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Abstract—Parallel debugging is complex and difficult. Complex because
the programmer has to deal with multiple program flows and process inter-
actions, and difficult due to the very limited choice on effective and easy-to-
use debugging tools for parallel programming. Simple and necessary fea-
tures for parallel debugging are absent even from commercial debuggers,
such as a record-replay feature, that allows to re-execute multiple times a
parallel application assuring that during each re-execution the internal race
conditions are solved in the same way they were in the first time.

Some work has been done on record-replay techniques for parallel and
distributed applications, but just a few have been applied to specific systems
(such as PVM or MPI), and even less have produced working prototypes. In
this paper we describe a method designed to work with the PVM system
and how it was implemented to provide a working prototype.

I INTRODUCTION

Debugging is a crucial phase in the program development cy-
cle [4], [7], [9], [11], [12], [18], [5]. When compared to sequen-
tial debugging, the increased complexity verified in parallel and
distributed debugging demands new tools with new features to
address new problems.

Some of the (new) significant problems that must be ad-
dressed are:

1. Heterogeneity. The application processes may be dis-
persed by several machines, with different hardware and/or
operating systems. To provide the user with a unified de-
bugging tool for parallel applications, and not with a set
of individual sequential debuggers, support to handle this
multitude of different architectures in a convenient way is
required [8].

2. Flexibility. When debugging an application, the user wants
to think using the same concepts and abstraction level that
were used when coding the program. To support this, the
debugger must “understand” the used programming ab-
straction level, allowing however full access to the lower
abstraction levels too. For example, if a graphical language
was used to develop the code, then the basic debugging
activities should be done at the same graphical level, but
the user should have access and be allowed to debug the
application’s generated source code or even its assembly
code [10].

3. Integration. Multiple user interfaces (for the different ab-
straction levels) should be supported, either exclusively or
simultaneously. If support is provided for multiple (simul-
taneous) debugging interfaces over the same target applica-
tion, the debugging environment must provide support for
these interfaces to have coherent views of the target appli-
cation.

To tackle these problems we propose a structured debugging

framework. This includes a basic infrastructure for monitoring
and control of distributed applications—the DAMS system [3]—
and a set of services. These services can be grouped into:

1. Component-level services. Deal with the application
processes individually, providing services such as variable
inspection and process control.

2. Coordination-level services. Deal with the interactions be-
tween the multiple application processes. For example, the
monitoring (and logging) of the messages exchanged be-
tween the application processes is a coordination-level ser-
vice.

In this paper we will describe the design and implementation
of a coordination-level service of recording and replaying PVM

distributed applications, and its integration into a more general
debugging service.

The next section presents some related work. In Sec. III we
will describe succinctly the DAMS system and its component-
level distributed debugging service. In Sec. IV, and after some
brief considerations about replaying of parallel and distributed
programs, a replayer for PVM applications is presented and its
implementation described. In Sec. V the conclusions and some
ongoing work close the article.

II RELATED WORK

In order to allow the deterministic re-execution of parallel
programs, several proposal of trace-based replay systems have
been made [21], [1], [15], [6]. All of them based on the same
principle of recording enough information during the program
execution, so that there is a well-defined event ordering. This
event ordering is later used to drive program execution during
replay.

The intrusion due to the required program monitoring and the
potentially large volume of trace information are the most crit-
ical problems in the implementation of record-replay systems.
Concerning this later aspect, two main approaches can be iden-
tified:

1. Incremental replay systems using checkpointing tech-
niques, so that the user may restart the program form in-
termediate points. The main drawback of such technique
is the need to record a large amount of trace informa-
tion to save the program state in the intermediary check-
points [23], [2].

2. Other approaches require the user to replay the program
from the beginning, but less information need to be in-
cluded in the trace file, with the resulting smaller intrusion.
In the data-driven replay technique, all the data exchanged



between processes is recorded. The control-driven replay
technique reduces the trace volume by relying on data re-
generation during the replay phase.
The main reference for the control-driven replay technique
is the Instant Replay [14], that only require a minimal in-
formation on the event ordering, reducing drastically the
volume of the trace file(s) when comparing with the data-
driven or checkpointing techniques. A discussion of further
optimizations to this technique, so that even smaller event
logs can be obtained is reported in [20], [16]. These tech-
niques have been applied both to shared- and distributed-
memory (message passing and RPC-based) models.

Even some well known existing parallel debuggers, like
p2d2 [8] and TotalView [22], lack such a record-replay facility.

In [19] a replay mechanism for the PVM system is described
in detail. The approach used was somewhat different and can be
summarized as:

� The application will not be changed in any way;
� The PVM system will incorporate internally all the function-

alities needed to support the replay;
� Before any record or replay session, the PVM system must

be shut down and restarted again, to guarantee the re-
generation of the same task IDs in the replay session.

As only the PVM internals were changed, there are also some
considerable drawbacks for this solution:

� Very complex implementation;
� Too much dependent on the PVM source code and PVM ver-

sion;
� Requires a very specific procedure to guarantee that the

PVM tasks IDs obtained in the replay phase are identical
to the ones of the record phase;

� There is no knowledge that the prototype has been finished
and completely operational;

� Limited access due to the (no) distribution policy.
As an alternative, the method proposed in this paper has the

following characteristics:
� It does not require any modification to the PVM system;
� Compatible with new PVM versions, and easily adaptable to

other systems (e.g. MPI);
� Requires only a minimal amount of modifications to the

application source code;
� Even if linked to the application, if the record/replay fea-

tures are not enabled, there is no considerable performance
degradation or intrusion.

III A STRUCTURED FRAMEWORK FOR PARALLEL AND

DISTRIBUTED DEBUGGING

The DAMS system (see Fig. 1) implements a basic infrastruc-
ture for the development of component- and coordination-level
services, such as debugging and resource-management ser-
vices [3]. In this figure there is a PVM target application com-
posed by four processes and under control of DAMS, and two
applications—a graphical debugging interface (GUI) and a text
oriented one (TUI)—are controlling the application simultane-
ously. The figure illustrates a possible configuration where the
GUI is only accessing the component-level debugging services,
while the TUI is also accessing the replaying service.
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Fig. 1. The DAMS Layers

III.A The Basic Infrastructure

The DAMS system has a distributed software architecture
which is composed by:

1. A Library, to be linked with each process that needs to
access DAMS services. In the figure, both the GUI and TUI
have been linked with this library.

2. The System Manager, to coordinate the interactions be-
tween the multiple components of DAMS.

3. The Local Managers, one per physical node, to coordinate
the interactions with the local and target processes.

This basic architecture can then be extended with Services
(e.g. a debugging or a resource management service) that may,
in principle, coexist simultaneously. For each new service two
components must be implemented:

1. The Service Module, a centralized component that imple-
ments the service’s high-level system-independent part.

2. The Service Drivers, a distributed component (one per
physical node) that implements the service’s low-level
system-dependent part.

The Debugging and Replaying Services are built on top of
DAMS by implementing corresponding pairs of these two com-
ponents.

III.B The Component-level Debugging Service

The Component-level Debugging Service in DAMS has been
reported elsewhere [3], but is briefly described here. It includes
primitives to deal with the target application processes individ-
ually, and can be grouped into:



1. Debugging Session Control primitives, to start and termi-
nate the debugging session.

2. Process Execution Control primitives, to start, inter-
rupt, resume and terminate the execution of application
processes.

3. Process Internal State Inspection and Modification primi-
tives, to read and/or change the process internal state, such
as inspection of call stack or modification of program vari-
ables.

4. Event Processing and Management primitives, to provide
support for multiple client tools (debugging interfaces) to
have a coherent view over the target application.

III.C The Coordination-level Debugging Services

Many coordination-level (debugging) services can be devel-
oped independently, and the DAMS architecture allows their in-
cremental integration into the prototype. The PVM Replayer
described below, is an example of such a (debugging) service.

IV REPLAYING PVM PROGRAMS

Even when, for a given input, the output of a distributed ap-
plication is deterministic, it doesn’t mean that the interactions
between the multiple application components were the same. In
fact, and due to race conditions that are resolved in different
ways, these interactions can be different for each run in most of
the applications. If a non-expected behavior is observed during
one of these (uncontrolled) runs, there is the need to debug the
application.

When debugging the distributed application in the most con-
ventional way, it can be very difficult for the user to force (se-
lect) the right sequence of process interactions that lead to the
bug previously observed during the initial free run.

To achieve this buggy application state, one of the following
approaches can be used:

1. Manual control. This is the typically available approach,
where the user has to determine the right sequence of
process interactions and then, using a debugger, control
the behavior of each process in order to reach the desired
(buggy) application state.

2. Pseudo-automatic control. The user has to determine the
right sequence of process interactions and writes a spec-
ification file with this set of intermediate states. A tool
reads this specification file and executes the application un-
der its control, forcing each of the intermediate states to be
reached, eventually reaching the desired state. Then, con-
trol is passed to the user, to initiate the interactive debug-
ging phase.

3. Automatic control. An automated tool determines a valid
sequence of intermediate states that lead the application to
the desired state, and then the technique described in (2) is
applied. This specification file can be generated by a mul-
titude of tools, such as static or dynamic testing tools [13],
[17], or by a monitor that traces all the processes interac-
tions during the application (as presented in this paper).

The re-execution of a parallel or distributed application re-
quires a two-phase process:

� Phase 1: Recording
In this phase, information is collected on each node, in or-

der to generate a trace file containing the information nec-
essary to define a partial order between all the interaction
events (e.g. message interchanges) occurred during the ap-
plication execution. In [14] is shown that it is enough to
collect information about the non-deterministic message
receive operations to be able to replay later all the com-
munication events in the same (partial) order.

� Phase 2: Replaying
During replay, the execution of the target application will
be driven by the contents of the trace file, and the same or-
dering of relevant events is imposed by the replaying sys-
tem.

IV.A “RPVM”: a PVM Replayer

In the case of PVM, it is enough to trace the behavior of the
functions presented below:

� “pvm_recv()” — that receives a message;
� “pvm_nrecv()” — that receives a message if one is

available;
� “pvm_trecv()” — that receives a message within a

specified timeout;
� “pvm_precv()” — that receives a uniform message (a

set of identical elements) directly into a user specified
buffer;

� “pvm_spawn()” — that launches new PVM tasks.
To trace these PVM primitives, we have designed the RPVM

system that is composed by:
1. The “rpvm3.h” header file, that redefines the PVM prim-

itives presented above, to have their behavior recorded in
the trace file.

2. The “lib??rpvm3.a” library file, that includes the im-
plementation of the redefined PVM primitives, and should
be linked to each of the application processes (the “??” in
the library name will be instantiated below).

IV.A.1 How to prepare an application to use RPVM?

In RPVM it is assumed that the application to trace has a main
process that will spawn all the other application processes. If
this is not the case, and the application is composed by two or
more possibly distinct processes (P�� P�� � � � � Pn) started inde-
pendently, than another process P�, whose only function is to
spawn those process must be developed and should be used to
start the application.

To use RPVM, there is the need to apply some minimal changes
to the application:

1. Replace
#include <pvm3.h>

with
#include <rpvm3.h>

in all the application source files;
2. Add the library

lib??rpvm3.a
immediately before the standard PVM library

libpvm3.a
to all the application programs;

Recompile the application and it will be ready to use RPVM.
However, the same interface and functionality will be available
for two different implementations of RPVM:



� The RPVM as a stand alone system
This version is the only one fully operational at the moment
and is available by using the library file

libsarpvm3.a
in item 2 above.

� The RPVM as a DAMS service
This version is currently under development, but imple-
ments RPVM as a service on top of the DAMS system, and
is available by using the library file

libdmrpvm3.a
in item 2 above.

IV.A.2 How to run an application using RPVM?

An application linked to the RPVM system can be ran in three
modes:

1. Record mode. If the application is launched with the com-
mand line argument(s)

-wlog <log_file_name>
the relevant PVM primitives (these primitives were listed
above, in the beginning of Sec. IV.A) will be traced and
their behavior logged in the specified trace file;

2. Replay mode. If the application is launched with the com-
mand line argument(s)

-rlog <log_file_name>
the behavior of the relevant PVM primitives will be driven
by the contents of the specified trace file;

3. Normal mode. If none of the above RPVM specific com-
mand line arguments are given, the application will run as
a conventional PVM application, without tracing or control
from the RPVM system. In this case, the overhead of having
the application linked with the RPVM library is minimal and
can be ignored, as the access to the right set of functions for
each running mode only requires an extra single access to
a table in memory.

In both cases (1) and (2) above, the “-wlog...” and
“-rlog...” options must be the first ones in the command
line, immediately after the program name and before any other
command line arguments the program may expect. These op-
tions will be automatically removed from the command line, so
the programmer should assume they are never present. Cur-
rently it is assumed that the trace files reside in the “/tmp”
directory, but this will be changed in a near future by using a
configuration file for RPVM.

IV.A.3 How does RPVM work?

The file that replaces the standard PVM include file contains
wrappers to all the relevant PVM functions (listed in Sec. IV.A)
and to the C “main()” function. It changes the user code to
invoke alternative implementations in the “lib??rpvm.a” li-
brary that behave as described below:

� main()
Detect the running mode (Normal, Recording or Replay-
ing) and determine which function should be called for
each of the wrapped functions. If the application in be-
ing executed in Normal mode, the original PVM function
will be called and the replacement functions described be-
low will be ignored, otherwise they will be called and will
behave according to the execution mode.

� pvm_?recv()
If in Record mode, call the original PVM function and then
record the arguments and the results of the call, including
its exit status: success or failure (the “?” in the function
name stands for all the variants of the PVM receive func-
tion).
In Fig. 2 is shown the contents of the source code file of
process P�, what’s really executed and what’s logged in
the trace file, given a race condition in the reception of the
messages sent by processes P� and P�.
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Fig. 2. Recording the application behavior

When in Replay mode (see Fig. 3) look at the status of the
logged operation. If it failed when logging, return imme-
diately with the same status simulating a call failure (like
the first call to receive a message in Fig. 3), otherwise call
the adequate PVM function with the arguments adapted ac-
cording to the analysis of the log file (note that the second
non-blocking receive has been changed to a blocking re-
ceive and the “ANY (-1)” flags were changed to the right
process and tag identifiers) and compare the obtained re-
sults with the logged ones.

m1

m2

P1 P2 P3
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pvm_recv(P1,m1)

Fig. 3. Replaying the application behavior

� pvm_spawn()
The behavior is similar to the described above for the



“pvm_?recv()” functions, except that a new trace file
is created/opened for each new process spawned.
If in Record mode, a new trace file is created for each
spawned process, with the corresponding PVM task ID as
the log file name. The main difficulty in handling the dy-
namic spawning of processes in PVM is the fact that the
generation of task identifiers changes from one execution
to another in a system dependent way.
If in Replay mode, an heuristic is used to map the new
task IDs of the spawned processes to the ones used when
recording the session. For easy of experimentation, a sim-
ple heuristic has been used in the first prototype:

If the mapping between old and new task IDs of the
sender process is already known, the correct task ID
will be used. Otherwise just wait for a message from
any task with the same message tag as the one received
when recording.

It is known that in some cases this heuristic doesn’t work
adequately, but this situation will be detected and the exe-
cution replay aborted. When this situation arises, the ap-
plication cannot be reexecuted with the used heuristic and
there is the need to change the RPVM configuration file to
use a different heuristic/method.
A new method, using symbolic process identifiers, that al-
ways assures the right mapping between the recorded and
the current process identifiers is currently under develop-
ment:

– If in Record mode, the behavior is the same as above, ex-
cept that less information needs to be logged, namely
only the PVM task IDs should be saved. The sender task
ID is saved on message reception and the child task IDs
are saved on process spawning.

– At the end of the execution in Record mode there is
enough information to build the dynamic process tree,
that must used to reproduce the execution during the re-
playing phase. Based on this information, unique sym-
bolic process identifiers are generated for each process
and are made globally accessible to the processes when
in Replay mode. On each process spawn the correspond-
ing entry in the dynamic process tree is updated with the
actual PVM task ID. If this ID is not yet available on a
message receive, the receive operation suspends until the
corresponding process is created.

When compared to the method described in Sec. IV.A.3,
this method has the advantage of providing a complete
mapping between symbolic and real process identifiers,
however it requires the access to a global database that must
be dynamically updated.

V CONCLUSIONS AND ONGOING WORK

As a continuation of our research on parallel and distributed
systems, this paper has described the design and implementa-
tion of a Replay service for PVM distributed applications, and re-
ported on its application on parallel debugging. We have shown
how this simple but effective replay mechanism can be sup-
ported as a stand alone tool on top of PVM, without requiring
modifications to the PVM system source code.

Ongoing work includes the full implementation of the sym-

bolic process identifiers mechanism and its performance evalu-
ation, and the experimentation with alternative designs for the
replay mechanism using the DAMS software architecture.
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tion in distributed systems. In Lecture Notes in Computer Science, volume
1277. Springer, 1997.

[8] Robert Hood. The p2d2 project: Building a portable distributed debugger.
In Proceedings of the �

nd Symposium on Parallel and Distributed Tools
(SPDT’96), Philadelphia PA, USA, 1996. ACM.

[9] Kacsuk. Macrostep-by-macrostep debugging of message passing parallel
programs. In IASTED PDCN’98, Las Vegas, USA, 1998.

[10] P. Kacsuk, J. C. Cunha, G. Dózsa, J. Lourenço, T. Fadgyas, and T. Antão.
A graphical development and debugging environment for parallel pro-
grams. Parallel Computing, 22(1997):1747–1770, 1997.
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