
36 <bpid>2</bpid>
37 <type >breakpoint </type >
38 <disp >keep</disp >
39 <enabled >1</enabled>
40 <address >134513684</ address >
41 <function >sfake </function >
42 < f i l e >/home/jml/ I n f i n i t o . c</ f i l e >
43 < l ine >16</ l ine >
44 <ign_counter >−1</ ign_counter >
45 <condition/>
46 </r_info_break >
47 </node>
48 </data >
49 </rep >
50 <oob/>
51 <pos/>
52 < e r r/>
53 </tkout >

(b) XML format

Figure 4.15: The tkout structure

68

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

Performance evaluation of Fiddle internal communication

In [Mor02] there is a complete study on the performance of the serialization of the

output token into plain text using the JML and XML formats, and the reverse operation

into binary. The main goals of the performance evaluation were to evaluate the penalty

of using a text-based data representation for the serialized tkout, and the impacts of

using a standard versus proprietary formats.

In this sense, we evaluated the time spent in the serialization of output tokens to

both (JML and XML) formats and their conversion back into binary. Experimentation

has shown significant performance variations depending on the contents of the token:

if it contained long lists of data (e.g., the reply to a source code listing request) or not

(e.g., setting a breakpoint), and this was also subject to detailed evaluation. Finally,

we also aimed at checking whether performance behavior was linear on the size of the

token.

Table 4.1 shows the items subject to performance evaluation.

Parameter Options

Operation i) Serialization of tkout
ii) Codification of serialization tkout into binary

Format after serialization i) JML
ii) XML

tkout contents i) With long lists
ii) Without lists

Serialized tkout size 256, 512, 1024, 2048, 4096 and 8192 bytes

Table 4.1: Items subject to performance evaluation

Figure 4.16 on the next page shows the time taken to serialize two variants of the

tkout structure, with and without long lists of data, to formats JML and XML. From

the analysis of this Figure it is possible to conclude that the operation of serializing the

tkout structure into XML outperforms the serialization into JML. Both serialization

functions were “hand coded” and part of the source code has been shared, but the

serialization to JML was done before, while the serialization to XML was done later

and some efforts were made to optimize its performance. This explains some of the

performance differences between in these functions.

Figure 4.17 on the following page shows the time necessary to convert a tkout from

its serialized form (JML or XML) to binary. From the analysis of this graphic it is

easy to conclude that the generation of a binary tkout from the XML representation is

considerably slower than from the JML representation.

As there was a significant difference in the time needed to convert serialized tkout’s

in JML and XML formats to their binary representation (the latter was much slower),

some more experiments were made to determine its origin. These experiments consid-

69

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.5 1 2 3 4 5 6 7 8

T
im

e
 (

m
ill

is
e
c
)

Size TKOut (KBytes)

Conversion from TKOUT to JML/XML

Tkout to Jml(with lists)
Tkout to Jml{without lists}

Tkout to Xml(with lists)
Tkout to Xml(without lists)

Figure 4.16: Serialization of tkout into JML and XML formats

0

0.5

1

1.5

2

2.5

3

0.5 1 2 3 4 5 6 7 8

T
im

e
 (

m
ili

s
e
c
)

Size TKOut (KBytes)

Conversion from XML/JML to TKOUT

Jml to Tkout(with lists)
Jml to Tkout(without lists)

Xml to Tkout(with lists)
Xml to Tkout(without lists)

Figure 4.17: Codification from JML and XML formats into binary tkout

70

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

ered three different kinds of SAX based parsers: an empty parser (without processing

the tags and data fields), a “database” parser (which processes the tags and data fields

and builds an internal database with such information, but this database has no fur-

ther processing and the corresponding tkout structure is not generated), and a full

parser (fully processing the tags and data fields and generating the corresponding bi-

nary tkout). The results of such experiments are shown in Figure 4.18.

0

0.5

1

1.5

2

2.5

3

0.5 1 2 3 4 5 6

T
im

e
 (

m
ill

is
e
c
)

Size TKout (KBytes)

Conversion from XML to TKOUT (with lists)

Full parser
Stackonly parser

Empty parser

Figure 4.18: Processing times for XML file

By analysing this Figure one can infer that the SAX library for processing XML files

is very time consuming (nevertheless, the library we used was the most efficient XML

processing library available at that time). Fully converting a serialized token from JML

to binary is quicker than just processing the serialized token in XML format with an

empty parser. When we add some processing to this parser, the time needed to process

the file increases considerably. This study allowed us to conclude that by using XML

we benefit from the usage of a popular standard, but are also considerably penalized

in performance.

Facing these results, we have decided to keep support for both codification proto-

cols in Fiddle. The user may choose which protocol should be used, at Fiddle startup

time.

71

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.4. Summary

4.4 Summary

The discussed debugging engine results from an initial proposal, which led to the de-

velopment of DDBG. Some of the most relevant of the current features of the debugging

engine were already defined in its initial version, and available in the DDBG proto-

type. DDBG was used intensively in a number of research projects, which allowed us

to evaluate both the debugging engine design and the prototype. This evaluation led

to further developments of the debugging engine and of new prototypes, in PDBG and

TDBG. With successive refinements, the debugging engine evolved to its current status,

as discussed in Chapter 3, and its implementation to the current prototype (Fiddle), as

discussed in this Chapter.

The current implementation of the debugging engine, Fiddle, was also used in a

number of research projects and its features and its performance and functionalities

evaluated and compared, whenever possible, with its initial implementation in DDBG.

DDBG had many limitations, in both the debugging engine design and in its im-

plementation, such as having all the debugging engine management concentrated in

the main daemon, the inability to deal with different node debuggers and with long-

time-to-complete services. Also, clients had to be single-threaded programs and the

API used necessarily a synchronous calling model. Also, initially the debugging en-

gine had been defined with a flat architecture, making it hard to be extended with new

functionalities or to be adapted to the intricacies of new execution environments.

In the current stage, the debugging engine overcame the above limitations by mak-

ing use of a layered architecture, by supporting multi-threaded client tools and by

defining an API with an event-based callback model (although this last functionality is

not implemented yet).

The latest specification of the debugging engine, based in a layered architecture,

is implemented in Fiddle. In its current implementation, Fiddle contains almost 20.000

lines of source code, of which over 17.700 lines are C source code, which implements

all the debugging engine layers from Layer0s to Layer2m, and a bit over 1.700 are Java,

which implements a Java native interface to Fiddle libraries. Figure 4.19 on the fac-

ing page shows some software metrics for Fiddle, generated using David A. Wheeler’s

’SLOCCount’3.

Fiddle is, itself, a distributed program, whose multiple components communicate

using a text-oriented, human readable, protocol over TCP-IP channels. The initial ver-

sion of such protocol was proprietary. A second version based in the XML standard

was also implemented. The performance of both implementations was studied and

compared, which allowed to conclude that the initial proprietary protocol was, in av-

erage, faster than the second version.

3http://www.dwheeler.com/sloccount/

72

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.4. Summary

�
SLOC Directory SLOC -by-Language (Sorted)

5565 f0m ansic =5565

4004 f0s ansic =4004

3669 fiddle_j ansic =1812,java=1724,awk=123,sh=10

2466 f1m ansic =2466

2156 proto -console ansic =2156

979 util ansic =979

648 f2m ansic =648

89 examples ansic =89

Totals grouped by language (dominant language first):

ansic: 17719 (90.51%)

java: 1724 (8.81%)

awk: 123 (0.63%)

sh: 10 (0.05%)

Total Physical Source Lines of Code (SLOC) = 19,576

Development Effort Estimate , Person -Years (Person -Months) = 4.54 (54.52)

(Basic COCOMO model , Person -Months = 2.4 * (KSLOC **1.05))

Schedule Estimate , Years (Months) = 0.95 (11.42)

(Basic COCOMO model , Months = 2.5 * (person -months **0.38))

Estimated Average Number of Developers (Effort /Schedule) = 4.77

Total Estimated Cost to Develop = $ 613,694

(average salary = $56 ,286/ year , overhead = 2.40).

� �

Figure 4.19: Sofwtare metrics for Fiddle

73

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.4. Summary

[This page was intentionally left blank]

74

5
Validation of the Debugging Engine

Contents

5.1 Introduction . 76

5.2 Internal Validation . 77

5.3 Debugging Consoles . 79

5.4 Fiddle Graphical User Interfaces . 80

5.5 Composition of Testing and Debugging Tools 85

5.6 Integration in Software Development Environments 89

5.7 Integration with a Visualizer . 97

5.8 Summary . 98

This Chapter Presents a set of case studies, where one of the debugging engine imple-
mentations (DDBG or Fiddle) have been used, and how they contributed to the opera-
tional and functional validations of the debugging engine and its implementations.

75

5. VALIDATION OF THE DEBUGGING ENGINE 5.1. Introduction

5.1 Introduction

The assessment of a software package should include two distinct dimensions, the

operational validation, which aims at ensuring the program operates correctly and ac-

cording to its specification, and the functional validation, which aims at verifying if an

operationally correct software package fulfills all the initially identified requirements.

The assessment of the debugging engine proposed in Chapter 3, whose implementa-

tions are described in Chapter 4, should also be verified according to those dimensions.

The debugging engine instances described in the previous Chapter (namely DDBG

and Fiddle) have been used in a number of research projects, which resulted in the

development of a considerable set of client tools. Some of these tools were devel-

oped specifically to be client tools of the debugging engine, while others were simply

adapted to interact with the debugging engine. This multitude of experiments played

a very important role in the operational and functional validation of the debugging en-

gine, as it widened the scope of the functional and operational requirements put upon

the debugging engine. A significant aspect is that the debugging engine was actually

used and evaluated by external users, both senior researchers and students.

The functional validation of the debugging engine was supported mainly by the

experiments involving DDBG, and were also confirmed by some of the experiments

involving Fiddle. The operational validation of the debugging engine depends on each

specific implementation, and was constantly assessed by the multiple client tools in

both implementations. One of the implicit goals of the Fiddle reimplementation of the

debugging engine was to obtain a stable and operationally reliable prototype.

Depending on the time window, some of the research projects which helped veri-

fying the functional and operational consistency of the debugging engine used DDBG

while some others used Fiddle. Because Fiddle clearly supersedes DDBG, both function-

ally and operationally, we believe that the experiments which took place with DDBG

would also be feasible with Fiddle as the debugging engine. Our experience with the

DEIPA [LCK+97] tool (see Section 5.5), which was initially developed using DDBG and

later re-engineered (and reprogrammed) in DEIPA2 [Mor02, LCM03] using Fiddle, is an

excellent example of such feasibility. Along the text, it will be clear which instance

of the debugging engine, DDBG or Fiddle, was used in the project/prototype being re-

ported .

Debugging (and debugging-related) tools, developed both locally and externally,

contributed to the operational validation of the debugging engine, by exploring its

services and functionalities in all layers, detecting malfunctions and deviations to the

specification. These tools and their interactions with the debugging engine are de-

scribed in the following sections.

Figure 5.1 on the next page illustrates some of the experimental work developed

around the debugging engine.

76

5. VALIDATION OF THE DEBUGGING ENGINE 5.2. Internal Validation

and on−line
trace generation

Monitoring

Code
generation

Graphical

Application

Design

Graphical

Interface

Debugging

Visualization

Program

Execution

Target

Application

Testing

Tool

Generation of
testing scripts

Program
analysis

Inspection
and control

Debugging

Engine

Execution

Controler

Figure 5.1: A debugging engine as the center of a testing and debugging environment

We would like to recall that the work on the Fiddle internal validation (Section 5.2),

including Fiddle_J (Section 5.2.2), on Fiddle Consoles (Section 5.3), on FGI (Section 5.4.1)

and on DEIPA and DEIPA2 (Section 5.5), took place locally. The work on PADI (Sec-

tion 5.4.2) and in the major part of the work on the DDBG integrations (Section 5.6)

took place elsewhere, by third party research groups, but was closely followed by the

author of this dissertation. The work on Fiddle integration with the (Pajé) visualizer

(Section 5.7) was, essentially, at design level, and in cooperation with their developers.

5.2 Internal Validation

Each new Fiddle layer is built upon the previous (underlying) one, adding some func-

tionalities. The new functionalities added by a layer are specific to that layer, but all

functionalities from the underlying layer(s) are “inherited” and also supported by the

new one. This means that there is a successive dependency and usage of any layer on

the ones below.

5.2.1 Functional and Operational Dependencies Between Layers

According to the operational semantics defined for the debugging engine layers, from

Layer0s to Layer2m all the services follow a synchronous model, i.e., the client thread in-

voking the Fiddle service will remain blocked until its completion and a reply (comple-

tion notification) is received. For Layer3m, the intended operational semantic is event

based, where the client thread, when requesting a service, receives a requestid and pro-

ceeds its computation. When a reply from Fiddle is available, a service handler in the

client will be activated to process it.

77

5. VALIDATION OF THE DEBUGGING ENGINE 5.2. Internal Validation

The incremental development of the Fiddle layered software architecture became

its first validation step, with each new layer validating the one immediately below.

Fiddle layers are supported by a set of daemons and libraries, and any misconception

or operational malfunction found at a specific layer would also be propagated and

reflected on the upper layers.

5.2.2 Fiddle_J: A Java Object Oriented Wrapper for Fiddle Libraries

Access to Fiddle services is provided through a set of C libraries. As C++ is compatible

with C, these libraries may also be used by client tools developed in C++. However,

in this case, a procedural programming paradigm will be used instead of the expected

object-oriented paradigm.

Access to Fiddle services from other programming languages which are not directly

compatible with the C libraries must be supported on a case by case basis. Motivated

by the external development of the PADI tool (see Section 5.4), the Fiddle_J library was

developed to overcome such difficulties for Java based client tools, as illustrated in

Figure 5.2.

¢ £ ¤ £
¥ ¦ § ¨ © ª « ¬ ¬ ¦

 ® ¯ ¯ ° ± ² ³
´ ® µ ¶ ³ · ¸ · ¹ º » ¼

´ ® µ ¶ ´ · ½ ± ¾ ¿ À
´ ® µ ¾ · ¾ ½

Á § Â Â ¦ ¨ « £ Ã Ä ¨ ª
Å Æ Æ ¦ § Ç £ ª § ¬ ©

³ È É µ · Ê ± ¯ ³ · ¸ · · Ë Ë ± Ê Ê
Ì Í ® ¯ ¯ ° ± Ê ± ¾ ¸ ® Ë ± Ê

¥
¥ ¦ § ¨ © ª « ¬ ¬ ¦

´ · ½ ± ¾ ¿ À
´ ® µ ¾ · ¾ ½

Figure 5.2: Java object oriented wrapper for Fiddle libraries (Fiddle_J)

Fiddle_J uses the Java Native Interface (JNI) [Coo97] technology to build a Java

based object oriented representation of the Fiddle concepts and services available in the

C libraries. By using the Fiddle_J library, Java applications that register as Fiddle client

tools may coexist with other C and C++ based client tools, all concurrently interacting

with the target program.

78

5. VALIDATION OF THE DEBUGGING ENGINE 5.3. Debugging Consoles

5.3 Debugging Consoles

As explained before, the debugging engine itself does not specify how the user will

access its services. However, for testing purposes and as an example of how to develop

client tools, the current Fiddle distribution includes a set of text-oriented command-line

user debugging interfaces (the debugging consoles). There are, currently, four console

versions, one for each debugging engine layer. The multiple consoles versions share

a very large percentage (more than 95%) of the source code and are maintained along

with Fiddle source code itself, being immediately updated to reflect any change in the

specification of the debugging engine or in its implementation.

An example of a very short session with Fiddle consoles (using Layer2m) is shown in

Figure 5.3.

C 1

C 2

2

1

5

4

3

Figure 5.3: Two Fiddle (Layer2m) consoles operating upon the same target process

In this example, two Fiddle Layer2m consoles are operating upon the same target

process. The session starts in console C1 (on the left hand), by [1] loading a program

named “Infinito” into memory, to which Fiddle gives the ID=1; then a debugging

console specific command is used [2], to define the program just loaded into memory

as the default target for the future commands; the two next commands were issued

in console C2 (on the right hand), [3] inquiring Fiddle about the IDs of all the current

target processes and lists them (in this case there is a single target process, “Infinito”,

which was loaded from C1 in [1]); and [4] which sets a breakpoint in the first line of

the function “main()” in “Infinito”; finally, back to C1 there is the last command [5],

which was a “run” command. After this command, “Infinito” runs and stops at the

breakpoint defined in [4] while using C2.

79

5. VALIDATION OF THE DEBUGGING ENGINE 5.4. Fiddle Graphical User Interfaces

The interaction between the debugging consoles just described illustrates that the

debugging engine supports more than one client tool operating concurrently upon the

same target process, as commands [3] and [4] depend on the previous command [1],

and [5] also depends on command [4].

Figure 5.4 describes how Fiddle supports the two debugging consoles operating con-

currently upon the same target process.

Î Ï Ð Ñ Ò Ó Ô
Î Ï Ð Ñ Ò Õ Ô
Î Ï Ð Ñ Ò Ö Ô

Î Ï Ð Ñ Ò Ö ×

Ø Ù

Ø Ú

Ø Û

Ù

Ú
Û

Ü

Ý

Þ

ß à á â ã ä
å æ æ ç è é à ä è ê ë

ì è í í ç ã

î ê ë ï ê ç ã ð
Î Ï Ð Ñ Ò Ó Ô

Î ñ ò Ò Ï Ò Ð

î ê ë ï ê ç ã ó
Î Ï Ð Ñ Ò Ó Ô

Î ñ ò Ò Ï Ò Ð

Figure 5.4: The interaction between the debugging consoles and Fiddle

In Figure 5.4, a Fiddle Layer2m service is requested by the client tool (a debugging

console) by calling a library function. The library will transparently transfer the service

request to the Fiddle core [1]. In the Fiddle core, the service is successively processed

and transfered to the underlying layers [2], which includes a possible transfer over the

network to the node where the target process is running. Then, the service is applied

to the target process [3] and the result of such operation is sent back to the client tool

[4], [5] and [6].

Besides showing a very simple example of the human interface of Fiddle consoles,

this example shows how two Fiddle clients can operate upon the same target process,

thus contributing to the validation of one of the main debugging engine functional

requirements: the support of multiple client tools operating upon the same target pro-

cesses.

5.4 Fiddle Graphical User Interfaces

Although simple and having small requirements on computational resources, text ori-

ented debugging interfaces usually are not much appealing to novice users. The limi-

tations on which information can be displayed in such environments and how it can be

done imposes strong limitations on the assistance they may provide to the user. Addi-

tionally, text oriented debugging interfaces are not much user-friendly and, therefore,

require a considerable effort from novice users to master them.

On the other hand, graphical user interfaces tend to be easy to use and new users

can adapt to them very quickly. The ability to display information graphically, easing

their interpretation by the user, is also a very important added value on the GUiS.

80

5. VALIDATION OF THE DEBUGGING ENGINE 5.4. Fiddle Graphical User Interfaces

Concerning Fiddle, two separate efforts to produce more functional and user-

friendly user interfaces led to FGI, developed at Universidade Nova de Lisboa, and

to PADI, developed at Universidade Federal do Rio Grande do Sul. Both tools are de-

scribed below.

5.4.1 Fiddle Graphical Interface (FGI)

The Fiddle Graphical Interface [Aug03] is, as the name suggests, a client tool for Fiddle

that aims at providing a graphical user interface as an alternative to the Fiddle debug-

ging console(s).

FGI provides two complementary main views for a running distributed program.

One of these main views is organized in columns and provides the application browser,

where the distributed program is observable as a set of conceptual layers, and where

each layer provides a different view over the distributed program by using a specific

set of abstractions. The second main view provides a browser which deals with the

abstractions inherent to the specific layer.

The FGI user interface is illustrated in Figure 5.5, where examples of both main

views can be depicted, namely the application browser and a process layer browser.

Figure 5.5: Fiddle Graphical Interface (FGI)

The FGI program browser considers the following layers:

81

5. VALIDATION OF THE DEBUGGING ENGINE 5.4. Fiddle Graphical User Interfaces

i) Application. This layer includes all the processes under debugging (target pro-

cesses), which form subset of the application processes. As current implementa-

tions of Fiddle and FGI assume that there is a single application being debugged,

this layer could be omitted because it always contains a single component. How-

ever, such assumption will, probably, be relaxed in future releases, and this layer

will then not only make sense but also be necessary. Any command applied at

application level is broadcast to all target processes;

ii) Global groups. Correspond to an unrestricted dynamic association of target pro-

cesses. Global groups may be freely created and destroyed by the FGI user at

debugging time. The user may dynamically associate target processes to global

groups, and a process may belong simultaneously to as many global groups as

desired. There is always, at least, one global group which includes all the target

processes. Any command applied to a group is broadcast to all target processes in

that group;

iii) Hosts. Correspond to a dynamic association of processes to the computing nodes

where they are running. Although dynamic, as target processes may be dynam-

ically created or die, such correspondence is imposed by the execution environ-

ment and FGI, and the user has no control over it. As in previous cases, any

command applied to a host group will be broadcast to all target processes in that

group/host;

iv) Process groups. Correspond to a dynamic association of target processes in a single

computing node. Process groups may be freely created and destroyed, and their

contents defined by the FGI user at debugging time. Again, any command applied

to a process group will be broadcast to all target processes in that group;

v) Processes. For process oriented distributed applications, processes are the basic

unit of execution and are, therefore, at the lowest conceptual layer. For thread ori-

ented programs, then the two layers below are also used and this layer is consid-

ered as a group which includes all the process threads. In this case, any command

applied to the process will be broadcast to all its threads;

vi) Thread groups. Correspond to a dynamic association of threads. As with process

groups, thread groups may be freely created and destroyed by the user at debug-

ging time, but may only contain threads from a single process. The user may

dynamically associate threads to thread groups, and a thread may belong simulta-

neously to as many thread groups as desired. Any command applied to a thread

group will be broadcast to all the threads in that group;

vii) Threads. Sometimes there are multiple execution flows within a process. Threads

are the basic unit of execution in such cases and are, therefore, at the lowest con-

82

5. VALIDATION OF THE DEBUGGING ENGINE 5.4. Fiddle Graphical User Interfaces

ceptual layer. Threads and thread groups are to be used only when a thread ori-

ented programming model is being used in the target program.

The content of each layer browser depends on the abstractions managed by that

layer, but all of them are quite simple and similar except the process browser, that can

be depicted in Figure 5.5 on page 81.

The process browser provides a more conventional interface to interactive (dis-

tributed) debugging, being divided into three panes: the top-left pane shows the pro-

cess source file, the current line and existing breakpoints; the top-right pane displays

the result of the evaluation of expressions, which may contain local and/or global vari-

ables; and the bottom pane displays the current execution call stack.

The operational relationship between FGI and Fiddle is identical to that of the de-

bugging consoles and Fiddle. FGI may be used to debug any kind of distributed pro-

grams, independently of the communication model/libraries being used. However,

FGI may explore the Fiddle ability to handle multiple client tools (in Layer2m) to pro-

vide a graphical debugging interface to PVM programs. Figure 5.6 shows how such

support achieved.

ô õ ö ÷ ø ù ú
ô õ ö ÷ ø û ú
ô õ ö ÷ ø ü ú

ô õ ö ÷ ø ü ý

þ ÿ

þ �

þ �

ÿ

�

�

�
�

� � � � � 	
 � �

 � � � � � � � � � �

� � � � � �

� � � � � � � �

ô õ ö ÷ ø ù
ô � � ø õ ø ö

� �

ô õ ö ÷ ø ù
ô � � ø õ ø ö

! " #

$%

Figure 5.6: FGI support for debugging PVM programs

The spawning of a new process (P3) by the currently running process (P2) is inter-

cepted [1] by PVM (such interception is based in the redefinition of the PVM_DEBUGGER

environment variable) which will launch a user defined program [2]. In our case, this

program is the new Fiddle client (attacher). This new program will register itself as a

Fiddle client tool and request Fiddle [3] to spawn the new program P3 [4] under Fiddle

control. Once the process is loaded into memory and stopped under control of Fiddle

[5], a notification of service completion is sent by Fiddle to the attacher [6]. The attacher

will then notify FGI about the new Fiddle symbolic identifier [7] and will terminate.

Upon receiving such notification, FGI will incorporate the provided information and

update its display to reflect the newly created process.

83

5. VALIDATION OF THE DEBUGGING ENGINE 5.4. Fiddle Graphical User Interfaces

Evaluation of FGI After some experimentation with FGI, we have concluded that the

actual layer organization of the application browser could be improved, and a new

set of layers is already planned, but not implemented yet. This alternative design will

gather the previously defined global-, hosts- and process-groups into a single new process

groups layer.

As before, the user will be allowed to create and destroy process groups and to

dynamically associate processes to as many process groups as desired. In this new or-

ganization, FGI will automatically create as many process groups as computing nodes

with at least one target process running (replacing, in this way, the “hosts” layer). The

user may, in this way, easily check which processes are running where, and address all

of them simultaneously by addressing the associated “host” group.

A more detailed description of FGI, its interface, functionalities and implementa-

tion, may be found in [Aug03].

5.4.2 PArallel Debugger Interface (PADI)

The first prototype of Parallel Debugger Interface was developed at the Institute of In-

formatics of the Federal University of Rio Grande do Sul (UFRGS), by Denise Stringhini

as part of the requirements for her PhD thesis [Str02, SNC00].

Quoting the PADI home page1:

The PADI project aims at developing a debugging tool for support of parallel

and distributed applications. It’s a debugger interface that runs on top of

PDBG library, that coordinates multiple process level debuggers attached

to application processes. PADI is responsible to get processes information

from PDBG environment and to present these information in a suitable way

to the user.

Due to historical reasons, the PADI documentation refers to PDBG as the underlying

debugging engine as in the above quote of PADI home page. However, such references

to PDBG are wrong as Fiddle has been used as the debugging engine behind PADI from

the very beginning.

The Figure 5.7 on the next page shows the look of PADI, with its two main windows:

the main view and the process view. The former provides an application inspection and

control environment, while the latter provides identical functionality for individual

target processes.

PADI was developed in Java, which raised the question: “how to make it interact

with Fiddle, whose libraries were C oriented?”. The immediate solution for the PADI

author was to have PADI assuming the role of Fiddle main daemon, and interacting

1http://www-gppd.inf.ufrgs.br/projects/padi/

84

5. VALIDATION OF THE DEBUGGING ENGINE 5.5. Composition of Testing and Debugging Tools

Figure 5.7: PArallel Debugger Interface (PADI)

with Fiddle local daemons by sending service requests in the internal (JML) codifica-

tion format, and by decoding (from the same format) and processing the their replies.

Figure 5.8 on the following page exemplifies this relationship.

Such design option imposed, however, strong limitations on the flexibility and

maintenance of PADI. Some interesting features of Fiddle became unavailable in this

way, such as the support for multiple concurrent client tools, and even a light change

in the (supposedly internal) JML codification format would require the adaptation of

PADI. To face such obstacles, a new object oriented Java library (FiddleJ, described in

Section 5.2.2) was designed and implemented, relying on the Java Native Interface

(JNI) technology. There is ongoing work on UFRGS to adapt PADI to use Fiddle_J in-

stead of accessing the Fiddle local daemons directly as in the current implementation.

5.5 Composition of Testing and Debugging Tools

Although the development of high-level abstractions for distributed programming has

contributed to ease the task of program development, there are still many opportuni-

ties for programming errors, posing the need for support tools.

Many programming errors can be detected, in a more or less automatic way,

85

5. VALIDATION OF THE DEBUGGING ENGINE 5.5. Composition of Testing and Debugging Tools

F0s−Lib
F0m−Lib

F0m Server

Low−level Debugger Target Process

Low−level Debugger Target Process

Low−level Debugger Target Process

F0s−Lib
F0m−Lib

F0m Server

application
Target

PADI

Fiddle Layer 1m

en
co

ded
 to

ken
s

XM
L/JM

L

encoded tokens

X
M

L/JM
L

Figure 5.8: Relationship between PADI and Fiddle

through a static analysis of the program source text. Such analysis can also assist the

programmer in the prediction of the program behavior concerning specific correctness

properties. However, the program source text is not always available. Also, the global

program behavior is often the result of a combination of behaviors, depending on the

operating system or runtime support layers of a computing environment.

This explains the significance of approaches for dynamic analysis, which are cen-

tered upon the observation of real execution. Such approaches assume, from the begin-

ning, the incomplete nature of this process, due to the usually huge number of compu-

tation states which can be generated by distributed program execution. As such, they

are typically based on the selection of a finite set of representative test configurations,

followed by an observation of the results of program execution. The definition of such

test scenarios is, of course, dependent upon the classes of errors or program properties

that one is trying to check.

The main goal of a debugging tool is to help analysing erroneous program behavior,

possibly identified by a previous testing stage, and to assist the programmer in the

formulation or confirmation of hypotheses on the causes of errors, and in the tracing

of their origins in the program text.

Testing and debugging are naturally intertwined. On one hand, testing helps iden-

tifying errors whose causes must later be traced in a debugging stage. On the other

hand, after a successful debugging session, one typically needs to reconsider the set of

test scenarios. Debugging can also help identifying unforeseen situations which may

require the design of new testing scenarios.

The above aspects have been recognized for a long time, leading to many proposals

86

5. VALIDATION OF THE DEBUGGING ENGINE 5.5. Composition of Testing and Debugging Tools

of methodologies and tools for combined testing and debugging. See [KW99, CKW00]

for more complete surveys on this topic.

5.5.1 Deterministic Execution and Interactive Program Analysis

(DEIPA)

DEIPA [LCK+97] was initially developed to aid in the closing of a test-and-debugging

development cycle for PVM programs, by allowing the composition of two separately

developed tools, STEPS [KW96], developed at the Technical University of Gdansk,

Poland, and DDBG [CLA99, CLD98]. Later it was redesigned and reimplemented us-

ing Fiddle in DEIPA2, as described in [Mor03, LCM03]. Figure 5.9 illustrates how such

cooperation was achieved.

control
insp. &

control

insp. &

contro
l

insp. &

Fiddle client tools

User
Fiddle library

TeSS fileSTEPS

Fiddle
Process P2

Process P1

Process Pn

DEIPA

Text console

interface
Graphical

DEIPA

Text console

interface
Graphical

generates is used by

Figure 5.9: Tool composition of STEPS and Fiddle using DEIPA

Based in static and dynamic analysis of the target program, STEPS generates a be-

havior specification file, the TeSS file. Figure 5.10 on the following page shows a toy

example of a PVM program and the corresponding TeSS file. This file includes the def-

inition of a list of global breakpoints (collection of consistent local breakpoints). Some

of those global breakpoints have special instructions to modify one or more process

variables, which is a necessary operation to correctly drive the application flow path

when in presence of conditional branches or loops, e.g., on if and while statements.

For a more detailed explanation of the example presented in Figure 5.10 on the next

page see [LCM03].

To force the application execution to conform to the specification in the TeSS file,

DEIPA2 loads this specification file and generates the necessary sequence of debugging

(control and inspection) commands to Fiddle, setting a local breakpoint in each target

process and individually driving them until the global breakpoint is reached. Once

a process is stopped in a breakpoint, its internal status (e.g., variable contents) are

changed if needed, according to the TeSS specification.

At any time, Fiddle ability to handle multiple clients may be explored, and the user

may switch to another tool, such as Fiddle’s debugging console or graphical interface,

87

5. VALIDATION OF THE DEBUGGING ENGINE 5.5. Composition of Testing and Debugging Tools

echo_client echo_server

1 # include <pvm3. h>
2 # include < s t d i o . h>
3 # include < s t d l i b . h>
4 # include <unistd . h>
5
6
7
8 i n t main ()
9 {

10 i n t mytid ;
11 i n t t o t i d =0 ;
12 i n t value ;
13
14
15 mytid = pvm_mytid () ;
16
17 value = pvm_spawn (" echo_server " , NULL,
18 PvmTaskDebug , " . " , 1 , &t o t i d) ;
19
20 /∗ Sending 0 w i l l f o r c e t h e s e r v e r t o
21 e x i t , and t h e c l i e n t w i l l wa i t
22 f o r e v e r f o r t h e r e p l y ∗/
23
24 value = 0 ;
25 pvm_initsend (0) ;
26 pvm_pkint (&mytid , 1 , 1) ;
27 pvm_pkint (& value , 1 , 1) ;
28 pvm_send (tot id , 1) ;
29
30 /∗ Get t h e r e p l y from s e r v e r ∗/
31 pvm_recv (−1 , −1);
32 pvm_upkint (& value , 1 , 1) ;
33 p r i n t f (" Received value %d\n " , value) ;
34
35 pvm_exit () ;
36
37 return (0) ;
38 }

1 # include <pvm3. h>
2 # include < s t d i o . h>
3 # include < s t d l i b . h>
4
5
6 i n t main ()
7 {
8 i n t mytid ;
9 i n t from , value ;

10
11 mytid = pvm_mytid () ;
12
13 pvm_recv (−1 , −1);
14 pvm_upkint (&from , 1 , 1) ;
15 pvm_upkint (&value , 1 , 1) ;
16
17 i f ((value %2)==0)
18 e x i t (0) ;
19 el se
20 value=−1;
21
22 pvm_initsend (0) ;
23 pvm_pkint (& value , 1 , 1) ;
24 pvm_send (from , 1) ;
25
26 pvm_exit () ;
27
28 return 0 ;
29 }

TeSS file

1 START_FILE :
2 e c h o _ c l i e n t
3
4 SPAWN_TABLE:
5 {
6 0 0 0 0 1 e c h o _ c l i e n t e c h o _ c l i e n t . c

13142 4 ,
7 1 16 0 1 2 echo_server echo_server . c 59634 2
8 }
9

10 INITIAL :
11 [{ (1 , 1 , 1 7) }] ,
12 [{ (1 , 1 , 2 8) }] ,
13 [{ (2 , 1 , 2 8) }] ,
14 [{ (2 , 1 , 2 8) , (1 , 2 , 1 3) }] ,
15 [{ (2 , 1 , 2 8) , (2 , 2 , 1 3) }] ,
16 [{ (2 , 1 , 2 8) , (1 , 2 , 1 7 , [2 , 2 , " value " , " 1 "]) }] ,
17 [{ (2 , 1 , 2 8) , (2 , 2 , 1 7) }] ,
18 [{ (1 , 1 , 3 1) , (1 , 2 , 2 4) }] ,
19 [{ (2 , 1 , 3 1) , (2 , 2 , 2 4) }] ,
20 [{ (1 , 1 , 3 5) , (1 , 2 , 2 6) }] ,
21 [{ (2 , 1 , 3 5) , (2 , 2 , 2 6) }] ;

Figure 5.10: Sample PVM programs and TeSS file

88

5. VALIDATION OF THE DEBUGGING ENGINE 5.6. Integration in Software Development Environments

and perform a more detailed inspection and control of the target processes.

On completing such a fine (process-level) debugging, the user may return to DEIPA2

and proceed with the controlled execution mode, or release/stop the target program if

no more debugging is needed.

As described before with FGI, DEIPA2 also makes use of the Fiddle ability to support

additional concurrent clients to intercept newly created (spawned) PVM processes and

acquire control over them. Such operation in DEIPA2 is identical to the one in FGI, as

described in Figure 5.6 on page 83, as if the client tool FGI had been replaced by DEIPA2.

5.6 Integration in Software Development Environments

The development of distributed applications requires the programmer to define and

specify a set of program components which will interact, most probably, by accessing

some common memory (repository) or by sending and receiving data messages. In any

case, this high-level planning of the application is well suited for the use of graphical

specification/programming languages.

Graphical programming languages are naturally supported by graphical editors,

which allow to express the language constructs. The graphical program will, most

probably, be converted to some more conventional programming language such as C

or C++ by way of an automatic code generator, and just then compiled to machine code.

Such code generators frequently rely upon some communication layer/package, such

as OpenMP, PVM or MPI.

The development of distributed applications can be further improved by associat-

ing the graphical editor to a full set of other complementary tools, such as program

simulators, monitors, visualizers and debuggers. The SEPP and HPCTI European

projects [WK94] led to the development of two Integrated Development Environments

(IDE) for distributed applications, the GRADE [KDL00] and EDPEPPS [D+00] environ-

ments.

In both of these projects, the DDBG distributed debugger, a predecessor of Fiddle,

was integrated into the environment and used to provide graphical debugging and

execution animation support for the (graphical) programming languages of both envi-

ronments.

The experiments reported below have not been repeated by replacing DDBG with

Fiddle. The full source code for those toolsets is not available anymore, and the coop-

eration with the toolset developers has also terminated. Although any real attempt

to replace DDBG with Fiddle in this context is, therefore, impossible, we also include a

description on how this replacement of DDBG with Fiddle could be achieved.

89

5. VALIDATION OF THE DEBUGGING ENGINE 5.6. Integration in Software Development Environments

5.6.1 Integration of DDBG in GRADE

GRADE [KDL00] stands for Graphical Application Development Environment, and is

an IDE for distributed applications, developed as a cooperation effort between multi-

ple partners of the SEPP and HPCTI European projects [WK94].

GRADE was composed of the following tools:

i) GRAPNEL [GD95a], developed at KFKI-MSZKI, Hungary. GRAPNEL is a hy-

brid language, using both graphical and textual representations to describe a dis-

tributed application. The graphical entities are used to describe the main pro-

gram components and communication channels. Textual declarations are used

to describe short sequential code segments. The main purpose of the graphical

representation was to give a high level outline (or abstraction) of the distributed

program where the key points are the communication operations among the pro-

cesses;

ii) GRED [GD95b], developed at KFKI-MSZKI, Hungary. In GRADE, parallel pro-

grams can be developed according to the syntax and semantics of GRAPNEL lan-

guage by using the GRED editor;

iii) GRP2C [DDK00], developed at Research Laboratory for Mining Chemistry, Hun-

garian Academy of Sciences. GRAPNEL graphical programs are saved in a struc-

tured textual representation, and processed by GRP2C to generate C code which

use the PVM library for communication support;

iv) DDBG [CLA99], developed at Universidade Nova de Lisboa, Portugal. A dis-

tributed debugger with interesting capabilities on tool integration;

v) Tape/PVM [Mai95], developed independently at LMC-IMAG, Grenoble, France. A

monitoring and visualization tool, able to generate trace files during the execution

of a PVM application. Tools such as ParaGraph [HF97] or PROVE (see below) can be

used to present graphical displays of such traces.

vi) PROVE [KCMV00], developed at KFKI-MSZKI, Hungary. A visualisation tool to

analyse and interpret the Tape/PVM trace file information, and present it graphi-

cally to the programmer.

The GRAPNEL model, a graph-based parallel programming language, supports a

structured style for designing parallel applications. In this integrated development

environment there is a requirement that the debugging commands and output infor-

mation be directly related to the GRAPNEL model, such that only GRAPNEL abstrac-

tions should be handled by the user. This requires a high-level interface to the user,

such that the information on specific debugging commands is directly related to the

90

5. VALIDATION OF THE DEBUGGING ENGINE 5.6. Integration in Software Development Environments

GRAPNEL source program, e.g., by highlighting corresponding entities in the graphi-

cal representation, and their corresponding lines of source code in the textual program

representation.

For each debugging action specified in GRED (the GRAPNEL editor), process names

are converted to real PVM task identifiers and the necessary DDBG services are invoked.

This is exemplified in Figure 5.11, where process “worker11” was stopped at a break-

point, in the fourth source line of its code block.

Figure 5.11: The integration of DDBG within GRADE

During this integration work, an important issue was raised. It was related to the

limitations imposed by DDBG for the client tool to be a single-threaded program in

conjunction with the RPC model for debugging service requests. The GRED visual

programming editor was an event oriented single-threaded program (as the general-

ity of the X-Windows applications) and the RPC model for debugging services was

blocking temporarily the graphical interface until the service was completed. For the

majority of the debugging services this was not a critical issue, as they would either

succeed or fail in a limited time window, but a few services, such as continue execution

until a breakpoint is found, would take an unpredictable time to be completed, during

which the graphical user interface could not be frozen.

91

5. VALIDATION OF THE DEBUGGING ENGINE 5.6. Integration in Software Development Environments

The solution found was to make the GRED tool to rely upon a TCP/IP socket based

communication channel to interact with the DDBG system, where GRED would receive

notifications of the completion of those potentially long time running debugging ser-

vices. Figure 5.12 illustrates the approach just described.

control
insp. &

insp. & control

DDBG client tools

User
DDBG library

DDBG
Process P2

Process P1

Process Pn

Text console

interface
Graphical

GRED

Text console

interface
Graphical

GRED
change in application
state (animation event)

inspection and control commands

Figure 5.12: Support of long time running debugging services in GRED

Most of the debugging service requests issued by the GRED editor follow the RPC

model. They are transparently sent by way of the DDBG library [1] to DDBG, where the

service request is processed. DDBG sends a reply back to the DDBG library [2] with the

result(s) of the requested debugging service.

While the above operations take place, the graphical user interface (GRED) would

be blocked waiting for the reply from DDBG. In order to avoid this behavior, the small

number of long time running debugging services (such as “continue execution until a

breakpoint is hit”) are also sent to DDBG by the DDBG library [1]. A reply informing that

the requested service was accepted is immediately sent back by DDBG [2] to the client

tool. Such reply unblocks the graphical interface, which will, in this way, be available

while the service is being executed by DDBG. Once the requested service is completed,

its reply is sent to the special communication channel (TCP/IP socket). When there are

pending replies, GRED periodically inquires the communication channel to check their

availability.

The above solution has proved its feasibility when the integration was successfully

achieved. However, it was an ad-hoc solution, with special requirements upon the client

tool, namely the ability of periodically checking the communication channel and, cer-

tainly, such requirements could still be applied to some other client tools, but not to all

of them.

5.6.2 Integration of DDBG in EDPEPPS

The EDPEPPS [D+00] toolset is based on a rapid prototyping philosophy, such that

outline designs can easily be experimented, and evolve to full distributed programs.

92

5. VALIDATION OF THE DEBUGGING ENGINE 5.6. Integration in Software Development Environments

EDPEPPS offers many advantages over traditional parallel design methods, like a

rapid prototyping approach to parallel software development, offers modularity and

extensibility through layered partitioning of the program, supports the user on decid-

ing on the size and scalability of the target platform, but also has the ability to do some

performance analysis without accessing the target platform, and allows the software

designer to perform the development cycle of design-simulate/execute-analysis with-

out leaving the toolset environment.

All the above functionalities of the EDPEPPS toolset are based on the following

components:

i) The PVM graphical programming language (PVMGL), which allows PVM applica-

tions to be developed using a combination of graphical objects and text;

ii) A graphical design tool (PVMGraph) [Jus96], which allows the user to edit PVMGL

programs;

iii) A simulation utility (PVMPredict) [D+00], based on discrete-event simulation, to

simulate the execution platform and multiple software (and communication) lay-

ers;

iv) A visualization tool (PVMVis) [D+00], for the animation of program execution

based on traces generated by the simulator, and for visualization of platform and

network performance measures and statistics;

v) A debugger (PVMDebug) [Aud98], which allows to execute a PVMGL application

under control of a debugger and animate this execution.

PVMDebug (see Figure 5.13 on the next page) development was based on DDBG,

and similarly to the integration of DDBG in GRADE, provides debugging support and

execution animation within the EDPEPPS integrated debugging environment.

Like in GRADE, programs in PVMGL are automatically converted to C source code,

which is displayed in a pane in PVMDebug highlighting the current execution pointer

(line). The basic debugging functionalities, such as breakpointing and single-stepping,

are available through a set of buttons available in the same pane as the source code.

PVMDebug also sends events to PVMGraph to animate the target program execution

by changing the look of displayed PVMGL entities, reflecting in this way the changes

in the status of the target application. PVMDebug allows the programmer to set/clear

breakpoint from the source code pane or from PVMGL entities

In order to debug a distributed PVM application and to control its tasks, the debug-

ger needs to know all PVM task identifiers (tids). PVMGraph cannot anticipate which

tid will be given to each application process, as they are generated by PVM at runtime

and change at every run. Therefore, a wrapper program was developed to manage the

link between the graphical objects and the PVM execution tasks. The wrapper program

93

5. VALIDATION OF THE DEBUGGING ENGINE 5.6. Integration in Software Development Environments

Figure 5.13: The EDPEPPS PVMDebug main window

uses the on-line monitoring facility in PVM to collect the PVM events from the appli-

cation and to route them to PVMDebug which manages the mapping list of PVMGraph

symbolic identifiers and PVM tids.

The integrations of DDBG in EDPEPPS and in GRADE raised similar problems,

which were solved in a similar way in both cases. In particular, the most significant of

those problems, the blocking of the user interface when long time running debugging

services were requested to DDBG, were also solved in EDPEPPS as described before for

GRADE.

5.6.3 DDBG vs. Fiddle Support for Debugger Integration in PSDE

Although both integrated development environments, GRADE and EDPEPPS, were

developed by different research teams, they had similar goals and used similar ap-

proaches to the development of parallel/distributed programs. As such, similar prob-

lems were also detected when the work to integrated DDBG in such environments was

initiated, and identical solutions were also applied in both cases.

The details of the problems and solutions encountered for both, GRADE and ED-

PEPPS, are described in [Aud98] and [KCD+97] respectively. A summary of those

94

5. VALIDATION OF THE DEBUGGING ENGINE 5.6. Integration in Software Development Environments

problems and their solutions is listed below. Along with each item, we also included a

suggestion of a solution in case Fiddle were to be used instead of DDBG.

i) The mapping of high-level (graphical) language constructs to generated source code. Both

EDPEPPS and GRADE are based on graphical programming languages with high-

level constructs, and use code generators to produce C/PVM source code. DDBG,

operating at source code level, couldn’t deal wit those graphical constructs. The

necessary correspondence between the graphical constructs and the C/PVM source

code, being toolset dependent, should be done at code generation time. However

integrated in the development environments, the debugging requests directed to

DDBG would, in both cases, use the C source code as the basic reference.

If Fiddle were to be used instead of DDBG, the same references to the C source

code would be acceptable (and desired), and all the above statements could (and

would) be applied. This means such replacement would be simple and with no

major implications;

ii) Mapping from symbolic to real process identifiers. As software design tools, PVMGraph

and GRED deal with symbolic program identifiers, which are constant. PVM, as an

execution environment, deals with real process identifiers, which may (and most

certainly will) change at every run.

DDBG could only identify processes by a pair “(hostname, pid)”, and the symbolic

process identifiers used in the design phase had to be mapped into the real process

identifiers used by the runtime system. This functionality was achieved by the

addition of a mapping module to the toolset.

Fiddle, would also need a similar identification module, where the pair “(host-

name, pid)” used in DDBG would be replaced with the unique process identifier

used by Fiddle;

iii) Handling of multiple concurrent client tools. This was one of the key issues in the de-

sign of the debugging engine, and both DDBG and Fiddle support such functional-

ity. Fiddle, due to the layered software architecture and extensibility, is more versa-

tile than DDBG and the integration work would be considerably easier. However,

for the toolset user (software developer) there would be no significant difference;

iv) A PVM event handler. This small program is designed to gather and filter PVM

events, such as process creation and termination, and inform the graphical user

environment of such changes. The information supplied is crucial for the imple-

mentation of the symbolic to real process identifiers mapping referenced above.

Again, this is independent from the debugging system being used, whether it

would be DDBG or Fiddle, and needed in both cases;

95

5. VALIDATION OF THE DEBUGGING ENGINE 5.6. Integration in Software Development Environments

v) Grabbing of new (dynamically created) application processes. Some distributed pro-

grams assume (or are limited to) a initialisation phase, where a static set of appli-

cation processes are created, a computation phase, where these processes cooper-

ate to achieve the common goal, and a termination phase, for the partial results

gathering and graceful termination of the application. If such organization is pro-

moted or even enforced, such as when using MPI, then there is no dynamic creation

or termination of processes during computation phase and this problem does not

arise.

However, on some other systems, such as PVM, the dynamic creation and termi-

nation of processes during the life-time of the distributed program is allowed. In

such cases, if the application is under debugging (and unless stated otherwise),

the developer expects any newly created process to also be under control of the

debugging engine.

To debug PVM programs with DDBG, this desired functionality was achieved by

a combination of PVM and DDBG features. PVM allows newly created processes

to be started under control of a debugger, and this debugger is user configurable.

DDBG, on the other hand, supports multiple client tools and DDBG specific client

tool, the pvm_spawn_handler, was defined to be the PVM debugger. This spawn

handler receives, as an argument, the pathname of the program to be launched as

a new process, registers itself as a DDBG client, asks DDBG to load the specified file,

and terminates. In this way, the newly created process is under control of DDBG.

The above described technique has also been in Fiddle, to allow FGI and DEIPA2 to

handle PVM programs.

vi) Handling of potentially long completing time debugging services. All services provided

by DDBG used a synchronous calling model. This means the calling process would

remain blocked until service completion. This was not a problem for quickly han-

dled services, e.g., setting a breakpoint or listing a set of source code lines, that

would either succeed or fail in a short period of time.

Debugging services, that would possibly take a long time to succeed, e.g., continue

execution until next breakpoint is reached (which may as well take a fraction of

a second as a few hours or days to happen), became a problem when using this

calling model, as it could block the entire graphical user interface for a long time.

Such blocking was very annoying and unacceptably limited the user access to the

target program during this period.

To avoid such undesired behavior, DDBG was changed so that potentially long

completion time services would return immediately a success status, terminat-

ing immediately the RPC call. The service completion notification/data would be

sent later through an alternative communication channel (a TCP/IP socket). The

96

5. VALIDATION OF THE DEBUGGING ENGINE 5.7. Integration with a Visualizer

graphical user interface was responsible for periodically polling this communica-

tion channel (the socket descriptor) and react when data was present.

If Fiddle Layer2m were used instead of DDBG in these integrations, the extra TCP/IP

socket would be superfluous. Fiddle handles multi-threaded clients, so, the graph-

ical user interfaces just had to start a new thread in every service request to Fiddle

or, at least, to every request of a potentially long time completion service, leaving

to the main tread the control of the graphical user interface. Once the service was

completed, the thread that was waiting for the completion notification could in-

sert a new completion event in the event queue of the main thread. This model of

solution was used with success in FGI.

If Fiddle Layer3m were to be used (we recall that Layer3m is not implemented yet),

a completion event would be generated by Fiddle and handled synchronously or

asynchronously by the GUI, according to the event management model chosen

by the GUI. It could either block waiting for the notification event, proceed and

periodically poll for its existence, or have a thread to be automatically created

when the event was received. In any case, when the notification was received, a

new event could be inserted in the event queue of the main thread, to have the

GUI reacting to the notification.

vii) Adaptation of the graphical editor to support program animation and debugging function-

alities. Both toolsets, GRADE and EDPEPPS, were adapted to become DDBG client

tools. As DDBG client tools, these toolsets could, periodically, inquire DDBG about

possible changes in the status of any of the processes being controlled and react

accordingly. For example, in both toolsets, when a process hits a breakpoint and,

thus, stops running, its associated color in the GUI is also changed to reflect the

new process status.

The improvements in Fiddle to handle debugging services which may take a long

time to complete, as described above, and in particular its event notification mech-

anisms and support for multi-threaded client tools, could be explored by the

toolset GUI as an easier way to implement program execution animation.

5.7 Integration with a Visualizer

Distributed program visualizers [AG, MHC94, KGV96, KS00] work, mainly, as post-

mortem tools. At run-time, program (communication) events are collected using low-

intrusion tools/libraries and dumped to trace files. Visualizers read such trace files,

process their contents and generate different kinds of graphical displays, aiming to

help the user better understand the program behavior. However, once an error is de-

tected, it is a programmer’s duty to determine where in the source code such misbe-

havior is generated.

97

5. VALIDATION OF THE DEBUGGING ENGINE 5.8. Summary

An adequate combination of the functionalities provided by a visualizer with those

of a distributed debugger can improve significantly the productivity of the software

developer. These tools may correlate the information provided by the visualizer, such

as a point in a graph shown by the visualizer, with the program source code line or a

message buffer.

Such combination require multiple adaptations to the original tools. The trace file

generator needs to be adapted to produce an event stream which will be consumed

on-line. The visualizer must also be adapted to operate on-line with a running appli-

cation (opposed to the usual post-mortem operation), which means it has to generate

significant displays with a partial knowledge of the event history.

For example, if by analysing a process-time graphical displays of a running pro-

gram, provided by the visualizer, the user detects that a message is being delivered to

the wrong process, it would be desirable to stop the application, select the send and/or

receiving event(s), and have the debugger display the associated points in the source

code of both processes, along with the processes stack frames at the moment (if still

available).

There are plans to realize such kind of integration using Fiddle and the Pajé [KS00]

visualizer (developed at LMC-IMAG, France, in the context of the ATAPASCAN

project), probably using the DAMS [CLV+98,DLC01] (from UNL) infrastructure to sup-

port the application monitoring and event dissemination to the tools. Some prelim-

inary work has been done under a cooperation agreement between UNL and LMC-

IMAG, and another cooperation agreement between UNL and Universidade Federal

do Rio Grande do Sul and the Universidade de Santa Catarina, both in Brazil, was

already submitted and waits for approval from the Portuguese and Brazilian states.

5.8 Summary

The debugging engine was designed with special concerns on tool cooperation and in-

tegration. The goal was to allow the debugging engine to interact not only with specific

client tools, but also with other third party (set of) tools. Such aims were validated by

using DDBG and Fiddle in a set of projects, ranging from interaction with simple client

tools, such as command line and graphical debugging interfaces, to its integration in

full parallel software development environments.

There were many experiments with the debugging engine involving different kinds

of tool inter-relations:

i) Specific clients. The debugging engine includes a APIs (one for each level), but no

debugging user interface. To ensure the correctness of its implementation and the

effectiveness of its APIs, specific debugging engine clients have been developed.

Some were in the form of new APIs, such as those provided by the internal upper

layers, i.e., Layer0m is a client of Layer0s and uses its API, Layer1m is a Layer0m

98

5. VALIDATION OF THE DEBUGGING ENGINE 5.8. Summary

client and uses its API, and so on. Others were simple client tools, such as the

Fiddle debugging consoles and FGI.

These experiments proved that the layered software architecture was a convenient

and flexible approach to the organization of the debugging services to be provided

by the debugging engine. Each new layer was also the first testbed for the preced-

ing one;

ii) Loosely-coupled cooperation with other tools. Tools may share little or no knowledge

at all of each other internals or behavior. This frequently results in a unidirec-

tional (pipeline) cooperation based in some intermediate file(s) with output/re-

sults which pass data from one stage to the next.

A good example of such loosely-coupled cooperation involves the trace file gener-

ators, which collect and log the (communication) events in a distributed compu-

tation, and the computation visualizers, which display graphical representations

(for example, space-time diagrams) of the computational trace, as described by the

previously generated log. Once the trace file format is defined, the trace generator

may ignore how the data it produces will be used, and the visualizer may ignore

how the data it uses was collected.

The experiments of DEIPA (and DEIPA2), which explored the cooperation between

the STEPS testing tool with DDBG (and Fiddle), are another example of such

loosely-coupled cooperation, with a file—the TeSS file—playing a main role as

intermediary between the testing and the debugging tools.

iii) Tightly-coupled cooperation with other tools. Some tools share a very close relation-

ship with the debugging engine and deal with different concepts and/or abstrac-

tions the ones initially provided by the debugging engine. This is the case of PADI,

which provides the user with a set of group oriented functionalities, by relying on

Fiddle for the basic (non-grouping) debugging services. This illustrates a tightly-

coupled cooperation between two tools, PADI and Fiddle.

Tools tightly-coupled may also share even a tighter relationship, such as direct in-

terdependency. In this case, tools will share a deep knowledge on how each other

operates and what functionalities they provide. This knowledge will allow the

involved tools not only to cooperate, but also to give access to their own function-

alities which better complement the ones provided by the other tool.

Two of the previously described cooperations, DDBG/GRED and

DDBG/PVMGraph, are examples of such interdependency, where adaptations

were made to both tools to enable a fruitful cooperation;

iv) Full integration in PSDEs. Tool interactions may also involve a full set of devel-

opment tools, with complementary functionalities, which cooperate to assist the

99

5. VALIDATION OF THE DEBUGGING ENGINE 5.8. Summary

users with an integrated development environment for parallel/distributed ap-

plications. In this case, there is an increased complexity level, due to the cross

inter-relations between tools.

The integrations of DDBG within the GRADE and EDPEPPS parallel software devel-

opment environments fall into this category. More important than the additional

adaptations that may have been (or not) necessary to obtain a full integration, it

is the fact that a consistent and uniform user interface has been provided to the

developer, supporting the high-level development concepts and abstractions and

hiding, by principle, the lower level details, such as automatically generated code.

100

6
Conclusions and Future Work

Contents

6.1 Conclusions . 102

6.2 Future Work . 102

This Chapter summarizes the main achievements of the research work described in
this dissertation, and discuss some still open issues, which will be considered in our
future research work.

101

6. CONCLUSIONS AND FUTURE WORK 6.1. Conclusions

6.1 Conclusions

This thesis proposes a debugging engine, resulting from a research work which was

strongly motivated by its context, namely international cooperations to design and

develop a set of cooperating tools which could be presented to the user as an integrated

parallel software development environment (PSDE). The proposed debugging engine

had a number of goals, has described in Chapter 1.

We have designed a debugging engine which could fulfill the debugging require-

ments posed by other tools in a SDE, and planned and implemented its software ar-

chitecture. Such software architecture is based in a set of layers, where each layer

includes a set of functionalities, which are extended by each new layer. The need for

future extensions was also predicted in the basic mechanisms provided by the debug-

ging engine, and such possibility was included in its design.

The debugging engine has support for the observation and control of individ-

ual distributed processes, supporting interactive correctness debugging and provid-

ing symbolic (source level debugging) functionalities. Support to handle some of the

problems inherent to distributed computations, such as the non-determinism, were

also provided in the form of extensions to the basic debugging engine. We have also

described two different implementations of the debugging engine.

DDBG was an early prototype of an early specification of the debugging engine,

which was used in a set of successful experiments. These experiments range from the

simple provision of distributed debugging command line interfaces, to its application

in the support of the testing and debugging sub-cycle of the software development

process, and to the support of visual parallel programming languages integration with

graphical editors.

Fiddle was developed later, as a re-design of the debugging engine, and led to the

version described in this dissertation. It includes support for: traditional debugging

services, distributed debugging services, integration into PSDEs, and also the possibil-

ity of being extended with new debugging services. Fiddle was also successfully used

in a set of experiments, which helped to validate its design and implementation, as

described in Chapter 5.

6.2 Future Work

In what concerns the future, many things are to be done. Some of them are very well

identified and closely related to the Fiddle implementation, while some others have a

larger scope, targeting future research initiatives.

Concerning the debugging engine and its current implementation, we plan to do

some more work on the following aspects.

i) Layer3m . Although generically defined, in what concerns its functionalities and

102

6. CONCLUSIONS AND FUTURE WORK 6.2. Future Work

operational mechanisms, there are still some open issues concerning this layer

such as the identification and enumeration of the events which will be reported by

the debugging engine, their classification and organization in sets, the definition of

the supported notification mechanisms, and how will these notification should be

handled in the client tools. Once the decisions concerning the debugging engine

are made, they also have to be instantiated in the current implementation of Fiddle

engine. We anticipate that some minor modifications to the already existing lay-

ers and data structures will be needed to efficiently accommodate the operational

requirements of Layer3m;

ii) Further evaluation of XML as an external data representation. Some work has already

been done to evaluate the communication performance in Fiddle, by comparing the

originally defined (proprietary) JML protocol to the alternative implementation

which used the XML standard [Mor03]. However, some more work could still be

done to further evaluate the latency and communication times using alternative

XDR protocols, such as RPC-XML and the ones supported by message passing

systems, such as MPI, and compare them to the already obtained results;

iii) Support of GDB’s MI2 command language. Since GDB version 5, an alternative com-

mand language directed towards the use of GDB as a sub-process receiving com-

mands from another program (instead of a human user) named “Machine Inter-

face (MI)” has been under development [GDB]. The most recent version of GDB

(version 6) includes a new version of the machine interface language, the MI2,

which we would like to test and evaluate [SP93];

iv) Support for alternative node debuggers. All our experiments with DDBG and Fiddle

relied on GDB as the node debugger. We anticipate that Fiddle can easily be adapted

to support node debuggers other than GDB, however, such experiments have not

been conducted yet;

v) Support for alternative node debugging engines. A possible alternative to the use of

node debuggers is to use node debugging engines, such as Dyninst [BH], available

as a library. This could easily be achieved by replacing the node debugger with

Dyninst library and by replacing the command generation and reply processing

modules from Fiddle with equivalent ones for the Dyninst library;

vi) Further testing of Fiddle_J . A first implementation of Fiddle_J is finished, to which

some basic tests with toy examples have already been applied. However, further

testing is necessary, probably by the development or adaptation of a full client tool

which will make use of this library to access Fiddle services;

vii) Support for other message passing libraries. All the experiments until now, with both

DDBG and Fiddle and involving message passing based distributed programs, have

103

6. CONCLUSIONS AND FUTURE WORK 6.2. Future Work

been based in the PVM system. Minor experiments have been made to verify the

ability of Fiddle to support also MPI based distributed programs, but further testing

is necessary.

In what concerns existing Fiddle client tools, there are also some open issues:

i) Continue FGI development. The current FGI prototype was limited in its objectives

and development time. There is space for a lot more improvements in its user

interface, and on the functionalities it provides;

ii) Adaptation of PADI to use Fiddle_J . Although PADI was the main motivation to de-

velop Fiddle_J, due to the independent development scheduling of PADI, its current

implementation does not uses Fiddle_J. PADI authors have already demonstrated

their interest in adapting its tool to use Fiddle_J, and we expect work on such adap-

tation to be started soon;

Finally, the current implementation of the debugging engine has proved to be a

stable software package. Such stability is essential to pursue further research work

concerning distributed debugging, such as:

i) Integration of the debugging engine and a visualizer. Some prior studies have already

been taken considering the possibility of integrating Fiddle with the Pajé visualizer.

One of the basic needs to achieve such integration concerns the adaptation of Pajé

to support on-line monitoring (as a complement of the actual post-mortem support).

Such adaptation has not yet been taken by Pajé authors, but such integration work

is in our plans, waiting for the appropriate time window;

ii) Automatic debugging. The existence of a stable debugging engine is a base for fur-

ther experiments concerning debugging support. One of our goals is, inspired

in our experiments on DEIPA2, to work further on the support for automatic de-

bugging, by developing a system which supports the verification of user defined

annotations in the source code;

iii) Fiddle integration in PSDE. The successful experiments of integrating DDBG in two

PSDE (GRADE and EDPEPPS) were very motivating, and we would like to work

further on tool integration, specially on debugging support for PSDE. This is a

quite open issue for us, as currently we have no schedule for such research work.

104

A
The Fiddle API

Contents

A.1 Fiddle Utilities Library . 106

A.2 Fiddle Layer0s Services . 110

A.3 Fiddle Layer0m Services . 120

A.4 Fiddle Layer1m Services . 123

A.5 Fiddle Layer2m Services . 126

This Appendix makes a brief description of the API for all the currently implemented
Fiddle layers: Layer0s, Layer0m, Layer1m and Layer2m.

A complete and detailed description of Fiddle API, with some examples, is available
in Fiddle Users Manual [LC99].

105

A. THE FIDDLE API A.1. Fiddle Utilities Library

A.1 Fiddle Utilities Library

When a client tool requests a service to Fiddle debugging engine, it will receive a reply

in the form of a tkout_t structure. To keep this structure as simple as possible, we have

decided to use a very simple, although thread-safe, generic double linked list (chain_t)

as the basic data structure to hold sets of elements. The operations to manipulate such

double linked lists are available in the additional fiddleutil library.

Additionally, this library also provides some warning and error message printing

service, where each message is tagged with the Process ID, a very relevant information

in a multi-threaded distributed program.

A.1.1 Double Linked List (chain_t)

The fiddleutil library implements an abstract data type and an API to manipulate a

double linked list. This double linked list is reentrant (protected by mutexes and condi-

tion variables where needed) to allow concurrent accesses to the same list by different

threads.

This library is used internally in the Fiddle libraries that are linked to the client tools

and make use of services and data typed defined in the pthreads library. As such,

the Fiddle client tools, which must be linked to Fiddle libraries, must also link to the

pthreads library.

Data type
chain_t

Definition:

This is an opaque data type.

Description:

The type which represents the list.

Data type
chain_node_t

Definition:

This is an opaque data type.

Description:

The type for the list nodes. Keep track of the nodes inserted in the list.

Data type
chain_collect_t

Definition:

This is an opaque data type.

Description:

Applying a walker to a chain using chain_walk_collect() will return a new chain

with nodes of this type. It contains a pair of type (A,B), where A is a pointer to the

106

A. THE FIDDLE API A.1. Fiddle Utilities Library

original element in the chain, and B is a pointer to the value returned by the walker

when it was applied to A.

Data type
chain_walk_f

Definition:

typedef int (*chain_walk_f) (void *data, void *args)

Description:

The type for walker functions. Walker functions will be applied by iterators to all

or part of the elements in a chain. The argument args will be passed when calling the

iterator, to be used at walker’s will.

If walker returns a negative number the traversing stops immediately.

Data type
chain_walk_collect_f

Definition:

typedef int (*chain_walk_collect_f) (void *data, void *args)

Description:

A second type for walker functions, specific for being called from the

chain_walk_collect iterator. The argument args will be passed when calling the

iterator, to be used at walker’s will.

If walker returns a negative number the traversing stops immediately.

Data type
chain_cmp_f

Definition:

typedef int (*chain_cmp_f) (void *node, void *what, void *args)

Description:

Some functions, such as chain_find(), traverse the chain searching for an element in

node which compares successfully with what. The argument args will be passed when

calling the iterator, to be used freely by the comparing funtion.

Should return -1 if element in node is smaller (less than) what, 0 (zero) if they are

equal, and 1 otherwise.

The extra argument will be passed when calling the iterator, and may be used or

ignored by the comparing function.

Function
chain_t * chain_create (void)

Creates a new empty chain.

Returns a pointer to an opaque typed (chain_t *) chain, or NULL on failure.

Function
void chain_destroy (chain_t *chain)

Deletes the chain, assuming tat all the data in the chain nodes was already cleaned

107

A. THE FIDDLE API A.1. Fiddle Utilities Library

or is accessible from some other data structure.

Returns nothing.

Function
int chain_length (chain_t *chain)

Returns the number of nodes in chain.

Function
chain_node_t * chain_first (chain_t *chain)

Returns a pointer to the last node in chain, or NULL if the chain is empty.

Function
chain_node_t * chain_next (chain_t *chain, chain_node_t *node)

Returns a pointer to the node following node in chain, or NULL if node in the last one

on the chain.

Function
chain_node_t * chain_prev (chain_t *chain, chain_node_t *node)

Returns a pointer to the node before node in chain, or NULL if node in the first one on

the chain.

Function
chain_node_t * chain_enqueue (chain_t *chain, void *data)

Creates a new node to keep data and insert it at the tail of chain.

Returns a pointer to the created node, or NULL on failure.

Function
void * chain_dequeue (chain_t *chain)

Removes (deletes) a node from chain. The data referenced by the node remains

untouched, i.e., is not deleted.

Returns a pointer to the data in the (deleted) node, or NULL if the chain is empty.

Function
void * chain_dequeue_cond (chain_t *chain, chain_walk_f cond, void *args)

Blocks the calling thread until there is a node in chain for which the evaluation of

cond(args) returns negative, then remove this node. The data kept in the node is not

deleted.

Returns a pointer to the data in the (deleted) node, or NULL if the chain is empty.

Function
void * chain_remove (chain_t *chain)

Removes (deletes) a node from chain. The data referenced by the node remains

untouched, i.e., is not deleted.

Returns a pointer to the data in the (deleted) node, or NULL if the chain is empty.

108

A. THE FIDDLE API A.1. Fiddle Utilities Library

Function
chain_node_t * chain_prune (chain_t *chain, chain_walk_f prunner, void *args)

Remove all nodes from chain for which pruner(args) returns positive, leaving the

node untouched if pruner(args) returns 0 (zero). Stops the pruning if pruner(args)

returns negative. If the data in the node was dynamically allocated, the pruner() may

release that memory before returning.

Returns a pointer to the node where the prunning stopped, or NULL if all the chain

was traversed.

Function
chain_t * chain_merge (chain_t *chain1, chain_t *chain2)

Append chain2 to chain1.

Returns a pointer to chain1.

Function
chain_node_t * chain_find (chain_t *chain, chain_cmp_f *compare, void *args)

Find the first node in chain for which compare(args) returns 0 (zero).

Returns a pointer to the node found or NULL if none was found.

Function
chain_node_t * chain_walk (chain_t *chain, chain_walk_f *walker, void *args)

Function
chain_node_t * chain_rwalk (chain_t *chain, chain_walk_f *walker, void *args)

Traverses chain from head to tail (chain_walk()) or from tail to head (chain_rwalk()),

applying walker(args) to each node. Stops the traversing if walker(args) returns a

negative value.

Returns a pointer to the node where the traversing stopped, i.e., to the last node to

which wkaler was applied, or NULL if the all list was traversed.

Function
chain_t * chain_walk_collect (chain_t *chain, chain_walk_collect_f *walker, void

*args)

Traverses chain from head to tail applying walker(args) to each node, and collecting

the return values of walker(args) into a new chain. Stops the traversing if walker(args)

returns NULL.

Returns a pointer to the new created chain with the values returned by walker(args)

(this new will have the same length as chain). Returns NULL on failure.

Function
void * chain_collect_origin (const chain_walk_collect_f *chain)

Returns a pointer to the chain element to which a walker was applied.

109

A. THE FIDDLE API A.2. Fiddle Layer0s Services

Function
void * chain_collect_data (const chain_walk_collect_f *chain)

Returns a pointer to the result of applying a walker to the chain element returned

by chain_collect_origin().

A.1.2 Warning or Fatal Error Message Display

Function
int * msg_pid_write (const char *fmt, . . .)

Executes a ’printf()’, but write process identifier (PID) before.

Returns the same as p̌rintf().

Function
int * msg_pid_fatal (const char *fmt, . . .)

Similar to msg_pid_write, but also terminates the calling process.

Theoretically returns the same as printf(), but in practice this function will never

return (the calling process will die).

A.2 Fiddle Layer0s Services

This Section describes the basic data types which the client tools must manipulate to

access Fiddle services and to process the replies to the service requests. It also describes

the API for the services provided by Fiddle Layer0s.

These services are available in the fiddle0s library.

A.2.1 Basic Data Types

In this and the following sections, it is assumed that the reader has good knowledge

of the auxiliary data type(s) (specially the chain_t type) and associated management

functions, defined in the utils library and described in Section A.1.

In the following we will use a top-down approach, i.e., the main data type (tkout_t)

will be descried first, and then we will describe all of its components.

Data type
tkout_t

Definition:

1 typedef s t r u c t tkout_ s {

2 i n t t i d ; /∗ The TID o f t h e t a r g e t p r o c e s s ∗ /

3 code_t s t a t u s ; /∗ The s t a t u s o f t h e r e q u e s t ∗ /

4 const char ∗ s t r ; /∗ The ourp ut o f t h e Node Debugger ∗ /

5 da ta _ t ∗ rep ; /∗ The r e p l y (when s u c c e s s f u l) ∗ /

6 cha in_ t ∗oob ; /∗ The out−o f−band d a t a (when s u c c e s s f u l) ∗ /

110

A. THE FIDDLE API A.2. Fiddle Layer0s Services

7 da ta _ t ∗pos ; /∗ The c u r r e n t p o s i t i o n in t h e s o u r c e c o d e ∗ /

8 da ta _ t ∗ e r r ; /∗ The e r r o r d a t a (when u n s u c c e s s f u l) ∗ /

9 } t k o u t _ t ;

Description:

The base return type for Layer0s service functions.

Line 2) int tid

Contains the Symbolic Task ID of the target process;

Line 3) const char *output

Contains a full copy of the output message received from the node debugger;

Line 4) code_t status

Indicates the success or failure in the processing of the request according to the

following rules:

status > FIDDLE_OK — The request was not accepted due to, for ex-

ample, an invalid set of arguments. In this case, status contains the er-

ror code, and the correspondig error message can be obtained by calling

f0s_err_msg() with the status variable as argument;

status == FIDDLE_OK — The request was accepted and sent to the node

debugger. Once the node debugger sends the reply string, it will be

parsed to extract the relevant data to fill the rep, alw, pos and err fields;

Line 5) data_t *rep

If the service request was processed successfully, this field contains the data

extracted from the node debugger reply. Its detailed are explained below;

Line 6) chain_t *oob

If the service request was processed successfully, this field contains out-of-

band data extracted from the node debugger reply.

If no out-of-band data was detected in the node debugger reply, this field will

contain an empty list;

Line 7) data_t *pos

Contains the data relative to the current location in the source files, e.g., source

file name and line number;

Line 8) data_t *err

Contains the data relative to the error messages generated by the node debug-

ger.

If the service processing was successful, this field will point have the value

NULL.

111

A. THE FIDDLE API A.2. Fiddle Layer0s Services

All Layer0s service functions (except initialization and termination) return a pointer

to such a tkout_t structure, whose contents will be filled according to the success/fail-

ure of the service requested and to the output received from the node debugger.

To fill the contents of the tkout_t structure, memory is allocated dynamically as

needed by Fiddle. A service functions is provided for the user to release the memory

used by the tkout_t structure when no longer needed.

Data type
code_t

Definition:

1 typedef enum code_e {

2 /∗ ###

3 ∗ GENERIC Codes

4 ∗ ### ∗ /

5 FIDDLE_OK = 0 , /∗ S u c c e s s ∗ /

6 E_RTS_OK = FIDDLE_OK, /∗ S u c c e s s ∗ /

7

8 /∗ ###

9 ∗ ERROR Codes

10 ∗ ### ∗ /

11 /∗ E r r o r s g e n e r a t e d by t h echar 39f 0char 39run−t im e sy s t em ∗ /

12 E_RTS_SEND_RECEIVE ,

13 E_RTS_INVALID_TP_PID ,
14 E_RTS_INVALID_ND_PID,

15 E_RTS_NO_CLD_AVAILABLE ,

16 E_RTS_COMMAND_GENERATION,
17 E_RTS_INVALID_TID,

18 E_RTS_STAT_FILE ,

19 E_RTS_FILE_PERM,
20 E_RTS_STAT_TTY ,

21 E_RTS_TTY_PERM,

22 E_RTS_ONE_LINE_FUNCTION,
23 E_RTS_NO_COMMAND,

24 E_RTS_ASTR_CREATE,
25 E_RTS_INIT_REGEX ,

26 E_RTS_INVALID_LINE_NUMBER,

27 E_RTS_INVALID_ARGUMENT,
28 E_RTS_INVALID_OPTION,

29 E_RTS_MEMORY_ERROR,

30 E_RTS_INVALID_SIGNUM ,
31 E_RTS_SIGNAL,

32 E_RTS_INVALID_REQID,

33 E_RTS_CANNOT_START_DAEMON,
34 E_RTS_UNKNOWN_OUTPUT,

35

36 /∗ E r r o r s g e n e r a t e d by p a r s i n g t h e outp ut ∗ /

37 E_UNKNOWN_CMD_CODE,

112

A. THE FIDDLE API A.2. Fiddle Layer0s Services

38 E_TOP,
39 E_NOT_RUN,

40 E_NO_FRAME_SELECTED,

41 E_NO_PROCESS ,
42 E_NOT_PERMITTED,

43 E_NO_SYMBOL,

44 E_BOTTOM,
45 E_INVALID_EXPRESSION ,

46 E_NO_SYMBOLS,

47 E_NO_SYMBOL_TABLE,
48 E_NO_DEF_SOURCE_FILE,

49 E_INVALID_BPID ,
50 E_INVALID_LINE_NUMBER ,

51 E_FUNCTION_NOT_DEFINED ,

52 E_LINE_OUT_OF_RANGE,
53 E_NO_BOUNDS,

54 E_INVALID_SYMBOL ,

55 E_INVALID_DISPLAY_NUMBER ,
56 E_NO_DISPLAY_EXPRESSION,

57 E_INVALID_ARITHMETIC_OPERATION,

58 E_PARSE_ERROR,
59 E_TOO_FEW_ARGS,

60 E_NO_STACK,
61 E_NO_BREAK_OR_WATCH,

62 E_NO_LINE_NUM_INFO,

63 E_JUNK_AT_END_OF_LINE,
64 E_INVALID_THREAD_ID,

65 E_NO_THREAD_ID,

66 E_NO_THREAD_COMMAND,
67 E_SIGSEGV ,

68 E_LAST,

69

70 /∗ ###

71 ∗ REPLY Codes

72 ∗ ### ∗ /

73 R_ATTACH,

74 R_BREAK,
75 R_BREAK_NO_SOURCE,

76 R_CALL_VOID ,

77 R_CONTINUE,
78 R_DELETE ,

79 R_DETACH,

80 R_EVALUATE,
81 R_INFO_LOCALS,

82 R_FILE ,
83 R_FINISH ,

84 R_INFO_BREAK,

85 R_INFO_BREAK_WATCH_DATA,
86 R_INFO_DISPLAY,

113

A. THE FIDDLE API A.2. Fiddle Layer0s Services

87 R_INFO_LINE ,
88 R_INFO_LINE_NO_CODE ,

89 R_INFO_PROGRAM,

90 R_INFO_STACK,
91 R_INFO_THREADS,

92 R_INFO_WATCHPOINT,

93 R_KILL ,
94 R_LIST ,

95 R_NEXT,

96 R_RUN,
97 R_SENDTO,

98 R_SET_VARIABLE ,
99 R_STEP ,

100 R_SYMBOL_FILE ,

101 R_THREAD,
102 R_TIDS ,

103 R_ADD_DEBUGGER,

104 R_TTY ,
105 R_UNDISPLAY,

106 R_NEW_THREAD, /∗ For l i n e p r o c e s s i n g ∗ /

107 R_CALL, /∗ Not used ! ∗ /

108 R_EVALUATE_ONE_LINE , /∗ For i n t e r n a l use ∗ /

109 R_EVALUATE_MANY_START, /∗ For i n t e r n a l use ∗ /

110 R_EVALUATE_MANY_MIDDLE, /∗ For i n t e r n a l use ∗ /

111 R_EVALUATE_MANY_END, /∗ For i n t e r n a l use ∗ /

112 R_INFO_LOCALS_ONE_LINE, /∗ For i n t e r n a l use ∗ /

113 R_INFO_LOCALS_MANY_START, /∗ For i n t e r n a l use ∗ /

114 R_INFO_LOCALS_MANY_MIDDLE , /∗ For i n t e r n a l use ∗ /

115 R_INFO_LOCALS_MANY_END, /∗ For i n t e r n a l use ∗ /

116 R_DISPLAY_EXPRESSION, /∗ For i n t e r n a l use ∗ /

117 R_DISPLAY_ONE_LINE, /∗ For i n t e r n a l use ∗ /

118 R_DISPLAY_MANY_START, /∗ For i n t e r n a l use ∗ /

119 R_DISPLAY_MANY_MIDDLE, /∗ For i n t e r n a l use ∗ /

120 R_DISPLAY_MANY_END , /∗ For i n t e r n a l use ∗ /

121 R_CLIENTS , /∗ Used j u s t in l e v e l f2m ∗ /

122 R_REGISTER_CLIENT , /∗ Used j u s t in l e v e l f2m ∗ /

123

124 /∗ ###

125 ∗ POSITION Codes

126 ∗ ### ∗ /

127 P_POSITION ,

128

129 /∗ ###

130 ∗ OUT OF BAND Codes

131 ∗ ### ∗ /

132 O_DISPLAY,

133 O_BPHIT ,

134 O_SIGNAL,
135 O_NEW_THREAD,

114

A. THE FIDDLE API A.2. Fiddle Layer0s Services

136 O_SWITCH_TO_THREAD,
137 } code_t ;

Description:

All service requests will have a reply from Fiddle. In the status field returns a success

code (which depends from the service requested) or an error code.

This data type enumerates all the possible status values. Some entries have a com-

ment “internal”, meaning that the entry is used internally, and this value should never

be returned to the user.

Data type
data_t

Definition:

1 typedef s t r u c t data_s {

2 code_t code ; /∗ The s u c c e s s / e r r o r c o d e ∗ /

3 const char ∗ s t r ; /∗ The r e l e v a n t p a r t o f t h e outp ut ∗ /

4 cha in_ t ∗data ; /∗ The d a t a e x t r a t e d from t h e outp ut ∗ /

5 } da ta _ t ;

Description:

Contains the data extracted from the reply of a successful service request.

Line 2) code_t code

The status code;

Line 3) const char *str

The substring of the reply received from the node debugger from where the

data was extracted;

Line 4) chain_t *data

A list with the data extracted;

A.2.2 Management Services

Function
int * f0s_initialize (void)

Initializes the debugging engine.

Returns 0 zero on success, or a negative number on failure.

Function
int * f0s_terminate (void)

Shuts down the debugging engine.

Returns 0 zero on success, or a negative number on failure.

Function
tkout_t * f0s_tids (const char *options)

115

A. THE FIDDLE API A.2. Fiddle Layer0s Services

Fiddle will assign a Symbolic Task Identifier to each target process. Currently, no

options are available, so the options argument must be set to NULL or to the empty

string ("").

Returns a tkout on success, or NULL on failure.

Function
int f0s_tkout_delete (tkout_t *tk)

Releases the memory associated with the output token tk. The fields of tk which

point to other dynamically allocated memory areas will also be released.

Returns 0 zero on success, or a negative number on failure.

Function
const char f0s_err_msg (code_t *errno)

Returns a pointer to a string which described the error with code errno.

Returns a pointer to the string, or NULL on failure.

A.2.3 Process Control Services

Function
tkout_t f0s_attach (int *tp_pid)

Launches a new node debugger and attach it to the process with PID tp_pid.

The process I/O will use the same terminal it was using before the attachment.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_detach (int tid)

Detaches the debugging engine from the target process tid. The process is left to run

uncontrolled as it was before the attachment, and the node debugger is terminated.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_kill (int tid)

Kills the target process tid.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_symbol_file (int tid, const char *file)

Loads the symbols table for the target process tid from file.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_file (const char *file)

Loads the executable file into memory under control of a node debugger.

Returns a tkout on success, or NULL on failure.

116

A. THE FIDDLE API A.2. Fiddle Layer0s Services

Function
tkout_t f0s_run (int tid)

Starts the execution of a program previously loaded with f0s_file.

The target process will stop if a breakpoint is hit, a signal is received or if program

terminates.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_step (int tid)

Continues the execution of the target process tid until next instruction (at source

level) is reached. If the current instruction is a function call, the execution will step

into the called functions.

The target process will stop at the next instruction, or before if a breakpoint is hit, if

a signal is received or if the program terminates.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_next (int tid)

Continues the execution of the target process tid until next instruction (at source

level) is reached. If the current instruction is a function call, the execution will step

over the called functions.

The target process will stop at the next instruction, or before if a breakpoint is hit, if

a signal is received or if the program terminates.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_continue (int tid)

Continues the execution of the target process tid until a breakpoint is hit, a signal is

received or the program terminates.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_finish (int tid)

Continues the execution of the target process tid until the end of the current func-

tion is reached, a breakpoint is hit, a signal is received or the program terminates.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_signal (int tid, int signo)

Sends signal with code signo to the target process tid.

The information about the signal received will be available in the oob field of the

returned tkout_t.

Returns a tkout on success, or NULL on failure.

117

A. THE FIDDLE API A.2. Fiddle Layer0s Services

Function
tkout_t f0s_break (int tid, const char *file, int line, const char *function)

Sets a breakpoint in line or in function of process tid. The line and function arguments

are exclusive, so, when requesting this service, either line == -1 or function == NULL .

If file is omitted (file == NULL) the current source file is considered as the default. If

function != NULL and there is only one function with such name in the program, the

file which containing the source of the function is selected automatically.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_delete (int tid, int bpid)

Deletes breakpoint bpid in process tid.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_set_variable (int tid, const char *variable, const char *expression)

Sets variable in tid to the result of evaluating expression.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_call (int tid, const char *expression)

Evaluates expression in the current context of tid, where expression is the name of a

function with its arguments.

Returns a tkout on success, or NULL on failure.

A.2.4 Process Inspection Services

Function
tkout_t f0s_evaluate (int tid, const char *expression)

Evaluates expression in the current context of tid.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_display (int tid, const char *expression)

Evaluates expression in the current context of tid every time the process execution

stops.

The expression to be evaluated and its value will be available in the oob field of the

returned tkout_t.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_undisplay (int tid, int dispid)

Stops evaluating the expression with ID dispid every time the process tid stops.

118

A. THE FIDDLE API A.2. Fiddle Layer0s Services

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_list (int tid, const char *file, int start_line, const char *function, int nlines)

Lists nlines of tid source file, starting in line or in function. These two arguments are

exclusive, so when calling this function, either line == -1 or function == NULL . If file is

omitted (by giving file == NULL) the current source file is considered as the default. If

function != NULL and there is only one function with such name in the program, the

file which contains the source of the function is selected automatically.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_info_program (int tid)

Gets information about target process tid.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_info_stack (int tid)

Gets the current tid stack frames.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_up (int tid)

Sets the upper stack frame (closer to the main function) as the current one.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_down (int tid)

Sets the lower stack frame as the current one.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_frame (int tid, int frameno)

Sets stack frame frameno as the current one.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_info_display (int tid)

Gets information about the current display expressions in tid.

Returns a tkout on success, or NULL on failure.

A.2.5 Thread-related Services

Function
tkout_t f0s_thread (int tid, int threadid)

119

A. THE FIDDLE API A.3. Fiddle Layer0m Services

Selects thread threadid of tid as the target for the next services requested.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_info_threads (int tid)

Gets information about all the current threads in tid.

Returns a tkout on success, or NULL on failure.

A.2.6 Miscellaneous Services

Function
tkout_t f0s_tty (int tid, const char *device)

Redirects the standard I/O channels of tid to device. This redirection does not apply

if tid is already running, being valid only for the next re-execution of tid.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f0s_sendto (int tid, const char *command)

Sends a command directly to the node debugger associated with tid, and gets its

plain reply as a string (not processed) .

This command may be used to access functionalities available in the node debugger

which have no mapping in Fiddle services.

Returns a tkout on success, or NULL on failure.

A.3 Fiddle Layer0m Services

The API for the services provided by Fiddle Layer0m is identical to the API for Fiddle

Layer0s. The basic data types are still the same. All the functions have the same name

and arguments, except that the prefix f0s in the name must be replaced for f0m, e.g.,

Layer0s’s f0s_run(. . .) was renamed to f0m_run(. . .) in Layer0m. The Fiddle Layer0m API

is, therefore, listed with no further comments or explanations.

These services are available in the fiddle0m library.

A.3.1 Management Services

Function
int * f0m_initialize (void)

Function
int * f0m_terminate (void)

120

A. THE FIDDLE API A.3. Fiddle Layer0m Services

Function
tkout_t * f0m_tids (const char *options)

Function
int f0m_tkout_delete (tkout_t *tk)

Function
const char f0m_err_msg (code_t *errno)

A.3.2 Process Control Services

Function
tkout_t f0m_attach (int *tp_pid)

Function
tkout_t f0m_detach (int tid)

Function
tkout_t f0m_kill (int tid)

Function
tkout_t f0m_symbol_file (int tid, const char *file)

Function
tkout_t f0m_file (const char *file)

Function
tkout_t f0m_run (int tid)

Function
tkout_t f0m_step (int tid)

Function
tkout_t f0m_next (int tid)

Function
tkout_t f0m_continue (int tid)

Function
tkout_t f0m_finish (int tid)

Function
tkout_t f0m_signal (int tid, int signo)

121

A. THE FIDDLE API A.3. Fiddle Layer0m Services

Function
tkout_t f0m_break (int tid, const char *file, int line, const char *function)

Function
tkout_t f0m_delete (int tid, int bpid)

Function
tkout_t f0m_set_variable (int tid, const char *variable, const char *expression)

Function
tkout_t f0m_call (int tid, const char *expression)

A.3.3 Process Inspection Services

Function
tkout_t f0m_evaluate (int tid, const char *expression)

Function
tkout_t f0m_display (int tid, const char *expression)

Function
tkout_t f0m_undisplay (int tid, int dispid)

Function
tkout_t f0m_list (int tid, const char *file, int start_line, const char *function, int

nlines)

Function
tkout_t f0m_info_program (int tid)

Function
tkout_t f0m_info_stack (int tid)

Function
tkout_t f0m_up (int tid)

Function
tkout_t f0m_down (int tid)

Function
tkout_t f0m_frame (int tid, int frameno)

122

A. THE FIDDLE API A.4. Fiddle Layer1m Services

Function
tkout_t f0m_info_display (int tid)

A.3.4 Thread-related Services

Function
tkout_t f0m_thread (int tid, int threadid)

Function
tkout_t f0m_info_threads (int tid)

A.3.5 Miscellaneous Services

Function
tkout_t f0m_tty (int tid, const char *device)

Function
tkout_t f0m_sendto (int tid, const char *command)

A.4 Fiddle Layer1m Services

The API for the services provided by Fiddle Layer1m is very similar to the previous APIs

for Layer0m and Layer0s. The basic data types are the same, and the majority of the

functions have the same name and arguments, except that the prefix f0m in the name

must be replaced for f1m, e.g., Layer0s’s f0m_run(. . .) was renamed to f1m_run(. . .) in

Layer0m.

The few functions that have minor changes in the number of arguments are de-

scribed in detail. All the others are just listed with no further comments or explana-

tions.

These services are available in the fiddle1m library.

A.4.1 Management Services

Function
int * f1m_initialize (void)

Function
int * f1m_terminate (void)

123

A. THE FIDDLE API A.4. Fiddle Layer1m Services

Function
tkout_t * f1m_tids (const char *options)

Function
int f1m_tkout_delete (tkout_t *tk)

Function
const char f1m_err_msg (code_t *errno)

A.4.2 Process Control Services

Function
tkout_t f1m_attach (int *tp_pid, const char *node)

In remote machine node, launches a new node debugger and attach it to the process

with PID tp_pid.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f1m_detach (int tid)

Function
tkout_t f1m_kill (int tid)

Function
tkout_t f1m_symbol_file (int tid, const char *file)

Function
tkout_t f1m_file (const char *node, const char *file)

In remote machine node, loads the executable file into memory under control of a

node debugger.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f1m_run (int tid)

Function
tkout_t f1m_step (int tid)

Function
tkout_t f1m_next (int tid)

Function
tkout_t f1m_continue (int tid)

124

A. THE FIDDLE API A.4. Fiddle Layer1m Services

Function
tkout_t f1m_finish (int tid)

Function
tkout_t f1m_signal (int tid, int signo)

Function
tkout_t f1m_break (int tid, const char *file, int line, const char *function)

Function
tkout_t f1m_delete (int tid, int bpid)

Function
tkout_t f1m_set_variable (int tid, const char *variable, const char *expression)

Function
tkout_t f1m_call (int tid, const char *expression)

A.4.3 Process Inspection Services

Function
tkout_t f1m_evaluate (int tid, const char *expression)

Function
tkout_t f1m_display (int tid, const char *expression)

Function
tkout_t f1m_undisplay (int tid, int dispid)

Function
tkout_t f1m_list (int tid, const char *file, int start_line, const char *function, int

nlines)

Function
tkout_t f1m_info_program (int tid)

Function
tkout_t f1m_info_stack (int tid)

Function
tkout_t f1m_up (int tid)

125

A. THE FIDDLE API A.5. Fiddle Layer2m Services

Function
tkout_t f1m_down (int tid)

Function
tkout_t f1m_frame (int tid, int frameno)

Function
tkout_t f1m_info_display (int tid)

A.4.4 Thread-related Services

Function
tkout_t f1m_thread (int tid, int threadid)

Function
tkout_t f1m_info_threads (int tid)

A.4.5 Miscellaneous Services

Function
tkout_t f1m_tty (int tid, const char *device)

Function
tkout_t f1m_sendto (int tid, const char *command)

A.5 Fiddle Layer2m Services

The API for the services provided by Fiddle Layer2m is identical to the API for Fiddle

Layer1m. The basic data types are still the same. All the functions have the same name

and arguments, except that the prefix f1m in the name must be replaced for f2m, e.g.,

Layer0s’s f1m_run(. . .) was renamed to f2m_run(. . .) in Layer0m.

The Fiddle Layer2m API is, therefore, listed with no further comments or explana-

tions.

These services are available in the fiddle2m library.

A.5.1 Management Services

Function
int * f2m_initialize (void)

126

A. THE FIDDLE API A.5. Fiddle Layer2m Services

Function
int * f2m_terminate (void)

Function
tkout_t * f2m_tids (const char *options)

Function
int f2m_tkout_delete (tkout_t *tk)

Function
const char f2m_err_msg (code_t *errno)

A.5.2 Process Control Services

Function
tkout_t f2m_attach (int *tp_pid, const char *node)

In remote machine node, launches a new node debugger and attach it to the process

with PID tp_pid.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f2m_detach (int tid)

Function
tkout_t f2m_kill (int tid)

Function
tkout_t f2m_symbol_file (int tid, const char *file)

Function
tkout_t f2m_file (const char *node, const char *file)

In remote machine node, loads the executable file into memory under control of a

node debugger.

Returns a tkout on success, or NULL on failure.

Function
tkout_t f2m_run (int tid)

Function
tkout_t f2m_step (int tid)

Function
tkout_t f2m_next (int tid)

127

A. THE FIDDLE API A.5. Fiddle Layer2m Services

Function
tkout_t f2m_continue (int tid)

Function
tkout_t f2m_finish (int tid)

Function
tkout_t f2m_signal (int tid, int signo)

Function
tkout_t f2m_break (int tid, const char *file, int line, const char *function)

Function
tkout_t f2m_delete (int tid, int bpid)

Function
tkout_t f2m_set_variable (int tid, const char *variable, const char *expression)

Function
tkout_t f2m_call (int tid, const char *expression)

A.5.3 Process Inspection Services

Function
tkout_t f2m_evaluate (int tid, const char *expression)

Function
tkout_t f2m_display (int tid, const char *expression)

Function
tkout_t f2m_undisplay (int tid, int dispid)

Function
tkout_t f2m_list (int tid, const char *file, int start_line, const char *function, int

nlines)

Function
tkout_t f2m_info_program (int tid)

Function
tkout_t f2m_info_stack (int tid)

128

A. THE FIDDLE API A.5. Fiddle Layer2m Services

Function
tkout_t f2m_up (int tid)

Function
tkout_t f2m_down (int tid)

Function
tkout_t f2m_frame (int tid, int frameno)

Function
tkout_t f2m_info_display (int tid)

A.5.4 Thread-related Services

Function
tkout_t f2m_thread (int tid, int threadid)

Function
tkout_t f2m_info_threads (int tid)

A.5.5 Miscellaneous Services

Function
tkout_t f2m_tty (int tid, const char *device)

Function
tkout_t f2m_sendto (int tid, const char *command)

129

A. THE FIDDLE API

[This page was intentionally left blank]

130

Bibliography

[Abr96] J. R. Abrial. The B Book, Assigning Programs to Meaning. Cambridge Uni-

versity Press, 1996. ISBN: 0-521-49619-5.

[acm89] Proceedings of the ACM SIGPLAN/SIGOPS Workshop on Parallel and Dis-

tributed Debugging, volume 24 of ACM SIGPLAN Notices. ACM Press, Jan-

uary 1989.

[acm91] Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging,

volume 26 of ACM SIGPLAN Notices. ACM Press, 1991.

[acm93] Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging,

volume 28 of ACM SIGPLAN Notices. ACM Press, 1993.

[AG] Pallas Software AG. http://www.pallas.com/e/products/vampir/index.

htm.

[Aud98] A. Audo. Integration of the DDBG Distributed Debugger within the ED-

PEPPS Toolset. Technical report, Centre for Parallel Computing, Univer-

sity of Westminster, London, June 1998. Final Year BEng Project Technical

Report.

[Aug03] P. Augusto. Fgi – fiddle grphical interface. First degree diploma project,

Departamento de Informática da Universidade Nova de Lisboa, Lisboa,

Portugal, December 2003. (In portuguese).

[Bat88] P. Bates. Debugging heterogeneous distributed systems using event-based

models of behavior. In Proceedings of ACM Workshop on Parallel and Dis-

tributed Debugging, volume 24 of ACM SIGPLAN Notices, pages 11–22.

ACM Press, January 1988.

[Bat95] Peter C. Bates. Debugging heterogeneous distributed systems using event-

based models of behavior. ACM Transactions on Computer Systems, 13(1):1–

31, February 1995. ISSN:0734-2071.

131

BIBLIOGRAPHY

[BFR95] O. Babaoğlu, E. Fromentin, and M. Raynal. A unified framework for the

specification and run-time detection of dynamic properties in distributed

computations. Technical Report UBLCS-95-3, University of Bologna, Italy,

June 1995.

[BH] Bryan Buck and Jeffrey K. Hollingsworth. An API for runtime code patch-

ing. To appear Journal of Supercomputing Applications and High Performance

Computing.

[BM93] O. Babaoğlu and K. Marzullo. Consistent global states of distributed sys-

tems: Fundamental concepts and mechanisms. In S. J. Mullender, editor,

Distributed Systems, chapter 4, pages 55–96. Addison-Wesley, 2nd edition,

1993.

[BR94] Ö. Babaoglu and M. Raynal. Specification and verification of dynamic

properties in distributed computations. Technical Report TR UBLCS-93-

11, Laborathory for Computer Science, University of Bologna, Italy, May

1993, Revised May 1994.

[CG98] C. M. Chase and V. K. Garg. Detection of global predicates: Techniques

and their limitations. Distributed Computing, 11(4):191–201, 1998.

[Cho78] T. Chow. Testing software design modelled by finite state machines. IEEE

Transactions on Software Engineering, 4(3):178–187, 1978.

[CKW00] J. C. Cunha, P. Kacsuk, and S. Winter, editors. Parallel Program Development

for Cluster Computing: Methodology, Tools and Integrated Environment. Nova

Science Publishers, Inc., 2000.

[CL85] M. Chandy and L. Lamport. Distributed snapshots: Determining global

states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

[CLA96a] J. C. Cunha, J. Lourenço, and T. Antão. DDBG: A distributed debugger

— user’s guide. In SEPP Project, Copernicus Programme, 5th Progress Report.

University of Westminster, London, UK, September 1996.

[CLA96b] J. C. Cunha, J. Lourenço, and T. Antão. A debugging engine for a parallel

and distributed environment. In KFKI Hungarian Academy of Sciences,

editor, Proceedings of the 1st Austrian-Hungarian Workshop on Distributed and

Parallel Systems (DAPSYS’96), pages 111–118, Misckolc, Hungary, October

1996.

[CLA99] J. C. Cunha, J. Lourenço, and T. Antão. An experiment in tool integration:

the DDBG parallel and distributed debugger. Euromicro Journal of Systems

Architecture, 45(11):897–907, 1999. Elsevier Science Press.

132

BIBLIOGRAPHY

[CLD98] J. C. Cunha, J. Lourenço, and V. Duarte. Using DDBG to support testing

and high-level debugging interfaces. Computers and Artifitial Inteligence,

17(5):429–439, 1998. Slovak Academic Press.

[CLD01a] J. C. Cunha, J. Lourenço, and V. Duarte. Parallel Program Development for

Cluster Computing: Methodologies, Tools and Integrated Environments, chap-

ter Debugging of Parallel and Distributed Programs, pages 97–129. Nova

Science, 2001. ISBN: 1-56072-865-5.

[CLD01b] J. C. Cunha, J. Lourenço, and V. Duarte. Parallel Program Development for

Cluster Computing: Methodologies, Tools and Integrated Environments, chap-

ter The DDBG Distributed Debugger, pages 279–290. Nova Science, 2001.

ISBN: 1-56072-865-5.

[CLV+98] J. C. Cunha, J. Lourenço, J. Vieira, B. Moscão, and D. Pereira. A framework

to support parallel and distributed debugging. In Proceedings of the Interna-

tional Conference on High-Performance Computing and Networking (HPCN’98),

volume 1401 of Lecture Notes on Computer Science, pages 708–717, Amster-

dam, The Netherlands, April 1998. Springer-Verlag.

[Clá03] A. Cláudio. Modelo Conceptual para o Depuramento de Programas Distribuídos

por Troca de Mensagens. PhD thesis, Department of Informatics, University

of Lisbon, July 2003. DI/FCUL TR-03-22.

[CM91] R. Cooper and K. Marzullo. Consistent detection of global predicates. In

Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging,

volume 26 of ACM SIGPLAN Notices, pages 167–174. ACM Press, Decem-

ber 1991.

[Coo97] Sun Cooporation. http://java.sun.com/products/jdk/1.2/docs/guide/

jni/spec/jniTOC.doc.htm%l, May 1997.

[D+00] T. Delaitre et al. Parallel Program Development for Cluster Computing: Method-

ologies, Tools and Integrated Environments, chapter Tools of EDPEPPS, pages

357–365. Nova Science, 2000. ISBN: 1-56072-865-5.

[DDK00] D. Drótos, G. Dózsa, and P. Kacsuk. Parallel Program Development for Cluster

Computing: Methodologies, Tools and Integrated Environments, chapter GRAP-

NEL to C Translation in the GRADE Environment, pages 249–263. Nova

Science, 2000. ISBN: 1-56072-865-5.

[Dica] Hyper Dictionary. http://www.hyperdictionary.com.

[Dicb] Hyper Dictionary. http://http://info.astrian.net/jargon/.

133

BIBLIOGRAPHY

[DLC01] V. Duarte, J. Lourenço, and J. C. Cunha. Supporting on-line distributed

monitoring and debugging. Journal of Parallel and Distributed Computing

Practices, Special Issue on Monitoring Systems and Tool Interoperability, 4(4),

2001.

[Dua04] V. Duarte. Monitoring of Paralel and Distributed Programs. PhD thesis, De-

partamento de Informática, Universidade Nova de Lisboa, Portugal, 2004.

To appear.

[Duc95] M. Ducassé, editor. AADEBUG’95, 2nd International Workshop on Automated

and Algorithmic Debugging, Saint Malo, France, May 1995. IRISA-CNRS.

[Duc97] M. Ducassé, editor. AADEBUG’97, 3rd International Workshop on Automated

and Algorithmic Debugging, 1997.

[Duc01] M. Ducasse, editor. AADEBUG’00, 4th International Workshop on Automated

Debugging, January 2001.

[Etn00] Etnus Inc., Framingham, MA. TotalView User’s Guide (v4.1), June 2000.

http://www.etnus.com/.

[Fau03] Danny Faught. http://www.testingfaqs.org/t-static.html, April 2003.

[FCdK95] A. Fagot and J. Chassin-de Kergommeaux. Optimized execution replay

mechanism for rpc-based parallel programming models. Technical report,

LMC-IMAG, 1995.

[Fet88] J. Fetzer. Program verification: The very idea. Communications of the ACM,

31(9):1048–1063, September 1988.

[For94] Message Passing Interface Forum. Document for a standard message-

passing interface. Technical Report Technical Report No. CS-93-214 (re-

vised), University of Tennessee, April 1994. Available on netlib.

[Fri93] P. Fritzson, editor. AADEBUG’93, 1st International Workshop on Automated

and Algorithmic Debugging, volume 749 of Lecture Notes in Computer Science.

Springer-Verlag, May 1993.

[GBD+98] A. Geist, A. Beguelein, J. Dongarra, W. Jiang, R. Mancheck, and V. Sun-

deram. PVM Users’s Guide and Reference Manual. Engineering Physics and

Mathemathics Division. Oak Ridge Laboratory, 3.3.10. ornl/tm-12187 edi-

tion, 1998.

[GCMK96] V. Garg, C. Chase, J. R. Mitchell, and R. Kilgore. Tools and Environments

for Paralell and Distributed Systems, chapter Efficient Detection of Unstable

Global Conditions Based on Monotonic Channel Predicates, pages 195–

226. Kluwer Academic Publishers, 1996.

134

BIBLIOGRAPHY

[GD95a] P. Kacsuk G. Dozsa, T. Fadgyas. A graphical programming language for

parallel programs. Hpcti progress report 1, KFKI-MSZKI, Research Insti-

tute for Measurement and Computing Techniques, April 1995.

[GD95b] P. Kacsuk G. Dozsa, T. Fadgyas. Software specification of the GRED pro-

gram and related interfaces. Hpcti progress report 2, KFKI-MSZKI, Re-

search Institute for Measurement and Computing Techniques, October

1995.

[GDB] The GNU debugger, version 5.0. http://sources.redhat.com/gdb.

[HF97] M. Heath and J. E. Finger. Paragraph: A tool for visualizing perfor-

mance of parallel programs. The National Center for Supercomputing

Applications, University of Illinois at Urbana-Champaign, available at

http://www.ncsa.uiuc.edu/Apps/MCS/ParaGraph/manual/manual.html,

1997.

[Hoo96] R. Hood. The p2d2 project: Building a portable distributed debugger. In

Proceedings of the 2nd Symposium on Parallel and Distributed Tools (SPDT’96),

Philadelphia PA, USA, 1996. ACM.

[HPR93] M. Hurfin, N. Plouzeau, and M. Raynal. Detecting atomic sequences of

predicates in distributed computations. In Proceedings of the ACM/ONR

Workshop on Parallel and Distributed Debugging, volume 28 of ACM SIG-

PLAN Notices, pages 32–42. ACM Press, December 1993.

[Jac02] Daniel Jackson. Alloy: a lightweight object modelling notation. Software

Engineering and Methodology, 11(2):256–290, 2002.

[Jus96] G. Justo. PVMGraph: A Graphical Editor for the Design of PVM Programs.

Technical report, Centre for Parallel Computing, University of Westmin-

ster, London, February 1996. EDPEPPS EPSRC Project (GR/K40468)

D2.3.3, EDPEPPS/5.

[KCD+97] P. Kacsuk, J. C. Cunha, G. Dózsa, J. Lourenço, T. Fadgyas, and T. Antão.

A graphical development and debugging environment for parallel pro-

grams. Parallel Computing, 22(13):1747–1770, 1997. Elsevier Science Press.

[KCMV00] P. Kacsuk, J. Chassin de Kergomeaux, É. Maillet, and J.-M. Vincent. Parallel

Program Development for Cluster Computing: Methodologies, Tools and Inte-

grated Environments, chapter The Tape/PVM Monitor and the PROVE Vi-

sualization Tool, pages 291–303. Nova Science, 2000. ISBN: 1-56072-865-5.

[KDL00] P. Kacsuk, G. Dózsa, and R Lovas. Parallel Program Development for Cluster

Computing: Methodologies, Tools and Integrated Environments, chapter The

135

BIBLIOGRAPHY

GRADE Graphical Parallel Programming Environment, pages 231–247.

Nova Science, 2000. ISBN: 1-56072-865-5.

[KGV96] D. Kranzlmuller, S. Grabner, and J. Volkert. Debugging massively paral-

lel programs with ATTEMPT. In H. Liddell, A. Colbrook, B. Hertzberge,

and P. Sloot, editors, High-Performance Computing and Networking (HPCN’96

Europe), volume 1067 of Lecture Notes in Computer Science, pages 798–804.

Springer-Verlag, New York, 1996.

[KS00] J. C. Kergommeaux and B. O. Stein. Pajé: An extensible environment for

visualizing multi-threaded programs executions. In Proc. Euro-Par 2000,

volume 1900 of LNCS, pages 133–140. Springer, 2000.

[KW96] H. Krawczyk and B. Wiszniewski. Interactive testing tool for parallel pro-

grams. In I. Jelly, I. Gorton, and P. Crolll, editors, Software Engineering for

Parallel and Distributed Systems, pages 98–109, London, UK, 1996. Chapman

& Hal.

[KW99] H. Krawczyk and B. Wiszniewski. Analysis and Testing of Distributed Soft-

ware Applications. John Wiley & Sons, November 1999. ISBN 0471978027.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed sys-

tem. Communications of the ACM, 21(7):558–564, July 1978.

[LC98a] J. Lourenço and J. C. Cunha. The PDBG process-level debugger for parallel

and distributed programs. In Proceedings of the 2nd Sigmetrics Symposium on

Parallel and Distributed Tools (SPDT’98), page 154, Portland, Oregon, EUA,

August 1998. ACM Press. (Poster).

[LC98b] J. Lourenço and J. C. Cunha. Replaying distributed applications with

RPVM. In Proceedings of the 2nd Austrian-Hungarian Workshop on Distributed

and Parallel Systems (DAPSYS’98), pages 121–126, Budapest, Hungary, Oc-

tober 1998. Report Series of the Institute of Applied Computer Science and

Information Systems, University of Vienna.

[LC98c] J. Lourenço and J. C. Cunha. A thread-level distributed debugger. In Facul-

dade de Engenharia da Universidade do Porto, editor, Proceedings of the 3rd

International Conference on Vector and Parallel Processing (VecPar’98), pages

359–366, Porto, Portugal, April 1998.

[LC99] J. Lourenço and J. C. Cunha. Flexible Interface for Distributed Debugging (Li-

brary and Engine): Reference Manual. Departamento de Informática da Uni-

versidade Nova de Lisboa, Portugal, December 1999. Under development.

136

BIBLIOGRAPHY

[LC01] J. Lourenço and J. C. Cunha. Fiddle: a flexible distributed debugging ar-

chitecture. In V.N. Alexandrov, J.J. Dongarra, B.A. Juliano, R.S. Renner,

and C.J.K. Tan, editors, Proc. ICCS 2001, International Conference on Com-

putational Science, Part II, Special Session on “Tools and Environments for Par-

allel and Distributed Programming”, volume 2074 of Lecture Notes on Com-

puter Science, pages 821–830, San Francisco, CA, USA, May 2001. Springer-

Verlag. ISBN 3-540-42233-1.

[LCK+97] J. Lourenço, J. C. Cunha, H. Krawczyk, P. Kuzora, M. Neyman, and

B. Wiszniewsk. An integrated testing and debugging environment for par-

allel and distributed programs. In Proceedings of the 23rd EUROMICRO Con-

ference (EUROMICRO’97), pages 291–298, Budapeste, Hungary, September

1997. IEEE Computer Society Press.

[LCM03] J. Lourenço, J. C. Cunha, and V. Moreira. Control and debugging of dis-

tributed programs using Fiddle. In K. De Bosschere M. Ronsse, editor,

Proc. of the Fifth International Workshop on Automated Debugging (AADEBUG

2003), pages 143–158, Ghent, Belgium, September 2003. http://arxiv.

org/abs/cs/0309049.

[Lex] Lectric Law Library’s Lexicon. http://www.lectlaw.com.

[LMC87] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs

with instant replay. IEEE Trans. Comput., C-36(4):471–482, 1987.

[LWSB97] T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode. OMIS – On-line Mon-

itoring Interface Specification (Version 2.0). Technical Report TUM-I9733,

SFB-Bericht Nr. 342/22/97 A, Technische Universität München, Munich,

Germany, July 1997.

[Mai95] E. Maillet. Issues in Performance Tracing with Tape-PVM, 1995.

[Mat89] F. Mattern. Virtual time and global states of distributed systems. In M. Cos-

nard et al., editors, Proceedings of the International Workshop on Parallel and

Distributed Algorithms, pages 215–226, Amsterdam, 1989. Elsevier Science

Publishers.

[Meg00] D. Megginson. SAX 2.0: The simple API for XML. http://www.megginson.

com/SAX/index.html, May 2000.

[MHC94] B. P. Miller, J. K. Hollingsworth, and M. D. Callaghan. The Paradyn

parallel performance tools and PVM. In Jack J. Dongarra and Bernard

Tourancheau, editors, Proceedings of the Second Workshop on Environments

and Tools for Parallel Scientific Computing, pages 201–210, Townsend, PA,

137

BIBLIOGRAPHY

USA, May 1994. Society for Industrial and Applied Mathematics. ISBN:0-

89871-343-9.

[Mor02] V. Moreira. Deipa e codificação xml para o formato xdr do fiddle. Technical

report, Departamento de Informática, Universidade Nova de Lisboa, July

2002.

[Mor03] V. Moreira. Deipa e codificação xml para o formato xdr do fiddle. First de-

gree diploma project, Departamento de Informática da Universidade Nova

de Lisboa, Lisboa, Portugal, July 2003. (In portuguese).

[Mos88] Dale Mosby. PDBX: A source level debugger for parallel programs. In Pro-

ceedings of the ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed

Debugging, pages 325–327, Madison WI, May 1988. [Extended abstract].

[Net93] R. H. B. Netzer. Optimal trace and replay for debugging shared-memory

parallel programs. In Proceedings of the 3rd ACM/ONR Workshop on Paral-

lel and Distributed Debugging, volume 28 of ACM SIGPLAN Notices. ACM

Press, 1993.

[Net94] R. H. B. Netzer. Trace size vs. parallelism in trace-and-replay debugging

of shared-memory programs. LNCS, 768, 1994.

[RB03] Michiel Ronsse and Koen De Bosschere, editors. AADEBUG’03, 5th Inter-

national Workshop on Automated Debugging, September 2003.

[RBC+03] Michiel Ronsse, Koen De Bosschere, Christiaens Christiaens, Jacques Chas-

sin de Kergommeaux, and Dieter Kranzlmüller. Record/replay for nonde-

terministic program executions. Communications of the ACM, 46(9):62–67,

September 2003.

[RK98] M. A. Ronsse and D. A. Kranzlmuller. Rolt-MP: Replay of Lamport times-

tamps for message passing systems. In Proceedings of Euromicro Workshop

on Parallel and Distributed Processing, pages 87–93, 1998.

[Roy70] W. W. Royce. Managing the development of large software systems: Con-

cepts as techniques. In Proc. IEEE WESTCON, Los Angels, CA, 1970. Ch.

3.

[SNC00] D. Stringhini, P. Navaux, and J. Chassin de Kergommeaux. A selection

mechanism to group processes in a parallel debugger. In PDPTA’2000,

Monte Carlo Resort, Las Vegas, Nevada, USA, June 2000.

[SP93] Richard Stallman and Roland H. Pesch. Debugging with GDB: the GNU

source-level debugger. Free Software Foundation, 4.09 for GDB version 4.9

138

BIBLIOGRAPHY

edition, 1993. Previous edition published under title: The GDB manual.

August 1993.

[Spi95] John Michael Spivey. The Z Notation: A Reference Manual. Series in Com-

puter Science. Prentice-Hall, New York, 2nd edition, 1995.

[Str02] D. Stringhini. Depuração de Programas Paralelos: Projecto de uma Interface

Intuitiva. PhD thesis, Universide Federal do Rio Grande do Sul, Brasil,

August 2002.

[TG93] A. I. Tomlinson and V. K. Garg. Detecting relational global predicates in

distributed systems. In B. P. Miller and C. McDowell, editors, Proceedings

of the 3rd ACM/ONR Workshop on Parallel and Distributed Debugging, vol-

ume 28 of ACM SIGPLAN Notices, pages 21–31, New York, NY, USA, May

1993. ACM Press.

[W3C98] W3C. http://www.w3.org/XML/, February 1998.

[Wit88] L. Wittie. Debugging distributed C programs by real time replay. In Pro-

ceedings of the ACM Workshop on Parallel and Distributed Debugging, vol-

ume 24 of ACM SIGPLAN Notices, pages 57–67. ACM Press, January 1988.

[WK94] S. Winter and P. Kacsuk. Software engineering for parallel processing. In

Proc. of the 8th Symp. on Microcomputers and Microprocessor Applications, Bu-

dapest, Hungary, 1994.

139

BIBLIOGRAPHY

[This page was intentionally left blank]

140

