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Abstract. Software Transactional Memory is a concurrency control tech-
nique gaining increasing popularity, as it provides high-level concurrency
control constructs and eases the development of highly multi-threaded
applications. But this easiness comes at the expense of restricting the
operations that can be executed within a memory transaction, and op-
erations such as terminal and file I/O are either not allowed or incur in
serious performance penalties. Database I/O is another example of op-
erations that usually are not allowed within a memory transaction. This
paper proposes to combine memory and database transactions in a single
unified model, benefiting from the ACID properties of the database trans-
actions and from the speed of main memory data processing. The new
unified model covers, without differentiating, both memory and database
operations. Thus, the users are allowed to freely intertwine memory and
database accesses within the same transaction, knowing that the memory
and database contents will always remain consistent and that the trans-
action will atomically abort or commit the operations in both memory
and database. This approach allows to increase the granularity of the in-
memory atomic actions and hence, simplifies the reasoning about them.

1 Introduction

Software transactional memory (STM) is a promising concurrency control ap-
proach to multithreaded programming. More than a concurrency control mecha-
nism, it is a new programming model that brings the concept of transactions into
the programming languages, by way of new language constructs or as a simple
API and supporting library. Transactions are widely known as a technique that
ensure the four ACID properties [1]: Atomicity (A), Consistency (C), Isolation
(I) and Durability (D).

Memory transactions, with roots in the database transactions, must only
ensure two of the ACID properties: Atomicity and Isolation. The Consistency
and Durability properties may be dropped, as memory transactions operate in
volatile memory (RAM). Volatile memory does not have persistence properties
and does not have a fixed logical structure, like a database system, over which
one can make consistency assertions.

In the past few years, several STM frameworks have been developed. Most
of these STM frameworks take the form of software libraries providing an API



to support the transactional model to the application [2–5]. This library-based
approach allows the rapid prototyping of algorithms and their performance eval-
uation. Some other STM frameworks extend existing programming languages
with transactional constructs supported directly by the compiler [6–9]. Most of
these frameworks focus in managed languages such as Java, C#, and Haskell,
while some other target unmanaged languages like C and C++.

One drawback of using STM lies in the execution of partially- and non-
transactional operations within a transaction [10]. Pure-transactional operations
are undone automatically by the STM transactional framework when a trans-
action aborts, e.g., changing the contents of memory. Non-transactional oper-
ations simply cannot be undone, e.g., writing data to the terminal. Partially-
transactional operations are either revertible or compensable, and can be undone
at some expense, e.g., explicit memory management operations and I/O to disk
files. Some STM frameworks opt to not allow the execution of partially- and
non-transactional operations within memory transactions [7]. Some others force
the memory transactions to execute non- and partially-transactional operations
in mutual exclusion to all other transactions in the system [9, 11].

Another example of partially-transactional (revertible) operations are ac-
cesses to a transactional database from within a memory transaction. Particu-
larly interesting is the case where the application decides to commit the database
transaction within a memory transaction. If the memory transaction later needs
to abort, it would be necessary to rollback the already committed database
transaction. This problem has been briefly enunciated in the past [12], but to
our best knowledge to date no other work has addressed this matter.

This paper proposes a solution to the above problem by widening the transac-
tional model scope to cover, without differentiating, both memory and database
operations. Thus, the users are allowed to freely intertwine memory and database
accesses within the same transaction, knowing that the memory and database
contents will always be consistent and that the transaction will either abort or
commit the operations in both memory and database atomically.

The remaining of this paper is organized as follows. Section 2 defines the
unified model and its properties. Section 3 describes the implementation of the
unified model using a specific STM framework and database management sys-
tem. Section 4 evaluates the performance of our implementation of the unified
model and compares it with other alternative approaches and, finally, Sect. 5
closes with some concluding remarks.

2 The Unified Model

Working with two or more transactional models in the same application, each
with its own set of properties and guarantees, may become unbearable. This
paper proposes an unified transactional model, merging two currently popular
transactional models: memory and database transactions.

Transactions in the unified model can enclose two main classes of operations,
memory and database operations. In the first class, two types of operations are



allowed, read and write of memory locations. In the second class, all transactional
operations supported by database are allowed.

The unified model preserves the minimum common set of properties from
both of the transactional models it unifies—Atomicity and Isolation—,allowing
to define sets of operations as transactions, acting upon the memory and the
database atomically and isolated from other concurrent transactions. The unified
model also inherits the Consistency and Durability properties from the database
management system, but these properties only apply to database operations.

The atomicity and isolation properties apply to any operation valid in the
unified model. This includes both memory and database transactional opera-
tions. A transaction will not see intermediate memory nor database states of
other transactions, and all the effects caused in both memory and database will
either persist upon the transaction commit or be rolled back in case of an abort.

The database transactional model allows multiple applications to access the
database concurrently and the ACID properties always hold. The transactional
memory model, however, only applies to the memory shared between multiple
control flows, typically multiple threads within a single application. The unified
model will hold the most restrictive properties, i.e., will hold the AI properties for
a single multithreaded application. This assumption can be somewhat relaxed
when using a distributed transactional memory framework [13]. In this case
the application breaks the physical node barrier, but still has to be a single
distributed application whose multiple components are cooperating using the
distributed STM framework. In other words, the unified model assumes exclusive
access to the database, i.e., that no other application is accessing the database
at the same time.

3 Implementation

The unified model was implemented resorting to a library based STM framework,
the Consistent Transactional Layer [14] (CTL), a STM implementation for the
C programming language and derived from the TL2 [2] library. CTL extends
the TL2 framework with a large set of new features and optimizations [15].
CTL also implements a full featured handler system that allow the users to
define reverting operations. These operations are executed in key moments of
a memory transaction and allow to revert the effects of partially-transactional
operations executed within a memory transaction.

3.1 CTL Handler System

The CTL handler system [10] extends the life-cycle of memory transaction by
executing user-defined functions in specific key moments. Users can define five
types of handlers which are executed by the CTL run-time at four different key
moments of the transaction life-cycle: prepare-commit and pre-commit handlers
are executed before the transaction commits; pos-commit handlers are executed



after the transaction commits; pre-abort handlers are executed before a transac-
tion aborts; and pos-abort handlers are executed after the transaction aborts.

Both prepare-commit and pre-commit handlers are executed after validating
the memory transactions and, thus, may assume that the memory transaction
will commit. The former may still force the transaction to abort while the latter
cannot do so and must definitely assume that the transaction will commit. The
adequate combination of prepare-commit and pre-commit handlers allows to ex-
ecute a two-phase-commit protocol [16] between several transactional subsystems
in which one of them is the memory transaction. The two-phase-commit protocol
includes two main phases: the preparation phase, where all transactions must
first agree whether they will commit or abort; and the commit/abort phase,
where all the transactions must perform the decision previously agreed. If the
decision was to commit, the transaction manager will request all the transactions
to commit, otherwise it will request all the transactions to abort.

3.2 Unified Model Implementation

The unified model was implemented using two distinct transactional systems:
one for memory transactions and another for database transactions. Dealing
with two autonomous transactional systems as a single one requires that the
commit/abort phase of both transactional systems to be atomic: both must ei-
ther commit or abort. The two-phase-commit protocol (2PC) allows to commit
N transactions, from N different transactional systems, atomically. This algo-
rithm was implemented by having the STM framework playing two roles, one as
the 2PC controller, and another as a partner in the 2PC protocol together with
the database system.

The database is accessed by way of an ODBC interface for the C program-
ming language. This approach allows to use any ODBC compliant database
management system and initial experiments were made with two different ODBC
compliant databases, DB2 and PostgresSQL. This dual database tests were es-
sential to functionally validate the approach, but experiments demonstrated that
PostgresSQL outperformed DB2 to the point that it became irrelevant to run
performance tests with DB2. Thus, this paper only reports on performance tests
with PostgresSQL.

Without support for the database prepare phase, the commit of the database
transaction will be attempted as a prepare-commit handler. When the prepare-
commit handlers are executed, the memory transaction has already been vali-
dated, thus it is known that the memory transaction will not abort due to concur-
rency conflicts. As prepare-commit handlers can still abort the transaction, this
approach is safe as long as the database commit is the last prepare-handler to be
executed, and this rule can be enforced by the TM framework. If the database
commit is not successful, hence the database transaction has aborted, then the
last of the prepare-commit handlers will also fail and the memory transaction
will be rolled back. In the presence of a concurrency conflict, either in memory
or in the database, the memory transaction will abort, the pre-abort handler
will be executed and the database transaction will also be aborted.



To ease the work of registering all the necessary handlers to allow the ex-
ecution of the 2PC protocol with the transactional memory framework acting
as the controller, a new call, TxDBStart, was introduced into the CTL transac-
tional memory API to replace the call previously used to start a new memory
transaction. Figure 1 shows the definition of this new front-end.

1 void TxDBStart (Thread *Self , HDBC dbc , int roflag) {
2 TxStart (Self , roflag );
3 _ctl_register_prepare_handler (Self , do_commit , (void *)dbc);
4 _ctl_register_pre_abort_handler (Self , do_abort , (void *)dbc);
5 }

Fig. 1. TxStart front-end for using database transactions.

The first and third parameters of TxDBStart are the same as for the CTL
TxStart function. The second parameter is the database connection handler
for the ODBC interface. Thus, obtaining the ODBC connection handler to the
database and replacing all the calls to TxStart to the new TxDBStart is all that
is needed for an application to switch from the pure transactional memory model
into the new unified model.

TxDBStart starts by calling TxStart and initiating a new memory transac-
tion, then it registers the do_commit function as a prepare-commit handler and
the do_abort function as a pre-abort handler. Thus, when the memory transac-
tion terminates either by committing or aborting, the appropriate handler will
be executed and the database transaction will also terminate. The definitions of
do_commit and do_abort are similar, as both only call the ODBC SQLEndTran
function with the appropriate flag indicating whether to commit or abort.

Figure 2 shows the implementations of the do_commit function. The database
transaction is implicitly started by the ODBC upon the first operation over the
database and will end upon the commit or abort of the transaction.

1 int do_commit (Thread *Self , void *args) {
2 SQLRETURN ret;
3 ret = SQLEndTran (SQL_HANDLE_DBC , (HDBC)args , SQL_COMMIT );
4 return (SQL_SUCCEEDED(ret) != 0);
5 }

Fig. 2. do_commit function handler definition.

The database connection handler is passed to the function TxDBStart, iden-
tifying which database should be used in the current transaction. It is possible to
use different databases in different transactions, but it is not possible to use more



than one database per transaction in this implementation of the unified model.
This limitation is due to the fact that the ODBC does not support the prepare
service in the database. Transactions that are known to not access the database
can still use the original TxStart instead of the newly defined TxDBStart.

Guaranteeing that both memory and database transactions follow the 2PC
protocol and commit and abort atomically, is not sufficient to guarantee the
isolation property for the unified model. Some stronger requirements concerning
the order in which concurrent transactions are scheduled must be fulfilled.

3.3 Implementation requirements

Most transactional database systems allow to relax the isolation level, by ad-
mitting the execution of non-serializable transaction schedules [17], in order to
increase the throughput of transaction processing. To guarantee the provision
of Isolation to the unified model, both transactional models must run under the
same isolation level which must be the strongest (most restrictive) from both.
Since the common isolation level for transactional memory is full serialization,
the database transactional system used must also run in full serialization iso-
lation level. Another requirement for the correctness of the unified model is
that both transactional systems generate equal serialization schedules. Serializa-
tion schedules are created dynamically and independently by both memory and
database transactional systems, and the generated schedules are affected by the
isolation level and by the concurrency control policies.

Although the model as described in Sect. 2 is generic enough to unify memory
and database transactional models, the transactional memory framework and
the database management system must be carefully chosen and parametrized to
satisfy the two requirements described above.

3.4 Prototype Evaluation

We implemented a prototype using the PostgreSQL database management sys-
tem [18]. Although PostgresSQL supports a Serializable Isolation Level, its per-
formance is much worse than Snapshot Isolation Level (SIL). However, using this
DBMS in SIL with no other modifications would not satisfy the requirements to
support Isolation in the unified model. The problem with SIL is that the trans-
actional system does not detect conflicts between two transactions where one is
reading data from a record and the other is writing data into the same record.
Once this type of conflicts are detected, there is no need to impose stronger
restrictions on the isolation level.

One possible approach to force the detection of the read-write conflicts was
to force read operations to be treated as write operations by the DBMS [19]. A
simple way to achieve such a goal (with limitations) would be to force, for each
SELECT statement of a data item Di, to update the value of the data item to itself,
i.e., force the operation V (Di) = V (Di), followed by the desired SELECT state-
ment. This solution would transform all read operations into write operations
and would therefore impose a strong performance overhead. The PostgreSQL



database [18] implements two variants of the SELECT SQL statement to address
such problem, the statements SELECT FOR UPDATE and SELECT FOR SHARE. The
difference between the two statements is that SELECT FOR UPDATE acquires an
exclusive lock of the rows being accessed while SELECT FOR SHARE acquires a
shared lock, thus permitting other SELECT FOR SHARE statements to execute
concurrently over the same rows. If any row is locked by an exclusive or shared
lock, any write attempt to the locked row will block.

With this solution, the transaction schedules generated by the DBMS and
by the transactional memory framework were identical, thus satisfying the re-
quirements for the Isolation property to hold.

4 Evaluation of the Unified Model

The evaluation of the prototype of the unified model was twofold: functional
and performance. Functional evaluation aimed at verifying the correctness of
the system behavior, even under very stressing conditions, and its fitness to
application development. Performance evaluation aimed at comparing absolute
performance and scalability of our approach with coarse and finer grain locks.

The testing application stores and retrieves scientific articles from a database.
The articles can be indexed by author name, by keywords, or both. The article
repository has an interface with four services: insert an article, remove an article,
find an article by author, and find an article by keyword. Depending on the
version of the testing application, each service will access multiple shared data
structures in main memory (when applicable), multiple tables in the database,
or both. The benefits of this approach depend on the application being able to
store part of the relevant information in main memory, thus avoiding to access
the database for read-only operations.

The application is divided in two components: a server and a client. The
server will manage the repository, allowing concurrent calls to the repository
interface. The client is a single threaded component issuing a sequence of service
requests to the server. This application will use the unified model to maintain an
in-memory replica of the database indexation structures. As the unified model
guarantees the consistency between both data repositories, if the application
is closed all information still persists in database and when the application is
restarted all indexation information is reloaded into main memory.

4.1 Database model

The database scheme is very simple. It has three entities: articles, authors, and
keywords. An article is represented by an internal id, a title, and the file path
to the article document. An author is represented by its name (we assume that
each author name is unique). A keyword is represented by itself (and must also
be unique among the keywords). Each article must have at least one author and
one keyword, but may have more. Figure 3 illustrates the entity-relation model
of the database scheme just described.



ArticleAuthor Keyword

Fig. 3. Application database entity-relation model.

The relation between authors and articles is supported by an association
table where each row makes the link between an author and an article. The
same applies to the relation between keywords and articles.

4.2 Memory Data Structures

The indexing structures in memory are represented by a single linked list and
a hash table. The structure is simple: one hash table for indexing authors and
another for indexing keywords. Each element of the hash table is a list of article
identifiers that are associated with that author or keyword.

The single linked list was implemented using CTL to protect it from concur-
rent accesses. This list implements three operations: insert an element, remove
an element, and lookup for an element. Each of these operations uses the handler
system, described in Sec 3.1, to manage the memory allocation and deallocation
of list nodes inside memory transactions.

The hash table was also implemented using CTL to protect it from concur-
rent accesses. It also implements three operations: insert an element, remove an
element, and lookup for an element. Similar to the linked list, each hash table
operation also resorts to the handler system to manage memory allocation and
deallocation inside memory transactions.

4.3 Description of Repository Operations

Inserting an article into the repository requires several steps to be executed in
sequence. First the article is inserted into the database. If the database inser-
tion succeeds (meaning that the article was not yet in the database), then the
associations between the article and each of its authors are also inserted into the
database. References to this article are also inserted, one for each author, in the
hash table that represents the association in main memory. A similar process is
executed for the keywords. Removing an article also requires several steps. First,
the article is removed from the memory hash tables that maps authors to arti-
cles. Then, a similar operation is executed to remove that same association from
the database. A similar process is executed for the keywords. Finding an article
in the repository by author or by keyword involves only indexing the respective
hash table and, for every article in the list, retrieve the info from the database.

The operations of insert and remove from the database repository, only use
INSERT and DELETE SQL statements and do not use any SELECT statement. In
this case, where we only preform write operations in database, no read-write con-
flict will ever occur, and therefore we can use the PostgreSQL DBMS resorting
to the standard SQL SELECT statement.



4.4 Functional Evaluation

To validate the correction of the unified model algorithm, we developed an alter-
native version of the same testing application that would periodically validate
the coherence between the data present in memory against its equivalent in the
database. The assertion test was: every data that is in memory must be also in
database. An assertion failure would mean that a coherency problem was found,
either as a bug in the algorithm or in its implementation. We made several long
runs of the application. In each run, the application was periodically paused to
verify the consistency assertion, and later resumed. Although this test only pro-
vides statistical confidence on the correction of our algorithm, we must say that
in the many accumulated hours of execution, the assertion was never broken.

4.5 Performance Evaluation

The performance of the unified model was evaluated by measuring the transac-
tional throughput (completed transactions per time unit). A total of four versions
of the application have been developed: one using the unified model as described
above; another using coarse grain locks, where each repository operation was
protected with a global lock; a third using finer grain locks, where each hash ta-
ble bucket has a separate lock; and finally a version where the indexing structure
was not replicated in main memory, i.e., the lookup operation required querying
the database with SELECT statements.

Since each repository operation deals with more than one hash table, the
implementation for finer-grain locks was very complex and error prone, as any
small mistake in the management of the locks, including the order in which they
were acquired and released, would cause a deadlock.

Each of the application variants were tested in four different environments:
read dominant context and a write dominant contexts; and low and high con-
tention contexts. The tests are characterized by three type of operations: insert,
remove, and lookup. The insert and remove operations are read-write operations,
while the lookup by author or by keyword operations are read-only. Each op-
eration has a predefined probability defined as an application parameter. The
maximum number of different articles to be inserted in the repository will control
the contention level and will be also defined as an application parameter.

The tests were performed in a Sun Fire X4600 M2 x64 server, with eight
dual-core AMD Opteron Model 8220 processors @ 2.8 GHz, 1024 KBytes of
cache in each processor and a total of 32 GByte of RAM. The database man-
agement system used was PostgreSQL 8.3. Figures 4 and 5 show the results for
the different testing configurations. In these tests, each article always had two
authors and two keywords associated.

The first remark is that in read-dominant contexts (Fig. 4) the database
version performance is poor comparing to the other versions. This was an ex-
pected result because the database has to access the secondary memory for every
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Fig. 4. Article repository used in a read dominant context, with high contention (left)
and low contention (right)
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Fig. 5. Article repository used in a write dominant context, with high contention (left)
and low contention (right)

read, while the other versions only have to access the main memory which is a
few orders of magnitude faster. Another important aspect that can be identified
from the graphics is that the difference between finer grain locks and our unified
model is solely affected by the contention level. Our unified model scales as well
as finer grain locks for low level contention environments, and development of
the application version using the unified model implementation is much simpler
than the equivalent version with finer grain locks. The salability of the unified
model decreases when the contention level increases. This is more notorious when
the number of parallel threads (each running a transaction) reach the maximum
numbers of processors available. We believe this is due to the CPU time waisted
by transactions that abort by contention conflicts, while the finer grain locks
version blocks the thread when facing contention, never wasting CPU time.

For write-dominant contexts (Fig. 5), the database version scales almost as
well as the other ones. This is due to the fact that now almost all the operations
(90%) are either inserts or removes, and in both cases it is mandatory to always
access the database. Please note that the vertical scales in the read- and write-
dominant contexts are different, and that here is no performance improvement
in the database-only version for the write-dominant context. In this case, all the



remaining versions that use transactional memory are performing much worse,
as the vast majority of the operations require the execution of database updates.

5 Concluding Remarks

This work has proposed a new approach to unify the memory and database trans-
actional models as a single one. The proposed model still differentiates between
memory and database operations, but allow them to be freely intertwined. The
unified model guarantees that the Atomicity and Isolation properties hold for
both memory and database operations. Additionally, it guarantees that memory
and database contents are consistent if changed within the same transaction. Al-
though the unified model was implemented using a specific transactional memory
framework and a specific DBMS, we presented the implementation requirements
for achieving the same result with other transactional systems.

The unified model is a high level approach to concurrency management
covering both memory and database operations. It is considerably faster that
database-only solutions, and much simpler to use than those based in finer grain
lock. In the future we will extend the unified model to support transaction nest-
ing, will evaluate it with standard benchmarks such as TPC-C and TPC-W, and
compare it with hybrid in-memory/on-disk databases.
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