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Abstract
This chapter surveys the main issues involved in correctness debugging of parallel and dis-

tributed programs. Distributed debugging is an instance of the more general problem of observation
of a distributed computation. This chapter briefly summarizes the theoretical foundations of the dis-
tributed debugging activity. Then a survey is presented of the main methodologies used for parallel
and distributed debugging, including state and event based debugging, deterministic re-execution,
systematic state exploration, and correctness predicate evaluation. Such approaches are complemen-
tary to one another, and the chapter discusses how they can be supported using distinct techniques
for observation and control.

5.1 Introduction
The correctness debugging activity is first discussed within the general context of software develop-
ment, and then the main characteristics of debugging of sequential programs are outlined. Finally,
this section discusses the main dimensions involved in the debugging of parallel and distributed
programs. Throughout this chapter, the term distributed debugging (DD) is used to refer to the
debugging of parallel and distributed programs.

5.1.1 The debugging activity
Given an application, one typically reasons in relation to some specification of its intended behavior.
Ideally, such specification would be expressed by a formal notation to ensure or assess the correct-
ness of any implementation of the application in terms of a programming model. One would like
to describe the application using a formal specification that would automatically generate correct
(and efficient) program code. In such a case, bugs could only appear at the level of the application
specification, in relation to its intended behavior (specification bugs). Given the general lack of au-
tomated code generation tools for high level formal specification languages, a programmer becomes
responsible for the mapping from the formal specification to the program code. Even if the clarity
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and expressiveness of each programming model can greatly contribute to ease the mentioned map-
ping, such an activity gives the opportunity to introduce another kind of bugs, at the level of program
design and implementation (programming bugs). These ideas are shown in Figure 5.1 below.
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Figure 5.1: Specification and programming bugs

In common practice, however there is typically no complete application formal specification
available so the correctness of the program can only be assessed in relation to the intended applica-
tion behavior, which only exists in the mind of the developer (to be optimistic. . . ). This makes the
debugging activity extremely complex, as specification and programming bugs appear at the same
level, embedded into the program code.

Below the program level one would also have to consider the mapping to the operating sys-
tem and machine code levels as potentially contributing to the appearance of other kind of bugs.
However, in general, such bugs are beyond the reach of the application developer and programmer.

Due to the above difficulties, debugging becomes a fundamental activity even if it is not a desired
one.

In the past fifty years, there was a huge amount of work concerning the debugging of sequential
applications. Several significant debugging techniques were developed, addressing both specifi-
cation and programming bugs, depending on the abstractions and paradigms of the programming
languages (e.g., imperative or declarative) [16]. A sequential application is executed by a sequential
system so a state-based approach is adequate to analyze its behavior. Interactive debuggers allow
the user to inspect the succession of states followed by a sequential computation. Due to the de-
terministic behavior of a sequential system, it is easy to re-execute the program under a given set
of input conditions in order to examine its behavior in detail. Even if the programming language
exhibits some form of internal nondeterminism in its computation strategy, e.g., like Prolog, it is
possible to apply the cyclic state-based debugging technique in order to repeatedly examine the
deterministic execution path followed by the sequential Prolog executor. Sequential debugging is
also made simpler because one has only to think about one thread of control at each point during a
debugging session. The large number of states that may be generated for a sequential computation
is easily handled by placing breakpoints at desired conditions or regions of code and having the
debugger stopping the execution. Such an external control by a debugger has no logical effect upon
the sequential computation behavior.

The increased complexity of developing parallel and distributed applications makes it more dif-
ficult to use the above approach for debugging.

5.1.2 Distributed debugging
In this chapter, a distributed program (DP) consists of a collection of sequential processes which
cooperate by using some distributed-memory communication model. The term distributed is em-
phasized because such distributed processes cannot rely on physically shared memory or global
clock abstractions for synchronization purposes. Parallel applications are naturally included in this
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concept, when distributed-memory systems are considered, such as the ones based on cluster com-
puting platforms. A distributed program is based upon the semantics of the specific programming
language that is used to express the concurrency, distribution and parallelism, and communication
between processes. A distributed program is executed in the context of a distributed system (DS). A
distributed system provides the computational mechanisms to support the execution of a distributed
program, in terms of a virtual architecture defined by the operating system and the hardware plat-
form.

Given a distributed program, one would like to be able to specify its correctness properties
in term of predicates on the expected program behavior and then having a distributed debugger
automatically comparing them to the observed program behavior (see Figure 5.2).
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Figure 5.2: Expected and observed behaviors

Specification of desired properties would be possible, as well as detection of undesired or erro-
neous situations corresponding to programming bugs. This would require the distributed debugger
to support three distinct aspects:

• A language to specify the correctness predicates.

• Algorithms to evaluate those predicates.

• Observation and control mechanisms to allow the user to observe the computation states cor-
responding to the detected erroneous situations.

Such an ideal picture is difficult to achieve in an asynchronous distributed system with no global
clock, no global shared memory, and no bounds on message transmission times. The following
dimensions make distributed debugging much more difficult than sequential debugging [36]:

1. The large number of parallel and distributed entities, with dynamic interactions in a distributed
program.

2. The intrinsic non-deterministic behavior of a distributed program.

3. The difficulties of constructing accurate, up-to-date, and consistent observations of the global
states of an asynchronous distributed system.

4. The intrusion effect due to the observation and control mechanisms.

The first dimension (distributed dynamic interacting entities) must consider a large number of
computation states, and unforeseen dynamic interactions whose influence on the global program
behavior is difficult to understand. To address this dimension, the distributed debugger must be
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able to observe computations both at a global level, to understand the interactions, and at the level
of the individual processes. This has implications concerning the debugging functionalities and its
software architecture.

The second dimension (nondeterminism) makes the actual execution behavior dependent on ac-
tual process speeds (due to distinct processor speeds and to distinct operating system scheduling
effects) and unpredictable communication delays. On one hand, this characteristic is related to the
expected benefit of speeding up the computations through parallel processing. On the other hand,
it may originate erroneous situations, when two concurrent actions involving distinct distributed
processes are in conflict and may occur in distinct orderings depending on the above timing ef-
fects. Examples of such race conditions occur for shared-memory communication models, and for
message-passing models [35]. This dimension requires the distributed debugger to provide facilities
to detect those situations, and in general to evaluate program correctness properties, in a way that
must be valid for all possible execution orderings. It also requires techniques to allow reproducible
coherent observation of such error situations, without precluding user interaction.

The third dimension (observation of global states) must be considered because the evaluation of
erroneous situations depends on accurate observations. These can only be approximately achieved,
in a distributed system, by remote observation, based on message passing, so they face the diffi-
culty of absence of a global system state. The distributed debugger must provide strategies for the
observation of consistent computation states.

The fourth dimension (probe- or intrusion-effect) recognizes the unavoidable fact that any ob-
servation affects the system under study, so the distributed debugger must rely on techniques that
ensure the lowest possible intrusion, and still allow user interaction, even knowing that this is a
highly intrusive activity.

In order to understand how the above dimensions are addressed by a distributed debugging sys-
tem, some formal concepts are necessary from the distributed systems theory.

The concept of a distributed computation (DC) represents all possible behaviors which result
from executing a distributed program in a distributed system (see Figure 5.3).
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Figure 5.3: Distributed computations

In order to understand and ensure the correctness of a distributed program, one must observe
and control the distributed computations which are generated when running the program. So, the
debugging activity becomes an instance of the more general problem of observation and control of
distributed computations because the above mentioned correctness predicates must be evaluated in
meaningful computation states.

This chapter has two main goals. One is to explain the reasons why it is so difficult to develop
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such an ideal distributed debugging framework addressing all the above dimensions. The other goal
is to discuss the main methods and techniques that are actually being used by existing distributed
debuggers, and their expected evolution.

5.1.3 Organization of the chapter
In the remaining of this chapter we discuss solutions to face the above difficulties in the context
of the distributed debugging activity. The concept of distributed computation is presented in Sec-
tion 5.2 and the observation problem is discussed in Section 5.3. The detection of global predicates
is discussed in Section 5.4. Then, an overview of the main distributed debugging methodologies and
techniques is presented respectively in Section 5.5 and Section 5.6. Finally, the main issues involved
in the implementation of distributed debuggers are summarized in Section 5.7 and some conclusions
are drawn in Section 5.8.

Significant references may be found in [1–3, 5, 43, 47].

5.2 Distributed Computations
The results of this section may apply to general distributed programming models based on processes
and/or threads, and using communication models based on message-passing or shared-memory, with
forms of synchronous and asynchronous interactions.

A distributed program is usually based on an abstract model of concurrency and communication.
Its operational semantics can be defined in terms of events that correspond to process control and
communication actions. Such high level entities (e.g., processes) and events are mapped into low
level primitive events that are recognized and generated by the underlying distributed system. So, in
this perspective a distributed system is defined as a collection of processes that communicate using
a basic message-passing model with the classical send and receive primitives. A distributed system
has the characteristics of an asynchronous system, so that one cannot reason in terms of an accurate
global physical time reference in order to follow the chain of computation states that may lead to the
cause of a bug in the distributed program.

Due to the arbitrary process speeds and message transmission delays that occur in a distributed
system, distinct execution paths can be generated when repeatedly running a distributed program
with a given set of input conditions, possibly leading to different results. Such nondeterminism
makes it very difficult to evaluate correctness properties that should hold for all possible executions
of a distributed program, and not only for a single observed execution.

The concept of distributed computation describes all possible execution runs of a program by
a distributed system. See [5] for a detailed presentation of the fundamental issues concerning dis-
tributed computations and the observation of global states. It is defined in terms of two concepts.
One is the concept of local history (LH) of each sequential process that is involved in the execution
of a distributed program. The other concept is the cause-and-effect relationship due to local process
ordering and to the event dependences originated by process interactions [29].

A process Pi is defined as a sequence of events, also called its local history LHi. There are two
types of events. Internal events represent local state transitions made by Pi alone, not involving
any other processes in the distributed system. Interaction events represent process communications
corresponding to message send and receive actions. The totally ordered events in Pi’s local history
represent the evolution of the values of all the Pi’s variables and of the interactions involving Pi in a
distributed program execution.

LHi = ei(0),ei(1), . . . ,ei( f )
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In this sequence, ei(0) is the initialization event of Pi. It defines the process initial state, denoted
by LSi(0). In general, the kth event in the process history, denoted by ei(k), produces the local state
LSi(k), as the state immediately right after ei(k) occurrence. One can assume ei( f ) is the termination
event of Pi, and LSi( f ) is Pi’s final state. Discussion of perpetual processes is beyond the scope of
this chapter, but similar conclusions may be drawn.

A prefix of LHi, for example up to and including the kth event, is denoted by LHi(k) and it
represents the partial history of Pi, up to a certain point in Pi’s computation.

A global history (GH) is the set defined by the union of all local histories:

GH = LH1 ∪LH2 ∪ . . .∪LHN

A fixed number (N) of processes is usually assumed without loss of generality. Among all
the event orderings represented by a global history, only some of them can possibly occur that
are compatible with the causal precedence relationship (→) as defined by Lamport [29]. One has
relation e → e′ iff e causally precedes e′. One has relation e ‖ e′ iff neither e → e′ nor e′ → e.
Although such relationship is only a potential causality dependence, it is generally used as the basis
of distributed debugging to track causes of the errors.

A distributed computation is a partially ordered set (poset) defined by (GH,→). Intuitively, this
reflects all physically feasible event combinations that must be obeyed by all possible executions
of a distributed program in a distributed system. A distributed computation may be represented
by a process-time diagram where the event causality chains replace the classical notion of instant
physical time in a centralized system with a global clock (see Figure 5.4).
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Figure 5.4: Process-time diagram

The observation problem in distributed debugging requires one to think about the global states
of a distributed computation. A global state (GS) is a n-tuple of LS:

GS = (LS1,LS2, . . .,LSN)

where LSi (i ∈ {1, . . . ,N}) is the local state of Pi corresponding to some prefix of Pi’s local history.
The initial global state (denoted by GS(0)) of a distributed computation is defined by the initial local
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states of all processes i.e., LSi(0) : ∀i∈ {1, . . . ,N}. The final global state of a distributed computation
(denoted by GS( f )) is defined by the final local states of all processes i.e., LSi( f ) : ∀i ∈ {1, . . . ,N}.
The difficulty with the “intermediate” global states is that all combinations of local state tuples
cannot occur in real executions of a distributed program . . .

In relation to a process-time diagram, like the one shown in Figure 5.4, the concept of a cut
(C) is defined as a subset of the global history. It represents a partial global history of a distributed
computation because it is made of prefixes of all processes’ local histories. The frontier (FC) of
a cut C is the n-tuple of the last events in each prefix of LHi for all i ∈ {1, . . . ,N}. The frontier
FC seems to represent a view of the global progress of a distributed computation up to a certain
point in the execution in terms of the last occurred events (see Figure 5.4). There is a well-defined
unique global state corresponding to each frontier FC, that gives the last occurred local states for
each process.

However, only consistent cuts (CC) are significant for the purpose of distributed debugging. A
consistent cut CC is “left closed” under the → relationship, i.e.,

∀e,e′ ∈ GH : e ∈CC∧ e′ → e ⇒ e′ ∈CC

Intuitively, a consistent cut incorporates all the past of its own events. A cut that would include
some event e and not all events causally preceding e, cannot correspond to a possible view of a
distributed program execution.

A consistent global state (CGS) is the global state defined by the frontier FC of a consistent
cut. A consistent global state represents a global state that can possibly occur during a distributed
program execution because it represents a view of the global state that respects the causal precedence
among events. In Figure 5.4 the global state corresponding to FC2 is a consistent state, unlinke the
state corresponding to FC1.

The consistent cut and consistent global state concepts can be used as a basis to define obser-
vation models for distributed debugging purposes. An intuitive notion of the current state of a
distributed computation can be visually caught by considering the events (and states) to the “left” of
the frontier of a consistent cut, as equivalent to a past history, and the events to the “right”, as the
ones in the future. This suggests one could consider an incremental progression of the distributed
computation, followed by the user under the control of a distributed debugger where “successive”
consistent global states would be examined for evaluation of correctness predicates. Indeed this is
an important research direction in distributed debugging, but it has several inherent difficulties that
will be discussed in the following.

In order to understand the behavior of a distributed program one has to consider all intermediate
consistent global states that can possibly occur starting by the initial state GS(0) until the final state
GS( f ). For each execution of a distributed program, a distinct set of consistent global states may be
followed so each execution generates a distinct sequences of states, due to the nondeterminism of a
distributed system. However, to ensure correctness, one needs to reason in terms of all such possible
sequences of consistent global states.

The concept of consistent run (CR) represents a possible observation of a distributed computa-
tion where all the events appear in a total ordering that extends (i.e,. is compatible to) the partial
ordering defined by Lamport’s causal precedence relation. A consistent run can be obtained from
the process-time diagram by building a sequence of events that respects the causality chains and
additionally imposes an arbitrary ordering among the concurrent events. A consistent run defines a
sequence of consistent global states such that

CR = GS1,GS2, . . .,GSk,GSk+1, . . .,GSm
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where GS1 = GS(0), GSm = GS( f ), and GSk+1 only differs from GSk in one local state in one of
the processes. Intuitively, a consistent run defines a sequence of consistent global state where each
new global state in the sequence is obtained by making a “single step” in a single process. One says
GSk leads-to GSk+1 in a consistent run CR if they are immediate neighbors in that consistent run. A
GS is reachable from a GS′ in a consistent run iff GS′ )→ GS in that CR, where )→ is the transitive
closure of the leads-to relation.

Although the consistent run concept artificially restricts the distributed computation to make
progress one event at a time, its arbitrary event ordering represents the nondeterminism of a dis-
tributed program execution. In order to generate all possible sequences of consistent global states
in a distributed computation, one has to consider the set of all possible consistent runs. The set of
all consistent global states, ordered by the leads-to relation defines the lattice L of global states that
characterizes all possible execution paths in a given distributed computation. GS(0) and GS( f ) are
respectively the infimum and supremum elements of L , and the set of all consistent runs is the set of
all paths from GS(0) to GS( f ).

constraints
causal precedence

subset

causal precedence
constraints

last events
in cut

causal precedence
constraints

total order
arbitrarylocal precedence

constraints

sequence

internal events
interaction events

union

Local histories
(LH)

Frontier of a
consistent cut

Consistent cut

Cut
(partial history)

Distributed
computation

Run
(any global
observation)

(valid
Consistent run

observation)

Events /
/ States

Process
(P1)

Process
(P2)

Process
(Pn)

Global history
(GH)

Figure 5.5: A summary of distributed computation concepts

In summary, the operational semantics of a distributed program can be described in terms of the
distributed computations that are generated when the program is run by a distributed system (see
Figure 5.5 for a summary and [5] for a deeper presentation). The distributed computation describes
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all possible sequences of consistent global states that can occur, starting with the initial GS(0) and
leading to the final GS( f ) state. Such set of possible sequences is only constrained by the local
process event ordering and by the Lamport causal precedence relation.

An exhaustive traversal of such paths would be necessary to verify or detect correctness prop-
erties of a distributed program. This approach is in general infeasible due to the large combinatory
of consistent global states that would have to be examined. Moreover, the problem of constructing
individual consistent global states poses itself additional difficulties.

5.3 Observation of Global States
The intuitive notion of global state of a distributed computation consists of a collection of local states
that could be viewed by some ideal external observer. Note that the notion of global states, as pre-
sented above, implicitly includes the state of interprocess communication channels. In a distributed
system, the only possible way for an external observer to build such a view is through message
exchange with each remote individual process. There are several aspects related to the observation
problem:

• The global state can be obsolete at the time the global view is actually constructed by the
external observer. This occurs in case the observation is performed online, during actual dis-
tributed program execution. This aspect is particularly relevant in distributed reactive appli-
cations [5, 9]. In distributed debugging using online observation of a distributed computation,
if the goal is to track a particular global state in order to detect bugs, mechanisms will be
required to halt the execution in all processes and restore the n-tuples of local states that one
wants to examine in detail. Techniques to tackle this problem will be reviewed in a section
ahead. If the observation is performed off-line, in a postmortem analysis of the distributed
computation global histories, this problem does not arise.

• The observed global state is a cut of the distributed computation. In the online observation
approach, the constructed global state corresponds to a cut of the distributed computation, so
it only allows one to reason about what happened so far. In the off-line observation mode,
both the past and the future are known and may be accessed by the observer.

• The observed global state must be a consistent cut of the distributed computation. Observa-
tion of inconsistent cuts may occur due to the unpredictable message delivery orderings in
a distributed system. An inconsistent sequence of events may be built by the observer that
does not preserve the causal precedence relationship. Approaches to build consistent cuts are
discussed in this section.

• Multiple independent observers may build distinct views of the same distributed computa-
tion. Even if consistent cuts are ensured, several independent observers may build distinct
consistent cuts. The presentation of uniform views of a distributed computation to multiple
concurrent and independent observers requires an adequate coordination between them, and
has been discussed in the scope of distributed system research [5]. This is an issue that has
not been considered in most of existing distributed debugging tools. However, its relevance is
increasing with the emergence of integrated development environments where several concur-
rent tools act as observers (and sometimes controllers) of an ongoing distributed computation.
Tool coordination is briefly mentioned in Section 5.7 and illustrated in several chapters in Part
II of this book.
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The practical methods for observation of distributed computation depend on the distributed de-
bugging approach:

Off-line In this approach, it is possible to analyze global histories of a distributed computation
that were generated by a previous distributed program execution or by a simulation of the
distributed program model. These methods always deal with complete histories.

Online In this approach, it is necessary to develop algorithms to construct a global state or a consis-
tent run of a distributed computation during an actual distributed program execution. These
methods deal with partial histories.
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Figure 5.6: Two observation approaches: (a) Global snapshot (b) Active notification

The main approaches to construct online observations of a distributed computation rely on an
external observer or monitor process (called M hereafter). In distributed debugging, they can be
used to build snapshots of global states of the distributed computation in order to evaluate correctness
properties at those points in a computation. They can also be used to build observations of consistent
runs that could have been followed during execution of a distributed program. In all observation
strategies it is necessary to consider the problem of the probe effect. Here an assumption is made
that the probe effect has a negligible effect in the sense that the message exchanges between M and
each process Pi, do not affect the event ordering of the distributed computation when compared to a
unmonitored computation. A detailed discussion of the probe effect is presented in Chapter 6.

All existing approaches for online observation make specific assumptions on the message deliv-
ery rules that should be enforced by the distributed system, ranging from FIFO ordering between
pairs of processes to causal delivery of messages. Such assumptions are important so that the exter-
nal observer may be able to construct consistent global states. A discussion of such delivery rules,
e.g., based on vector timestamps, is beyond the scope of this chapter. Here one should note the
relevance of vector timestamps to support event relationships that exactly capture the causality. The
reader may find complete surveys in [13, 34, 46].

The first strategy tries to build a global snapshot [7] that corresponds to a consistent global state
of the distributed computation (see Figure 5.6 (a)). The observer M is responsible for polling all
the processes and these must reply by sending their corresponding local states. The observer then
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constructs a consistent global state, so that the method ensures there is a path in L that contains the
constructed consistent global state. Successive polling requests by M can be used to try to build
an image of the evolution of the consistent global states followed by the distributed computation.
Unfortunately, this method may miss important consistent global states, and it exhibits either too
much overhead due to the polling or a great delay in the observation.

The second strategy allows M to build an entire observation or consistent run of the distributed
computation (see Figure 5.6 (b)). Each distributed program process is responsible for notifying M
when each relevant1 event occurs. M collects all information from all the processes and ensures
it builds a consistent run. Such a consistent run corresponds to one of the possible paths that the
distributed computation could actually have followed.

Each observation method has its limitations and uses as discussed in the following.

5.4 Detection of Global Predicates
A general method underlies the work by several authors [9, 19, 25, 51] to support the distributed
debugging activity, according to the three following steps: specification of global correctness con-
ditions, their (off-line or online) evaluation, and corresponding reaction of the distributed debugger,
depending on the result of the evaluation [4]. A complete approach should allow:

1. Specification of behavior. There are several approaches to specify global predicates in terms
of local and global states.

2. Detection of global predicates. There are several proposals for off-line and online global
predicate detectors for distinct kinds of global predicates [6, 17].

3. Reaction of the distributed debugger. The distributed debugger must perform the (off-line or
online) reconstruction of the consistent global state that satisfies the detected global predicate.

These issues underly the theoretical framework to implement several distributed debugging tech-
niques for observation and control (see Section 5.6).

5.4.1 Global Predicate Specification
This step starts by the identification of desired or undesired distributed program properties corre-
sponding to the program correctness criteria.

These properties are then expressed as global predicates (GP) which are boolean expressions
involving conditions on the local variables of multiple processes or on the states of communication
channels. Multiple authors have proposed distinct specification languages for global predicates in
terms of global states or events, as well as in terms of sequences of states or patterns of events [6, 17].

The main issues in the design of such specification languages are:

(i) Expressiveness of the language, to be adequate to specify the desired conditions corre-
sponding to correctness or erroneous situations.

(ii) Computational complexity, to be amenable to an efficient implementation. A highly ex-
pressive notation is of reduced practical interest if it implies a NP-complete evaluation.

1The specification of “relevant events” depends on the kind of state changes one wants to observe.
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(iii) An adequate compromise between the abstraction level of the distributed program model
and the observation level of the distributed debugger. This means allowing an easy mapping between
the correctness conditions, the distributed program concepts (and the program code itself), and the
actually observed entities by the distributed debugger, e.g., the low level events or global states.

The main obstacle to the full adoption of this predicate based approach in distributed debugging
has been the complexity of the evaluation of the global conditions in a distributed system.

5.4.2 Evaluation of global predicates
This step is responsible for the detection of global predicates using off-line or online approaches.
The problem of evaluating general forms of global predicates has been studied and found NP-
hard [8], so several authors have focused on the evaluation of restricted forms of global predicates,
such as conjunctive [18, 24] and disjunctive global predicates. Although restricted, such global
predicates are still useful in distributed debugging. An important distinction is established among
so-called stable and unstable properties of a distributed program. Once a stable property becomes
true in a specific global state GS, it remains true in all the following ones that can be reached from
GS. Deadlock and termination are examples of stable properties. On the other hand, an unsta-
ble property may dynamically change its truth value during the distributed execution. Both types
of properties are important for analyzing the correctness of a distributed program. Unstable prop-
erties reflect many situations resulting from the dynamic behavior of a distributed program, e.g.,
distributed mutual exclusion.

The evaluation of stable and unstable properties poses different requirements. The former prop-
erties can be caught by online observations based upon the global snapshot approach, provided the
polling requests are repeated until a consistent global state is found where the required stable prop-
erty holds. Unfortunately, the detection of unstable properties is more difficult. It cannot be ensured
by online observations based on the global snapshot approach, as the constructed global state may
miss the point of the distributed computation where that property temporarily holds, due to the un-
certainties arising in a distributed system. Concerning the online construction of consistent runs,
based on the active notification approach (see Figure 5.6), even if the property holds for a certain
consistent global state in that constructed run, this does not gives information about how the property
behaves in other possible consistent runs.

Extended forms of global properties have been proposed by several authors that try to express
the distributed program behavior in terms of the entire distributed computation, instead of a single
consistent global state. These have the forms:

De f initely(GP): for all consistent runs of a distributed computation, there exists a consistent global
state that satisfies GP.

Possibly(GP): there is a consistent run of a distributed computation such that it contains a consistent
global state satisfying GP.

The second form is particularly useful for distributed debugging, for a property expressing an
undesirable or erroneous condition, it would be sufficient to find a consistent global state where the
corresponding GP holds. This may also require the search along the lattice of consistent global states
but only until such a consistent global state is found.

For a correctness property expressing a condition that must hold in all possible executions of a
distributed program, the corresponding GP must be true in all the paths in the lattice of consistent
global states defined by a distributed computation.
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Several authors have exploited approaches for building and traversal the entire lattice of consis-
tent global states [9], which are adequate for evaluation of both stable and unstable predicates, of
the possibly and definitely kinds. Other authors have tried to exploit specific and simplified forms
of GP, e.g., conjunctive or disjunctive, in order to avoid an exhaustive search of L . A summary of
these approaches can be found in [17].

A distinct approach, albeit with the same objectives of evaluating correctness properties, con-
cerns specific forms of race conditions and their detection. Such mechanisms are usually embedded
as implicit functionalities of a distributed debugger [23, 41].

5.4.3 Reaction on detection of a global predicate

Depending on the user interpretation of the logical condition that was evaluated, a particular reaction
may be necessary. For example, if the detected global predicate corresponds to a bug situation, a
distributed debugger should be able to execute the following actions:

(i) Stop the distributed program execution.

(ii) Restore the local states of all processes in a meaningful consistent global state that satisfies
the detected global predicate.

(iii) Allow the user to examine individual local states of that consistent global state as well as
of its past.

The first action is obviously only required when the predicate detection is made online. Its imple-
mentation is open to multiple interpretations because of the asynchronous evolution of independent
computation processes. The above actions are simpler for a post-mortem approach that accesses the
complete computation histories. Such approach may even allow the user to traverse the execution
paths into the past and the future of the reconstructed global state. In Section 5.6 a review of existing
implementation techniques is presented.

5.5 Debugging Methodologies

In this section three main criteria are used to classify distributed debugging methodologies: (i) What
steps of distributed debugging activities are supported in the development cycle? (ii) At what time
in the application development cycle do such distributed debugging activities take place? (iii) What
is the observation model used?

5.5.1 The steps in the cycle of distributed debugging activities

Distributed debugging methodologies can be classified according to the level of support they provide
to the user concerning the activities of global predicate specification and detection, and the search
for the causes of the distributed program bugs (see Figure 5.7).

In the following, these approaches are successively discussed, starting from the simpler ap-
proaches to the more complex ones. These approaches are complementary to one another, in the
sense that each approach tries to overcome a limitation of the previous approach in the sequence.
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Figure 5.7: Distributed debugging methodologies

Interactive debugging of remote sequential processes

This is based on an extension of conventional sequential debugging commands to allow individual
online observation and control of the execution of remote sequential processes. This is a limited
approach that only allows to examine local histories of individual processes of a distributed pro-
gram. As each local history describes only the evolution of each process in terms of its internal and
interaction events, it is the programmer’s task to build the global picture of the corresponding dis-
tributed computation. However, as such basic remote debugging mechanisms are required to enable
more sophisticated approaches, they are supported by almost all existing commercial or academic
distributed debuggers. The main distinction between existing distributed debuggers of this kind is
related to the functionalities and design of their architectures.

In particular, this approach does not handle the nondeterminism behavior that is exhibited by a
distributed program on a distributed system.

Trace, replay and debugging

In order to address the non-reproducibility issue, this approach is based on collecting a trace of the
relevant events generated by a distributed computation, during a first run of the distributed program.
The trace describes a computation path (a consistent run) that can be analyzed at a post-mortem
stage. If erroneous situations are found, the distributed program can be re-executed under the con-
trol of a supervisory mechanism. This mechanism uses the traced sequence of events to force the
distributed computation to follow the same path as the one executed by the previous run. This al-
lows the user to examine the behavior of that path within a cyclic interactive debugging session, in
a reproducible way. In such a session, the user may use the observation and control functionalities
provided by the previous approach. The trace and replay technique has been the focus of intensive
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research in the past decade, mostly concerning the reduction of the probe effect and of the volume
of the traced information (see Section 5.6). However, not all commercial debuggers include such a
facility. This approach is also used in monitoring systems, as discussed in Chapter 6.

From the view point of distributed debugging, there is a limitation in this approach if it gives no
support to analyze other distributed computation paths besides the traced one. If the first run which
is used to collect the trace is a “free” run i.e., under the control of no supervisory mechanism, the
resulting trace describes only a randomly occurring path from the large set of possible paths. This
gives no guarantee that such is an (the) interesting path to consider for analysis. Indeed, it is highly
unlikely this will be the case.

Integrated testing, active control and debugging

This approach tries to overcome the above mentioned limitation of a simple passive trace and replay
approach. Multiple authors have proposed approaches for the active control of distributed program
execution for distributed debugging purposes. They all share a similar goal, namely to provide
a facility to enforce the execution of specific runs of a distributed computation in order to ease
the location of erroneous situations. They differ in the way they generate and specify the desired
consistent run that a controlled execution should follow. In the following, one of these approaches
is briefly described for illustrative purposes.

The approach considers two separate phases in the distributed debugging activity. It is based on
the integration of a static analysis and testing phase (hereafter called the T phase) and a dynamic
analysis and debugging stage (called the D phase). The goal of the T phase is to assist the user in
the generation of interesting consistent runs that may exhibit violations of correctness properties.
In general it is not feasible (or even possible) to provide a completely automated T phase. An
interactive testing tool is useful to cooperate with the user to specify and refine the conditions and
regions of distributed program code that should be considered for analysis. The T phase is then used
to generate a sequence of commands that will be used to drive a distributed program run, in order to
exercise the paths defined by the above testing scenarios. Such a distributed program run can then
be the subject of a trace and replay approach, and integrated in a cyclic debugging session.

The main advantage of this methodology is that it allows the user to interactively “walk” through
the T and D phases, until one is convinced about the satisfaction of the correctness properties that
are being investigated. Another advantage of this approach is that it combines the benefits of static
and dynamic analysis in order to help the user to understand distributed program behavior.

The main problem with this approach is that it basicly relies upon the user conviction that all
relevant scenarios were specified and generated, tested and analyzed, so that one gets confidence
on distributed program correctness. There is no full guarantee that no important situations went
unnoticed (this is a classical characteristic of testing approaches: How do you specify a complete
test suite? See Chapter 9).

Automated detection of global predicates, active control and debugging

This approach is an attempt to help the user increasing the confidence on the results of the previous
approach, by allowing the specification of the correctness criteria in terms of global predicates.
Such global predicates are then automatically evaluated by detection algorithms, working off-line or
online. A summary of the main goals of this approach was given in a previous section.

As the efficient evaluation of global predicates is limited to restricted classes of predicates, this
approach may be seen as complementary to the testing and debugging approach. Their integration
seems a promising research direction to improve distributed debugging.
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5.5.2 The times of the distributed debugging activities
Distributed debugging approaches can also be classified according to the phases of the development
cycle (see Figure 5.8).
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Figure 5.8: Program analysis and debugging at distinct phases of development

Off-line distributed debugging based on static analysis

This approach uses the program code as a basis and it does not require an actual program execution.
It relies on formal models of program behavior that can be used to check certain kinds of properties,
usually expressed as temporal logic formulas. However, model checking techniques can only be
used to analyze certain properties and do not give information on dynamic properties that depend
on actual runtime program behavior, e.g., termination. Also, they usually incur great computational
costs in their search for all allowable state transitions in the modeled computation space.

Still, static analysis of the program code is one approach that can be of great importance for
distributed debugging, when adequately combined with complementary approaches.

Online distributed debugging based on dynamic analysis

Due to the mentioned limitation of static analysis, one needs to use online approaches that help
evaluating the actual program behavior on-the-fly. Such approaches rely upon online observation
techniques so they must deal with the difficulties of accurate construction of consistent global states.
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Once a specific program behavior pattern was detected, these approaches also require adequate
control mechanisms to help the user inspecting the individual computation states of interest. This
approach must deal with the probe effect, in order to ensure that the observed computation path
exhibits the same logical behavior as the original computation would, when running under no obser-
vation mechanisms . . . (see Section 5.6 and Chapter 6).

Dynamic and static analysis approaches can be combined in order to provide the distributed
debugging with functionalities as the ones illustrated by the mentioned integrated testing, active
control and debugging approach.

Off-line distributed debugging based on post-mortem analysis

Post-mortem analysis approaches provide an effective way to analyze program behavior because
they rely upon previously collected traces of the processes’ local histories. On one hand, it becomes
easier to construct a consistent global state, out of these local histories, by regenerating the causal
precedence chains. This reduces the runtime overhead incurred by online approaches. It also en-
ables facilities for analysis of complete computation histories, with the help of a diversity of event
analysis and visualization tools. On the other hand, post-mortem techniques can be integrated with
online techniques, in order to exploit tracing, replay and debugging methods, to address the non-
reproducibility issue. Incremental methods consisting of online and postmortem stages also allow to
handle the potentially large volume of traced information. A first run is used to collect only the min-
imum amount of information to ensure reproducible re-execution, and further post-mortem analysis
can determine the need to collect further information on successive runs (see also Chapter 6, on the
use of this approach for performance debugging purposes).

The summary of how such approaches are complementary to one another is illustrated in Fig-
ure 5.8.

Off-line: verify certain properties using static analysis and help identifying relevant scenarios for
testing.

Online: check dynamic properties on-the-fly, and observe testing scenarios, under activelly con-
trolled execution.

Post-mortem: analyze traces of complete global histories, perform more complex event processing
(e.g., high level event abstractions) and visualization. Use the results of such analysis to
determine further runs and dynamic analysis.

5.5.3 The observation models
Finally, distributed debugging approaches can be classified according to the observation model of
distributed computations (see Figure 5.9).

State-based views in distributed debugging

This approach aims to provide the equivalent functionalities to state-based sequential debugging but
must address consistency issues. It considers state exploration at two distinct levels.

The “component level” considers processes and threads as individual computation units, whose
sequential state transitions must be examined.

The “distributed program level” considers component interactions at a global level. Typically, in
a distributed-memory model, global process interactions are of the message-passing or RPC types.
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Figure 5.9: Debugging approaches according to the observation model

In a computational model including distributed processes and multi-threading within each process,
shared-memory interactions are also considered among the threads in each process.

Formally, a state based view interprets process communication as a way of having one process
affecting the state of the other. For example, some authors interpret a message receive operation as
equivalent to an assignment of the value of a variable of the sender process (the send buffer, indeed)
to a variable in the receiver buffer. This allows to directly express dependencies and correctness
conditions in terms of state variables.

State-based approaches for distributed debugging try to explicitly handle the observation prob-
lem by describing distributed program evolution in terms of global states. While this view is nec-
essary as an important way of identifying errors, it makes it difficult to relate logical correctness
conditions, distributed program code locations, and actually observed computation states.

An explicit event based approach seems more adequate, both to describe the dynamic distributed
program evolution, and to provide a transparent interpretation of correctness properties.

However, the state based view has also an important role in distributed debugging to allow to
examine local states and global states.

Event-based views in distributed debugging

Event-based approaches for distributed debugging are important for a number of reasons.
Events are the natural concepts to track causality relationships as they underly the theoretical

concepts proposed by Lamport’s precedence relations. They are also at the root of a large diversity
of work, both on the theory of distributed computations, and on the support of causality mechanisms
like the vector timestamps.

Event-based models enable distinct levels of interpretation of a distributed computation, at dis-
tinct levels of abstraction. They ease the mapping from the high level abstractions of a distributed
programming model into the low level abstractions of a distributed system. So, it becomes pos-
sible to use an event-based model to specify the desired program behavior, in terms of user-level
abstractions, and check if it matches the observed program behavior. Concerning practical interac-
tive distributed debugging tools, event abstractions allow to provide a high-level view to the user, in
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terms of the application level model, e.g., graphical notation or a high level semantics.
Events are the adequate concepts to handle the reproducibility issue through deterministic replay

techniques as discussed in a section ahead.
Events allow to bridge the gap from theoretical concepts to the practical tools that support the

distributed debugging activity. Namely, event-based models ease the combination of trace-based
monitoring, distributed debugging, and visualization techniques.

In summary, event-based models provide the adequate concepts to capture the semantics of dis-
tributed programs, and they ease the development of practical distributed debugging tools:

• They relate to the theory: causal precedence and “poset” of a distributed computation.

• They specify behavior at distinct abstraction levels.

• They enable reproducibility using traces.

• They allow runtime detection of relevant conditions, related to breakpoints.

• They relate to analysis and visualization tools so they bridge the gap from theory to practice.

• They allow unification with monitoring tracing approaches.

5.5.4 Integrating event and state based distributed debugging
An event-based model can be used to specify program behavior and to detect the occurrence of a
particular program behavior. This will then require the examination of the corresponding global
computation states. So it becomes natural to associate event with state based distributed debugging
techniques. Inspection of local histories of individual process can be based on a state-based debug-
ging technique, as provided by typical sequential debuggers. Global state views should be triggered
by the detection of significant events, so that state examination may enlight the reasons for the errors.

The main difficulty of this integration is due to the need of (re-)constructing a consistent global
state of a distributed computation, whenever some particular event is detected. Only then will the
user be able to inspect meaningful individual process histories, using a state-based debugging tech-
nique. This problem is discussed in the following section.

5.6 Debugging Techniques
The main techniques supporting distributed debugging can be classified according to the main goal:
observation or control of the distributed computations. In the following sections, the main charac-
teristics of existing techniques are surveyed.

5.6.1 Observation
Here, a wide interpretation of the observation concept is assumed. It encompasses the low level
observation of actual running computations, up to the consistent observation of global computation
states, and including the logical observation of distributed program behavior that is the realm of
high level visualization tools. In distributed debugging, all those observation dimensions must be
considered so that logical program properties can be studied.

The general goals of observation techniques are:

(i) To collect the required information [33] (see Chapter 6).
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(ii) To evaluate (re-)construct consistent global states in order to evaluate correctness condi-
tions.

(iii) To interpret, analyze, visualize and animate distributed program behavior, at multiple
levels of abstraction (see Chapters 2 and 8).
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Figure 5.10: Information for distributed debugging

In general a distributed debugger should provide information of distinct types, as illustrated in
Figure 5.10. The component and global program level views were already explained. The Fig-
ure 5.10 puts the focus of the distributed debugging activity on the observation of significant infor-
mation in order to understand the causal dependencies that explain program behavior.

This information can be examined at several phases during program development. Minimal
information on process interactions and program control flow is usually obtained using a trace-based
approach while the remaining information on the global computation states and individual process
states is usually obtained dynamically, on user demand, using an interactive debugging cycle. This
is not the case when debugging distributed real-time applications where interactive debugging is
not used due to the real-time constraints. Real-time distributed debugging is not discussed here
(see [10, 53]).

Due to its practical importance, trace based techniques are briefly discussed in the following,
from the perspective of distributed debugging.

Using tracing techniques for correctness distributed debugging

Event based techniques rely on monitoring to collect the relevant information and generate the traces
describing the distributed computation histories (see Chapter 6).

Tracing provides the following main functionalities for distributed debugging (see Figure 5.11):

(i) To enable deterministic re-execution [30, 54].

(ii) To gather sufficient information to allow further event analysis by other tools, aiming at
the interpretation, visualization, and animation of distributed program behavior, at adequate levels
of abstraction.
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A critical aspect is how to determine the required information that should be traced.
Concerning deterministic re-execution, a conservative approach (called the event log approach)

saves the contents of all the process state information, including values of variables and contents of
exchanged messages. It also includes information related to the possible sources of internal non-
determinism in a process, such as consulting real clock values, communication with external I/O
devices, and internal nondeterministic choices. This allows deterministic re-execution in the more
general case and it has the advantage of allowing to repeat single (or groups of) processes in isola-
tion, i.e., just by providing the traced input information from their external environment. However,
such an approach often generates a large volume of traced information. The main risks of such
approach are the increased requirements in memory and disk space, and the increased perturbation
due to the monitoring activity.

So, in applications where each individual process exhibits a deterministic behavior, it is sufficient
to register the ordering of the relevant distributed computation events, namely the interaction events,
instead of all their associated state information. This is called the Instant Replay approach [30] that
is a landmark in the distributed debugging area. In its simplest form, this requires all processes to
be re-run, during a replay session, but allows one to examine further detailed state information on
each process and event of the observed distributed computation path, using interactive debugging
commands.

For long running applications, a checkpointing technique may be needed to allow the replay to
start from intermediate points in the computation, instead of from the beginning. Such a facility
requires a mechanism to perform consistent global checkpoints (corresponding to consistent global
states).

Concerning the use of tracing for high level observation and analysis of program behavior, it
seems one would need to collect much more information in order to enable the post-processing
tasks related to program behavior analysis and visualization. However, if there is an adequate event
modeling abstraction, the user may be able to specify the desired level of abstraction that is required
at each point during application development. This allows to filter, cluster or ignore certain kinds
of events or/and processes, thus contributing to reduce the trace volume. If further analysis reveals
the need for further details, it is possible to (deterministically) re-run the distributed program with
the trace facility enabled to gather such additional information. This incremental tracing facility has
been used in a diversity of distributed debuggers [38]. A good compromise between the event log-
ging and the instant replay approaches can be reached by following incremental tracing techniques,
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driven by user demands, during an interactive debugging cycle based on deterministic replay.
For off-line or post-mortem processing tools, clearly all needed information had to be collected,

in a single run or in a series of incrementally traced runs. For online processing, e.g., visualization,
such tools may actually consume the generated events during execution, so there is less need to save
large event traces.

Even for the instant replay technique, one cannot avoid the probe effect so there is the risk of a
logical distinction between the instrumented and non instrumented program behaviors. For software
monitoring approaches, some authors propose to keep the instrumentation probes integrated into the
application all the time, so that there is no such distinction. This is only feasible if the corresponding
intrusion is minimal and compatible to the required application performance (see Chapter 6).

In the past decade there was intense research concerning the reduction of the tracing time and
memory space overheads [12, 39, 40, 45]. An example of an optimization is to avoid tracing unnec-
essary event orderings corresponding to program regions that are known to be deterministic.

State exploration in distributed debugging

One of the main requirements of a distributed debugger is a facility to allow the exploration of
computation states of a distributed program (Figure 5.12).
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Figure 5.12: State exploration in distributed debugging

In classical sequential debugging an instant observation technique has been used since the early
days of the Von Neumann machine: the memory dump. In a sequential debugging context, the main
criticism results from the low level abstraction and the amount of information that is provided by
this technique. This kind of technique is, however, also the basis of state-based sequential debug-
ging, although the information is shown at a higher level and is structured according to the program
entities of interest at each point (e.g., stack frames, etc.). In a distributed debugging context, the cor-
responding technique of making such kind of complete global snapshots of the ongoing distributed
computation is not easy to achieve as previously discussed. One can also argue that the technique is
of limited use in distributed debugging, due to the existence of too many states.

A single-stepping facility, as found in sequential debugging, is not much useful in distributed
debugging, although it is conceptually possible to achieve, in terms of a succession of consistent
cuts (see Section 5.2), corresponding to a consistent run. The problem is that there is a large space
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of alternative consistent runs that would have to be searched, step-by-step, using this method. Even
if such an approach is used in association with high level abstractions, that try to focus on interaction
events, the approach is still generally infeasible for realistic programs, except for a few toy programs.

Off-line visualization tools, based on an interpretation of traces, can contribute to identify in-
teresting patterns of program behavior. Interactive, user-driven visualization tools allow the user to
select the abstraction levels and the areas of the program that should be considered.

Condition based state exploration is a technique that allows the user to specify logical conditions
such that, once satisfied in a certain state, force the program execution to be suspended in that
state. The goal is to allow the user to perform state exploration selectively, as a strategy to avoid
an exhaustive, albeit systematic, search of the computation states. This is clearly an important
approach that recognizes the impossibility of completely automating the distributed debugging task,
so it opens a way for the user to direct the state search.

In sequential debugging those conditions usually involve the program variables, status, or in-
struction locations. Such breakpoints or watchpoints have a simple and well defined semantics in a
sequential program but allow several possible interpretations in distributed programs. Furthermore
breakpoints and interactive debugging techniques are highly intrusive and affect program behav-
ior in an unpredictable way. So, the combination of breakpoints with deterministic replay-based
techniques becomes of the utmost importance in distributed debugging.

The global conditions can be expressed in several forms. They can be expressed in terms of
variables, code locations or local states of the individual processes of the distributed program. A
local predicate is one which refers to a single process, so it corresponds to a local breakpoint that may
be easily detected by the distributed debugger. A global predicate is a boolean expression involving
conditions that are local to multiple processes. Common forms are conjunctions and disjunctions
of local predicates, respectively called conjunctive and disjunctive global predicates. Other kinds of
global conditions express temporal relations between abstract events, aiming at easing the task of
relating the occurrence of errors to the logical abstractions in individual processes.

Most existing distributed debuggers only allow the specification of local breakpoints. This is due
to the difficulty of evaluating general forms of global predicates, as previously discussed. Indeed,
efficient detection algorithms exist only for very restricted forms of global predicates.

However, even for simple local breakpoints, one has to decide what to do when a local condition
is detected during execution in a specific process. For an online approach, the question is how to
stop the distributed program at a consistent global state that is meaningful for the examination of the
detected condition. Typically, one finds two main approaches [21, 37]:

(i) To send stopping messages to all other processes.

(ii) Just wait until all other processes “naturally” block, waiting for input or for synchroniza-
tion with the initial process.

In both cases there is a delay in the detection of the stop condition in other processes. As this will
be an unpredictable delay, such approaches should only be used when there is a guarantee that the
other processes cannot possibly affect the investigation of the detected conditions. This obviously
depends on the types of conditions. For local predicates, the above approaches seem reasonable.

For global breakpoints, their associated conditions are global predicates, so in general there is a
detection algorithm that forces the involved processes to stop while the remaining processes continue
running as above. For example, consider a distributed computation consisting of 4 processes P1, P2,
P3, and P4, and a global breakpoint involving variables in P1 and P2, but not in P3 and P4. Processes
P1 and P2 are forced to stop on the global breakpoint, but P3 and P4 continue. In general, P3 and
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P4 may affect the global system state, e.g., by sending and receiving messages, in a way that may
change the conditions that explain a bug situation.

Reconstruction of a meaningful global state may require the aid of rollback and checkpointing
techniques. It may become a difficult problem if a non-replay based approach is followed.

In a replay based approach, breakpoints are only set during replay. In order to handle such
situations, replay-based distributed debuggers have been proposed [32] that are able to reconstruct a
consistent global state such that each process is at its last local state where it could cause the involved
processes (P1 and P2, in the example) making the global predicate true. The reconstruction of this
global state relies upon the trace to identify the desired halting local states. In some proposals a new
annotated trace is generated so that one may replay the distributed program to the last consistent
global state defined by such directives.

Besides reconstructing the “last” consistent global state for a given global breakpoint, one now
needs to be able to inspect the local states of individual processes. This can be achieved by inte-
grating an event-based distributed debugger that allows global breakpoints and halting in consistent
global states, with individual state-based sequential debuggers that may be applied to each applica-
tion process in isolation.

5.6.2 Control
Control of distributed computation is necessary for distributed debugging purposes in order to
achieve the following objectives (Figure 5.13):

(i) Handle nondeterminism.

(ii) Enforce specific distributed computation paths.

(iii) Enforce specific global predicates.
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Figure 5.13: Controlled execution

Due to the nondeterminism of distributed programs, multi-execution testing cannot be achieved
by simply trying to repeat “free” uncontrolled program runs. This requires a deterministic re-
execution. This technique is based on a form of passive control because the re-execution just blindly
mimics the behavior of a previous run.

118



Additionally, more active forms of control are required (called controlled execution or active
control [50]) because specific alternative distributed computation paths need to be pursued in order
to examine the dynamic program behavior. A supervisory process controls event ordering, for re-
execution, e.g., by exercising distinct message delivery orderings, or alternative process schedules,
in order to investigate the consequences of nondeterministic execution.

Desired event orderings may be specified as event expressions or as command scripts that are in-
terpreted by the distributed debugger. The goal is to generate and test all/some possible permutations
of events. Such forms of active control allow a distributed debugging to perform a complementary
role to static analysis and testing tools, in order to ease the evaluation of correctness properties
through the exploration of the space of distributed computation paths. The specification of such
paths can be:

(i) Given by the user.

(ii) Generated by an automated testing tool.

(iii) Automatically enforced by a global predicate evaluator/controller.

An example of approach (1) is given by the speculative replay technique [48]. During specula-
tive replay, the user can select any of the potential consistent global states and ask the distributed
debugger to re-execute the program using a message log. So the user can detect how different event
orderings may originate different observable behaviors. The user may then add additional interpro-
cess dependencies, and re-run the program under new synchronization constraints.

Another example is given by the use of synchronization sequences in an approach called de-
terministic execution testing [49]. This forces the execution of a concurrent program, with a given
input, according to a user-defined sequence of synchronization commands, corresponding to a dif-
ferent test of the program, for a given input. Another use of a similar technique was mentioned in a
previous section, where an annotated trace is generated by a distributed debugger in order to force
the computation to follow a specific path leading to a consistent global state associated with a global
breakpoint.

An example of approach (2) was discussed in a previous section, corresponding to the testing,
active control and debugging methodology. This approach is the basis of the work done in the SEPP
projects [31] on integration of testing and debugging tools which are further discussed in Chapters
9, 13 and 16. This approach also uses a partial specification from the user.

Approach (3) is related to the automated evaluation of global predicates that was also discussed
in the section on distributed debugging methodologies. Its integration into a distributed debugging
cycle only(!) requires the user to specify the correct program behavior in terms of global predicates.
Then it is up to the distributed debugger to monitor the execution in order to detect or enforce the
satisfaction of those logical conditions. The user can then inspect consistent global states and get
more information on the causes of errors. At this point in the debugging cycle, the user may have
new information on program behavior that allows to assert certain global properties that should be
enforced by the global predicate controller [50, 52]. Then an active control phase begins where
the controller is responsible for enforcing those conditions, thus allowing the investigation of other
potential error situations. The third approach is the more ambitious one. Conceptually, it would
allow having a distributed debugger controller automatically imposing the required synchronization
constraints so that some high level specification of a distributed application would be enforced. Only
a few distributed debuggers are able to enforce specific global predicates or assertions, and for very
restricted expressions [52].
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5.7 The Architecture of Distributed Debugging Systems
The design of a distributed debugging system must meet the requirements for basic observation and
control functionalities, as discussed in previous sections. The architectures of most existing parallel
and distributed debuggers have followed the approach of the p2d2 architecture [22] which is based
on a client — server model. Additionally, existing debuggers provide very sophisticated visual and
graphical user interfaces, and cover a wide range of functionalities for interactive debugging of
individual distributed processes and threads [11].

In the recent past, some distributed debuggers have been developed aiming at being integrated
into complete parallel software development environments. However, there are still many open
issues concerning a successful tool integration [44].

Instead of an architecture providing a fixed set of functionalities, the software architecture of a
distributed debugger should be extensible and allow adequate integration with other parallel soft-
ware development tools. This is necessary so that the multiple methodologies and approaches for
distributed debugging may be supported within a common architectural framework. In the SEPP
projects, such an approach has been followed for the design of the DDBG debugger (see Chapter 13)
and its results are discussed in related chapters in this book.

5.8 Conclusions
The distributed debugging activity still faces enormous difficulties to increase its impact upon the
users. As mentioned in [20] referring to a PTOOLS report, about 90% of the parallel and distributed
application developers using PVM still relied on classical “print” based approaches to debug their
programs. Furthermore one doesn’t known if the remaining 10% are really happy with currently
existing distributed debugging tools (both commercial and academic). In this chapter, the main
dimensions of distributed debugging have been discussed. The foundations of the distributed debug-
ging activity were related to the theory of distributed computations in order to show the difficulties of
distributed debugging, and explain why naive “print” based approaches do not work for distributed
debugging.

Several methodologies for distributed debugging were presented which illustrate the comple-
mentary roles played by static analysis, testing, and dynamic analysis approaches, towards the un-
derstanding of the behavior of distributed programs. The Figure 5.14 summarizes the main dimen-
sions of this view of distributed debugging. The main observation and control techniques were
described, with emphasis to the interactive replay-based distributed debugging and how it promotes
a cycle where the user repeatedly investigates and incrementally collects information to improve the
analysis on the distributed program behavior. An ideal approach was also outlined for distributed
debugging, starting with a specification of program correctness properties, followed by attempts to
match them to the observed program behavior. Such approach was related to the interactive cyclic
replay based distributed debugging approach, in order to allow the user to examine the relevant
global computation states.

The research and development efforts in distributed debugging in the past decade have increased
our belief that the distributed debugging activity only makes sense when adequately integrated with
other complementary tools, for analysis, visualization, and program observation and control. So,
besides highly sophisticated stand alone and autonomous distributed debugging tools [11], the future
generation of distributed debuggers will require more and more flexible and extensible distributed
debugging architectures, to ease the integration of distributed debugging functionalities with other
tools. This requirement is even more important due to the current developments in homogeneous
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Figure 5.14: The user’s view

and heterogeneous parallel and distributed computing platforms, including the cluster computing
systems.

In the forthcoming years we will witness the appearance of standard definitions for distributed
debugging application interfaces, along the line of the HPDF initiative [14]. We will witness an
increasing trend towards distributed debugger’s designs and architectures that can be adapted to the
emerging parallel and distributed programming models, with component based and mobile compu-
tation abstractions.

Even with such high expectations for the near future, the impact of such approaches critically
depends on how successfully they are integrated into easy to learn and to use tools, with friendly user
interfaces, that meet practical user demands. Such topics have been increasingly discussed among
users, tool developers and software engineers. This trend is also confirmed by current awareness
towards considering the importance of the human factors for the design of the user interfaces and
the functionalities provided by parallel development tools [15, 42, 44].
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