
Model-based Programming Environments for
Spreadsheets?

Jácome Cunha13, João Saraiva1, and Joost Visser2

1 HASLab / INESC TEC, Universidade do Minho, Portugal
{jacome,jas}@di.uminho.pt

2 Software Improvement Group & Radboud University Nijmegen, The Netherlands
j.visser@sig.eu

3 Escola Superior de Tecnologia e Gestão de Felgueiras, IPP, Portugal

Abstract. Although spreadsheets can be seen as a flexible programming envi-
ronment, they lack some of the concepts of regular programming languages, such
as structured data types. This can lead the user to edit the spreadsheet in a wrong
way and perhaps cause corrupt or redundant data.
We devised a method for extraction of a relational model from a spreadsheet
and the subsequent embedding of the model back into the spreadsheet to create
a model-based spreadsheet programming environment. The extraction algorithm
is specific for spreadsheets since it considers particularities such as layout and
column arrangement. The extracted model is used to generate formulas and visual
elements that are then embedded in the spreadsheet helping the user to edit data
in a correct way.
We present preliminary experimental results from applying our approach to a
sample of spreadsheets from the EUSES Spreadsheet Corpus.

1 Introduction

Developments in programming languages are changing the way in which we construct
programs: naive text editors are now replaced by powerful programming language en-
vironments which are specialized for the programming language under consideration
and which help the user throughout the editing process. Helpful features like highlight-
ing keywords of the language or maintaining a beautified indentation of the program
being edited are now provided by several text editors. Recent advances in programing
languages extend such naive editors to powerful language-based environments [1–6].
Language-based environments use knowledge of the programming language to provide
the users with more powerful mechanisms to develop their programs. This knowledge
is based on the structure and the meaning of the language. To be more precise, it is
based on the syntactic and (static) semantic characteristics of the language. Having this
? The authors would like to thank Martin Erwig and his team for providing us the code from

the UCheck project. This work is funded by ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competitiveness) and by Na-
tional Funds through FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation
for Science and Technology) within project FCOMP-01-0124-FEDER-010048. The first
author is supported by the FCT grant SFRH/BPD/73358/2010.

II

knowledge about a language, the language-based environment is not only able to high-
light keywords and beautify programs, but it can also detect features of the programs
being edited that, for example, violate the properties of the underlying language. Fur-
thermore, a language-based environment may also give information to the user about
properties of the program under consideration. Consequently, language-based environ-
ments guide the user in writing correct and more reliable programs.

Spreadsheet systems can be viewed as programming environments for non-profes-
sional programmers. These so-called end-user programmers vastly outnumber profes-
sional programmers [7].

In this paper, we propose a technique to enhance a spreadsheet system with mecha-
nisms to guide end users to introduce correct data. A background process adds formulas
and visual objects to an existing spreadsheet, based on a relational database schema. To
obtain this schema, or model, we follow the approach used in language-based envi-
ronments: we use the knowledge about the data already existing in the spreadsheet to
guide end users in introducing correct data. The knowledge about the spreadsheet under
consideration is based on the meaning of its data that we infer using data mining and
database normalization techniques.

Data mining techniques specific to spreadsheets are used to infer functional depen-
dencies from the spreadsheet data. These functional dependencies define how certain
spreadsheet columns determine the values of other columns. Database normalization
techniques, namely the use of normal forms [8], are used to eliminate redundant func-
tional dependencies, and to define a relational database model. Knowing the relational
database model induced by the spreadsheet data, we construct a new spreadsheet en-
vironment that not only contains the data of the original one, but that also includes
advanced features which provide information to the end user about correct data that
can be introduced. We consider three types of advanced features: auto-completion of
column values, non-editable columns and safe deletion of rows.

Our techniques work not only for database-like spreadsheets, like the example we
will use throughout the paper, but they work also for realistic spreadsheets defined in
other contexts (for example, inventory, grades or modeling). In this paper we present our
first experimental results obtained by considering a large set of spreadsheets included
in the EUSES Spreadsheet Corpus [9].

This paper is organized as follows. Section 2 presents an example used throughout
the paper. Section 3 presents our algorithm to infer functional dependencies and how to
construct a relational model. Section 4 discusses how to embed assisted editing features
into spreadsheets. A preliminary evaluation of our techniques is present in Section 5.
Section 6 discusses related work and Section 7 concludes the paper.

2 A Spreadsheet Programming Environment

In order to present our approach we shall consider the following well-known example
taken from [10] and modeled in a spreadsheet as shown in Figure 1.

This spreadsheet contains information related to a housing rental system. It gathers
information about clients, owners, properties, prices and rental periods. The name of
each column gives a clear idea of the information it represents. We extend this example

III

Fig. 1. A spreadsheet representing a property rental system.

with three additional columns, named days (that computes the total number of rental
days by subtracting the column rentStart to rentFinish), total (that multiplies the
number of rental days by the rent per day value, rent) and country (that represents
the property’s country). As usually in spreadsheets, the columns days and rent are
expressed by formulas.

This spreadsheet defines a valid model to represent the information of the rental
system. However, it contains redundant information: the displayed data specifies the
house rental of two clients (and owners) only, but their names are included five times, for
example. This kind of redundancy makes the maintenance and update of the spreadsheet
complex and error-prone. A mistake is easily made, for example, by mistyping a name,
thus corrupting the data on the spreadsheet.

Two common problems occur as a consequence of redundant data: update anoma-
lies and deletion anomalies [11]. The former problem occurs when we change infor-
mation in one place but leave the same information unchanged in the other places. The
problem also occurs if the update is not performed exactly in the same way. In our ex-
ample, this happens if we change the rent of property number pg4 from 50 to 60 only
one row and leave the others unchanged, for example. The latter problem occurs when
we delete some data and lose other information as a side effect. For example, if we
delete row 5 in the our example all the information concerning property pg36 is lost.

The database community has developed techniques, such as data normalization, to
eliminate such redundancy and improve data integrity [11, 12]. Database normalization
is based on the detection and exploitation of functional dependencies inherent in the
data [13]. Can we leverage these database techniques for spreadsheets systems so that
the system eliminates the update and deletion anomalies by guiding the end user to
introduce correct data? Based on the data contained in our example spreadsheet, we
would like to discover the following functional dependencies which represent the four
entities involved in our house rental system: countries, clients, owners and properties.

country ⇀
clientNr ⇀ cName
ownerNr ⇀ oName
propNr ⇀ pAddress, rent , ownerNr

A functional dependency A ⇀ B means that if we have two equal inhabitants of A,
then the corresponding inhabitants of B are also equal. For instance, the client num-
ber functionally determines his/her name, since no two clients have the same number.
The right hand side of a functional dependency can be an empty set. This occurs, for
example, in the country functional dependency. Note that there are several columns

IV

(labeled rentStart , rentFinish, days and total) that are not included in any functional
dependency. This happens because their data do not define any functional dependency.

Using these functional dependencies it is possible to construct a relational database
schema. Each functional dependency is translated into a table where the attributes are
the ones participating in the functional dependency and the primary key is the left hand
side of the functional dependency. In some cases, foreign keys can be inferred from the
schema. The relational database schema can be normalized in order to eliminate data
redundancy. A possible normalized relational database schema created for the house
rental spreadsheet is presented bellow.

country

clientNr , cName
ownerNr , oName
propNr , pAddress, rent , ownerNr

This database schema defines a table for each of the entities described before. Having
defined a relational database schema we would like to construct a spreadsheet environ-
ment that respects that relational model, as shown in Figure 2.

Fig. 2. A spreadsheet with auto-completion based on relational tables.

Fig. 3. Selecting possible values
of columns using a combo box.

For example, this spreadsheet would not allow the
user to introduce two different properties with the
same property number propNr. Instead, we would like
that the spreadsheet offers to the user a list of possi-
ble properties, such that he can choose the value to fill
in the cell. Figure 3 shows a possible spreadsheet envi-
ronment where possible properties can be chosen from
a combo box.

Using the relational data base schema we would
like that our spreadsheet offers the following features:

Auto-completion of Column Values: The columns cor-
responding to primary keys in the relational model de-
termine the values of other columns; we want the spreadsheet environment to be able to

V

automatically fill those columns provided the end -user defines the value of the primary
key.

For example, the value of the property number (propNr, column B) determines the
values of the address (pAddress, column D), rent per day (rent, column I), and owner
number (ownerNr, column K). Consequently, the spreadsheet environment should be
able to automatically fill in the values of the columns D, I and K, given the value of
column B. Since ownerNr (column K) is a primary key of another table, transitively the
value of oName (column L) is also defined. This auto-completion mechanism has been
implemented and is presented in the spreadsheet environment of Figure 2.

Non-Editable Columns: Columns that are part of a table but not part of its primary
key must not be editable. For example, column L is part of the owner table but it is not
part of its primary key. Thus, it must be protected from being edited. The primary key
of a table must not be editable also since it can destroy the dependency. This feature
prevents the end user from introducing potentially incorrect data and, thus, producing
update anomalies. Figure 4 illustrates this edit restriction.

Fig. 4. In order to prevent update
anomalies some columns must not be
editable.

Safe Deletion of Rows: Another usual problem
with non-normalized data is the deletion prob-
lem. Suppose in our running example that row
5 is deleted. In such scenario, all the informa-
tion about the pg36 property is lost. However, it
is likely that the user wanted to delete the rental
transaction represented by that row only. In order
to prevent this type of deletion problems, we have
added a button per spreadsheet row (see Figure 2).
When pressed, this button detects whether the end
user is deleting important information included in
the corresponding row. In case important information is removed by such deletion, a
warning window is displayed, as shown in Figure 5.

Fig. 5. Window to warn the end
user that crucial information may be
deleted.

Apart from these new features, the user can
still access traditional editing features, and can
rely on recalculation of functional dependencies
in the background.

Traditional Editing: Advanced programming lan-
guage environments provide both advanced edit-
ing mechanisms and traditional ones (i.e., text
editing). In a similar way, a spreadsheet environ-
ment should allow the user to perform traditional
spreadsheet editing too. In traditional editing the end user is able to introduce data that
may violate the relational database model that the spreadsheet data induces.

Recalculation of the Relational Database Model: Because standard editing allows the
end user to introduce data violating the underlying relational model, we would like that
the spreadsheet environment may enable/disable the advanced features described in this

VI

section. When advanced features are disabled, the end user would be able to introduce
data that violates the (previously) inferred relational model. However, when the end user
returns to advanced editing, then the spreadsheet should infer a new relational model
that will be used in future (advanced) interactions.

In this section we have described an instance of our techniques. In fact, the spread-
sheet programming environment shown in the Figures 2, 3, 4 and 5 was automatically
produced from the original spreadsheet displayed in Figure 1. In the following sections
we will present in detail the technique to perform such an automatic spreadsheet refac-
toring.

3 From Spreadsheets to Relational Databases

This section briefly explains how to extract functional dependencies from the spread-
sheet data and how to construct a normalized relational database schema modeling such
data. These techniques were introduced in detail in our work on defining a bidirectional
mapping between spreadsheets and relational databases [14]. In this section we briefly
present an extension to that algorithm that uses spreadsheet specific properties in order
to infer a more realistic set of functional dependencies.

Relational Databases: A relational schema R is a finite set of attributes {A1, ..., Ak}.
Corresponding to each attribute Ai is a set Di called the domain of Ai. These domains
are arbitrary, non-empty sets, finite or countably infinite. A relation (or table) r on a
relation schema R is a finite set of tuples (or rows) of the form {t1, ..., tk}. For each t ∈
r, t(Ai) must be in Di. A relational database schema is a collection of relation schemas
{R1, ..., Rn}. A Relational Database (RDB) is a collection of relations {r1, ..., rn}.

Each tuple is uniquely identified by a minimum non-empty set of attributes called
a Primary Key (PK). On certain occasions there may be more then one set suitable for
becoming the primary key. They are designated candidate keys and only one is chosen
to become primary key. A Foreign Key (FK) is a set of attributes within one relation that
matches the primary key of some relation.

The normalization of a database is important to prevent data redundancy. Although
there are several different normal forms, in general, a RDB is considered normalized if
it respects the Third Normal Form (3NF) [10].

Discovering Functional Dependencies: In order to define the RDB schema, we first
need to compute the functional dependencies presented in a given spreadsheet data.
In [14] we reused the well known data mining algorithm, named FUN, to infer such
dependencies. This algorithm was developed in the context of databases with the main
goal of inferring all existing functional dependencies in the input data. As a result, FUN
may infer a large set of functional dependencies depending on the input data. For our
example, we list the functional dependencies inferred from the data using FUN:

VII

clientNr ⇀ cName, country
propNr ⇀ country , pAddress, rent , ownerNr , oName
cName ⇀ clientNr , country
pAddress ⇀ propNr , country , rent , ownerNr , oName
rent ⇀ propNr , country , pAddress, ownerNr , oName
ownerNr ⇀ country , oName
oName ⇀ country , ownerNr

Note that, data contained in the spreadsheet exhibits all those dependencies. In fact, even
the non-natural dependency rent ⇀ propNr , country , pAddress, ownerNr , oName
is inferred. Indeed, the functional dependencies derived by the FUN algorithm depend
heavily on the quantity and quality of the data. Thus, for small samples of data, or data
that exhibits too many or too few dependencies, the FUN algorithm may not produce
the desired functional dependencies.

Note also that the country column occurs in most of the functional dependencies
although only a single country actually appears in a column of the spreadsheet, namely
UK. Such single value columns are common in spreadsheets. However, for the FUN
algorithm they induce redundant fields and redundant functional dependencies.

In order to derive more realistic functional dependencies for spreadsheets we have
extended the FUN algorithm so that it considers the following spreadsheet properties:

– Single value columns: these columns produce a single functional dependency with
no right hand side (country ⇀, for example). This columns are not considered
when finding other functional dependencies.

– Semantic of labels: we consider label names as strings and we look for the occur-
rence of words like code, number, nr, id given them more priority when considered
as primary keys.

– Column arrangement: we give more priority to functional dependencies that respect
the order of columns. For example, clientNr ⇀ cName has more priority than
cName ⇀ clientNr .

Moreover, to minimize the number of functional dependencies we consider the smallest
subset that includes all attributes/columns in the original set computed by FUN. The
result of our spreadsheet functional dependency inference algorithm is:

country ⇀
clientNr ⇀ cName
ownerNr ⇀ oName
propNr ⇀ pAddress, rent , ownerNr , oName

This set of dependencies is very similar to the one presented in the previous section.
The exception is the last functional dependency which has an extra attribute (oName).

Spreadsheet Formulas: Spreadsheets use formulas to define the values of some ele-
ments in terms of other elements. For example, in the house rental spreadsheet, the
column days is computed by subtracting the column rentFinish from rentStart , and it
is usually written as follows H3 = G3 - F3. This formula states that the values of G3

VIII

and F3 determine the value of H3, thus inducing the following functional dependency:
rentStart, rentF inish ⇀ days.

Formulas can have references to other formulas. Consider, for example, the second
formula of the running example J3 = H3 * I3, which defines the total rent by mul-
tiplying the total number of days by the value of the rent. Because H3 is defined by
another formula, the values that determine H3 also determine J3. As a result, the two
formulas induce the following functional dependencies:

rentStart , rentFinish ⇀ days
rentStart , rentFinish, rent ⇀ total

In general, a spreadsheet formula of the following form X0 = f(X1, . . . , Xn) induces
the following functional dependency: X1, . . . , Xn ⇀ X0. In spreadsheet systems, for-
mulas are usually introduced by copying them through all the elements in a column,
thus making the functional dependency explicit in all the elements. This may not al-
ways be the case and some elements can be defined otherwise (e.g. by using a constant
value or a different formula). In both cases, all the cells referenced must be used in the
antecedent of the functional dependency.

These functional dependencies are useful for the mapping of spreadsheets to databases
as presented in [14]. In this work, they are not relevant since the existing formulas are
used to fill in those columns.

Normalizing Functional Dependencies: Having computed the functional dependencies,
we can now normalize them. Next, we show the results produced by the synthesize algo-
rithm introduced by Maier in [15]. The synthesize algorithm receives a set of functional
dependencies as argument and returns a new set of compound functional dependencies.
A compound functional dependency (CFD) has the form (X1, . . . , Xn) ⇀ Y , where
X1, . . . , Xn are all distinct subsets of a scheme R and Y is also a subset of R. A rela-
tion r satisfies the CFD (X1, . . . , Xn) ⇀ Y if it satisfies the functional dependencies
Xi ⇀ Xj and Xi ⇀ Y , where 1 6 i and j 6 k. In a CFD, (X1, . . . , Xn) is the left
side, X1, . . . , Xn are the left sets and Y is the right side.

Next, we list the compound functional dependencies computed from the functional
dependencies induced by our running example.

({country }) ⇀ { }
({clientNr }) ⇀ {cName }
({ownerNr }) ⇀ {oName }
({propNr }) ⇀ {pAddress, rent , ownerNr }

Computing the Relational Database Schema: Each compound functional dependency
defines several candidate keys for each table. However, to fully characterize the rela-
tional database schema we need to choose the primary key from those candidates. To
find such keys we use a simple algorithm: we produce all the possible tables using each
candidate key as the primary key; we then use the same algorithm that is used to choose
the initial functional dependencies to choose the best table. Note that before applying
the synthesize algorithm, all the functional dependencies with antecedents’ attributes

IX

representing formulas should be eliminated since a primary key must not change over
time. The final result is listed bellow.

country

clientNr , cName
ownerNr , oName
propNr , pAddress, rent , ownerNr

This relational database model corresponds exactly to the one shown in Section 2. Note
that the synthesize algorithm removed the redundant attribute oName that occurred in
the last functional dependency.

4 Building Spreadsheet Programming Environments

This section presents techniques to refactor spreadsheets into powerful spreadsheet pro-
gramming environments as described in Section 2. This spreadsheet refactoring is im-
plemented as the embedding of the inferred functional dependencies and the computed
relational model in the spreadsheet. This embedding is modeled in the spreadsheet itself
by standard formulas and visual objects: formulas are added to the spreadsheet to guide
end users to introduce correct data.

Before we present how this embedding is defined, let us first define a spreadsheet.
A spreadsheet can be seen as a partial function S : A → V mapping addresses to
spreadsheet values. Elements of S are called cells and are represented as (a, v). A cell
address is taken from the set A = N × N. A value v ∈ V can be an input plain value
c ∈ C like a string or a number, references to other cells using addresses or formulas
f ∈ F that can be applied to one or more values: v ∈ V ::= c | a | f(v, . . . , v).

Auto-completion of Column Values: This feature is implemented by embedding each of
the relational tables in the spreadsheet. It is implemented by a spreadsheet formula and
a combo box visual object. The combo box displays the possible values of one column,
associated to the primary key of the table, while the formula is used to fill in the values
of the columns that the primary key determines.

Let us consider the table ownerNr , oName from our running example. In the spread-
sheet, ownerNr is in column K and oName in column L. This table is embed in the
spreadsheet introducing a combo box containing the existing values in the column K
(as displayed in Figure 2). Knowing the value in the column K we can automatically
introduce the value in column L. To achieve this, we embed the following formula in
row 7 of column L:

S (L, 7) = if (isna (vlookup (K7 ,K2 : L6 , 2, 0)),"", vlookup (K7 ,K2 : L6 , 2, 0))

This formula uses a (library) function isna to test if there is a value introduced in column
K. In case that value exists, it searches (with the function vlookup) the corresponding
value in the column L and references it. If there is no selected value, it produces the
empty string. The combination of the combo box and this formula guides the user to
introduce correct data as illustrated in Figure 2.

X

We have just presented a particular case of the formula and visual object induced by
a relational table. Next we present the general case. Let minr be the very next row after
the existing data in the spreadsheet, maxr the last row in the spreadsheet, and r1 the
first row with already existing data. Each relational database table a1, ..., an, c1, ..., cm,
with a1, ..., an, c1, ..., cm column indexes of the spreadsheet, induces firstly, a combo
box defined as follows:

∀ c ∈ {a1, ..., an }, ∀ r ∈ {minr , ...,maxr } :
S (c, r) = combobox := { linked cell := (c, r);

source cells := (c, r1) : (c, r − 1)}

secondly, a spreadsheet formula defined as:

∀ c ∈ {c1, ..., cm }, ∀ r ∈ {minr , ...,maxr } :
S (c, r) = if (if (isna (vlookup ((a1, r), (a1, r1) : (c, r − 1), r − a1 + 1, 0)),

"",
vlookup ((a1, r), (a1, r1) : (c, r − 1), r − a1 + 1, 0))

==
if (isna (vlookup ((a2, r), (a2, r1) : (c, r − 1), r − a2 + 1, 0)),

"",
vlookup ((a2, r), (a2, r1) : (c, r − 1), r − a2 + 1, 0))

==
...
==
if (isna (vlookup ((an , r), (an , r1) : (c, r − 1), r − an + 1, 0)),

"",
vlookup ((an , r), (an , r1) : (c, r − 1), r − an + 1, 0)),

vlookup ((a1, r), (a1, r1) : (c, r − 1), r − a1 + 1, 0),
"")

This formula must be used for each non primary key column created by our algorithm.
Each conditional if inside the main if is responsible for checking a primary key column.
In the case a primary key column value is chosen, isna (vlookup (...)), the formula
calculates the corresponding non primary key column value, vlookup (...). If the values
chosen by all primary key columns are the same, then that value is used in the non
primary key column. This formula considers tables with primary keys consisting of
multiple attributes (columns). Note also that the formula is defined in each column
associated to non-key attribute values.

The example table analysed before is an instance of this general one. In the table
ownerNr , oName , ownerNr is a1, oName is c1, c is L, r1 is 2, minr is 7. The value
of maxr is always the last row supported by the spreadsheet system.

Foreign keys pointing to primary keys become very helpful in this setting. For ex-
ample, if we have the relational tables A,B and B,C where B is a foreign key from
the second table to the first one, then when we perform auto-completion in column A,
both B and C are automatically filled in. This was the case presented in Figure 2.

Non-Editable Columns: To prevent wrong introduction of data, and thus, producing
update anomalies, we protect some columns from edition. A relational table, such as
a1, ..., an, c1, ..., cm, induces the non-edition of columns a1, ..., an, c1, ..., cm. That is

XI

to say that all columns that form a table become non-editable. Figure 4 illustrates such
a restriction. In the case where the end user really needs to change the value of such
protected columns, we provide traditional editing (explained below).

Safe Deletion of Rows: Another usual problem with non-normalized data is the deletion
of data. Suppose in our running example that row 5 is deleted. All the information
about property pg36 is lost, although the user would probably want to delete that rental
transaction only. To correctly delete rows in the spreadsheet, a button is added to each
row in the spreadsheet as follows: for each relational table a1, ..., an, c1, ..., cm each
button checks, on its corresponding row, the columns that are part of the primary key,
a1, ..., an. For each primary key column, it verifies if the value to remove is the last one.

Let c ∈ {a1, ..., an}, let r be the button row, r1 be the first row of column c with
data and rn be the last row of column c with data. The test is defined as follows:

if (isLast ((c, r), (c, r1) : (c, rn)), showMessage, deleteRow (r))

If the value is the last one, the spreadsheet warns the user (showMessage) as can be
seen in Figure 5. If the user presses the OK button, the spreadsheet will remove the row.
In the other case, Cancel, no action will be performed. In the case the value is not
the last one, the row will simply be removed, deleteRow (r). For example, in column
propNr of our running example, the row 5 contains the last data about the house with
code pg36. If the user tries to delete this row, the warning will be triggered.

Traditional Editing Advanced programming language environments provide both ad-
vanced editing mechanisms and traditional ones (i.e., text editing). In a similar way, a
spreadsheet environment should allow the user to perform traditional spreadsheet edit-
ing too. Thus, the environment should provide a mechanism to enable/disable the ad-
vanced features described in this section. When advanced features are disabled, the end
user is be able to introduce data that violates the (previously) inferred relational model.
However, when the end user returns to advance editing, the spreadsheet infers a new
relational model that will be used in future (advanced) interactions.

4.1 HaExcel Add-in

We have implemented the FUN algorithm, the extensions described in this paper, the
synthesize algorithm, and the embedding of the relational model in the HASKELL pro-
gramming language [16]. We have also defined the mapping from spreadsheet to rela-
tional databases in the same framework named HaExcel [14]. Finally, we have extended
this framework to produce the visual objects and formulas to model the relational tables
in the spreadsheet. An Excel add-in as been also constructed so that the end user can
use spreadsheets in this popular system and at the same time our advanced features.

5 Preliminary Experimental Results

In order to evaluate the applicability of our approach, we have performed a preliminary
experiment on the EUSES Corpus [9]. This corpus was conceived as a shared resource

XII

to support research on technologies for improving the dependability of spreadsheet pro-
gramming. It contains more than 4500 spreadsheets gathered from different sources
and developed for different domains. These spreadsheets are assigned to eleven differ-
ent categories. including financial (containing 19% of the total number of spreadsheets),
inventory (17%), homework (14%), grades (15%), database (17%) and modeling (17%)
(the remaining 1% represents other spreadsheets). Among the spreadsheets in the cor-
pus, about 4.4% contain macros, about 2.3% contain charts, and about 56% do not have
formulas being only used to store data.

In our preliminary experiment we have selected the first ten spreadsheets from each
of the eleven categories of the corpus. We then applied our tool to each spreadsheet, with
different results (see also Table 1): a few spreadsheets failed to parse, due to glitches
in the Excel to Gnumeric conversion (which we use to bring spreadsheets into a pro-
cessable form). Other spreadsheets were parsed, but no tables could be recognized in
them, i.e., their users did not adhere to any of the supported layout conventions. The
layout conventions we support are the ones presented in the UCheck project [17]. This
was the case for about one third of the spreadsheets in our item. The other spreadsheets
were parsed, tables were recognized, and edit assistance was generated for them. We
will focus on the last groups in the upcoming sections.

Processed Spreadsheets: The results of processing our sample of spreadsheets from
the EUSES corpus are summarized in Table 1. The rows of the table are grouped by
category as documented in the corpus. The first three columns contain size metrics on
the spreadsheets. They indicate how many tables were recognized, how many columns
are present in these tables, and how many cells. For example, the first spreadsheet in the
financial category contains 15 tables with a total of 65 columns and 242 cells.

File name Recognized
tables

Cols. Cells FDs Cols. w/ safe
insertion &

deletion

Auto-
compl.

cols.

Non-
editab.

cols.
cs101

Act4 023 capen 5 24 402 0 0 0 0
act3 23 bartholomew 6 21 84 1 8 1 9
act4 023 bartholomew 6 23 365 0 0 0 0
meyer Q1 2 8 74 0 0 0 0
posey Q1 5 23 72 0 8 0 8

database
%5CDepartmental%20Fol#A8. . . 2 4 3463 0 0 0 0
00061r0P802-15 TG2-Un. . . 69 23 55 491 0 18 4 21
00061r5P802-15 TG2-Un. . . 6C 30 83 600 25 21 5 26
0104TexasNutrientdb 5 7 77 1 1 1 2
01BTS framework 52 80 305 4 23 2 25
03-1-report-annex-5 20 150 1599 12 15 8 22

filby
BROWN 5 14 9047 2 3 1 4
CHOFAS 6 48 4288 3 3 1 4

financial
continues on the next page

XIII

Table 1 – continuation of previous page
File name Recognized

tables
Cols. Cells FDs Cols. w/ safe

insertion &
deletion

Auto-
compl.

cols.

Non-
editab.

cols.
03PFMJOURnalBOOKSFina... 15 65 242 0 7 0 7
10-formc 12 20 53 8 5 4 9

forms3
ELECLAB3.reichwja.xl97 1 4 44 0 0 0 0
burnett-clockAsPieChart 3 8 14 0 1 0 1
chen-heapSortTimes 1 2 24 0 0 0 0
chen-insertSortTimes 1 2 22 0 0 0 0
chen-lcsTimes 1 2 22 0 0 0 0
chen-quickSortTimes 1 2 24 0 0 0 0
cs515 npeg chart.reichwja.xl97 7 9 93 0 0 0 0
cs515 polynomials.reichwja.xl97 6 12 105 0 0 0 0
cs515 runtimeData.reichwja.X... 2 6 45 0 0 0 0

grades
0304deptcal 11 41 383 19 18 17 28
03 04ballots1 4 20 96 6 4 0 4
030902 5 20 110 0 0 0 0
031001 5 20 110 0 0 0 0
031501 5 15 51 31 3 1 4

homework
01 Intro Chapter Home#A9171 6 15 2115 0 1 0 1
01readsdis 4 16 953 5 4 3 6
02%20fbb%20medshor 1 7 51 0 0 0 0
022timeline4dev 28 28 28 0 0 0 0
026timeline4dev 28 28 30 0 2 0 2
03 Stochastic Systems#A9172 4 6 48 0 2 0 2
04-05 proviso list 79 232 2992 0 25 0 25

inventory
02MDE framework 50 83 207 10 31 1 32
02f202assignment%234soln 37 72 246 7 20 1 21
03-1-report-annex-2 5 31 111 10 5 5 8
03singapore elec gene#A8236 9 45 153 3 5 2 7
0038 10 22 370 0 0 0 0

modeling
%7B94402d63-cdd8-4cc3#A. . . 1 3 561 0 0 0 0
%EC%86%90%ED%97%8C. . . 1 10 270 13 7 5 9
%EC%9D%98%EB%8C%80. . . 1 7 1442 4 4 5 6
%EC%A1%B0%EC%9B%90. . . 2 17 534 18 13 5 15
%ED%99%98%EA%B2%B. . . 3 7 289 2 1 2 3
0,10900,0-0-45-109057-0,00 4 14 6558 9 9 2 10
00-323r2 24 55 269 31 9 6 15
00000r6xP802-15 Docum#A. . . 3 13 3528 10 9 3 11
003 4 25 50 2090 0 0 0 0

Table 1: Preliminary results of processing the selected spreadsheets.

XIV

The fourth column shows how many functional dependencies were extracted from
the recognized tables. These are the non-trivial functional dependencies that remain
after we use our extension to the FUN algorithm to discard redundant dependencies.
The last three columns are metrics on the generated edit assistance. In some cases, no
edit assistance was generated, indicated by zeros in these columns. This situation occurs
when no (non-trivial) functional dependencies are extracted from the recognized tables.
In the other cases, the three columns respectively indicate:

– For how many columns a combo box has been generated for controlled insertion.
The same columns are also enhanced with the safe deletion of rows feature.

– For how many columns the auto-completion of column values has been activated,
i.e., for how many columns the user is no longer required to insert values manually.

– How many columns are locked to prevent edit actions where information that does
not appear elsewhere is deleted inadvertently.

For example, for the first spreadsheet of the inventory category, combo boxes have
been generated for 31 columns, auto-completion has been activated for 1 column, and
locking has been applied to 32 columns. Note that for the categories jackson and per-
sonal, no results were obtained due to absent or unrecognized layout conventions or to
the size of the spreadsheets (more than 150,000 cells).

Observations: On the basis of these preliminary results, a number of interesting ob-
servations can be made. For some categories, edit assistance is successfully added to
almost all spreadsheets (e.g. inventory and database), while for others almost none of
the spreadsheets lead to results (e.g. the forms/3 category). The latter may be due to
the small sizes of the spreadsheets in this category. For the financials category, we can
observe that in only 2 out of 10 sample spreadsheets tables were recognized, but edit
assistance was successfully generated for both of these.

The percentage of columns for which edit assistance was generated varies. The
highest percentage was obtained for the second spreadsheet of the modeling category,
with 9 out of 10 columns (90 %). A good result is also obtained for the first spreadsheet
of the grades category with 28 out of 41 columns (68.3 %). On the other hand, the 5th

of the homework category gets edit assistance for only 2 out of 28 columns (7.1 %).
The number of columns with combo boxes often outnumbers the columns with auto-
completion. This may be due to the fact that many of the functional dependencies are
small, with many having only one column in the antecedent and none in consequent.

Evaluation: Our preliminary experiment justifies two preliminary conclusions. Firstly,
the tool is able to successfully add edit assistance to a series of non-trivial spreadsheets.
A more thorough study of these and other cases can now be started to identify tech-
nical improvements that can be made to the algorithms for table recognition and func-
tional dependency extraction. Secondly, in the enhanced spreadsheets a large number of
columns are generally affected by the generated edit assistance, which indicates that the
user experience can be impacted in a significant manner. Thus, a validation experiment
can be started to evaluate how users experience the additional assistance and to which
extent their productivity and effectiveness can be improved.

XV

6 Related Work

Our work is strongly related to a series of techniques by Abraham et al.. Firstly, they
designed and implemented an algorithm that uses the labels within a spreadsheet for
unit checking [18, 19]. By typing the cells in a spreadsheet with unit information and
tracking them through references and formulas, various types of users errors can be
caught. We have adopted the view of Abraham et. al.of a spreadsheet as a collection of
tables and we have reused their algorithm for identifying the spatial boundaries of these
tables. Rather than exploiting the labels in the spreadsheet to reconstruct implicit user
intentions, we exploit redundancies in data elements. Consequently, the errors caught by
our approach are of a different kind. Secondly, Abraham et. al.developed a type system
and corresponding inference algorithm that assigns types to values, operations, cells,
formulas, and entire spreadsheets [20]. The type system can be used to catch errors
in spreadsheets or to infer spreadsheet models that can help to prevent future errors.
We have used such spreadsheet models, namely the ClassSheet models [21], to realize
model-driven software evolution in the context of spreadsheets [22–28].

In previous work we presented techniques and tools to transform spreadsheets into
relational databases and back [14]. We used the FUN algorithm to construct a relational
model, but rather than generating edit assistance, the recovered information was used
to perform spreadsheet refactoring. The algorithm for extracting and filtering spread-
sheets presented in the current paper is an improvement over the algorithm that we used
previously.

We provided a short user-centered overview of the idea of generating edit assis-
tance for spreadsheets via extraction of functional dependencies in a previous short
paper [29]. In the current paper, we have provided the technical details of the solution,
including the improved algorithm for extraction and filtering functional dependencies.
Also, we have provided the first preliminary evaluation of the approach by application
to a sample of spreadsheets from the EUSES corpus.

7 Conclusions

Contributions: We have demonstrated how implicit structural properties of spreadsheet
data can be exploited to offer edit assistance to spreadsheet users. To discover these
properties, we have made use of our improved approach for mining functional depen-
dencies from spreadsheets and subsequent synthesis of a relational database. On this
basis, we have made the following contributions:

– Derivation of formulas and visual elements that capture the knowledge encoded in
the reconstructed relational database schema.

– Embedding of these formulas and visual elements into the original spreadsheet in
the form of features for auto-completion, guarded deletion, and controlled insertion.

– Integration of the algorithms for reconstruction of a schema, for derivation of cor-
responding formulas and visual elements, and for their embedding into a add-in for
spreadsheet environments.

XVI

A spreadsheet environment enhanced with our add-in compensates to a significant ex-
tent for the lack of the structured programming concepts in spreadsheets. In particular,
it assists users to prevent common update and deletion anomalies during edit actions.

Future Work: There are several extensions of our work that we would like to explore.
The algorithms running in the background need to recalculate the relational schema and
the ensuing formulas and visual elements every time new data is inserted. For larger
spreadsheets, this recalculation may incur waiting time for the user. Several optimiza-
tions of our algorithms can be attempted to eliminate such waiting times, for example,
by use of incremental evaluation. Our approach could be integrated with similar, com-
plementary approaches to cover a wider range of possible user errors. In particular, the
work of Abraham et al. [20, 30] for preventing range, reference, and type errors could be
combined with our work for preventing data loss and inconsistency. We have presented
some preliminary experimental results to pave the way for a more comprehensive vali-
dation experiments. In particular, we intend to set up a structured experiment for testing
the impact on end-user productivity, and effectiveness.

References

1. Saraiva, J.: Design, Implementation and Animation of Spreadsheets in the Lrc System. In:
Int. workshop on Foundations of Spreadsheet, Martin Erwig editor, ENTCS (2004)

2. Kuiper, M., Saraiva, J.: Lrc - A Generator for Incremental Language-Oriented Tools. In
Koskimies, K., ed.: 7th International Conference on Compiler Construction. Volume 1383 of
LNCS., Springer-Verlag (April 1998) 298–301

3. Reps, T., Teitelbaum, T.: The synthesizer generator. SIGSOFT Softw. Eng. Notes 9(3) (1984)
42–48

4. van den Brand, M., Klint, P., Olivier, P.: Compilation and Memory Management for
ASF+SDF. In Stefan Jähnichen, ed.: 8th International Conference on Compiler Construction.
Volume 1575 of LNCS. (March 1999) 198–213

5. Saraiva, J., Swierstra, S.D.: Generating spreadsheet-like tools from strong attribute gram-
mars. In Pfenning, F., Smaragdakis, Y., eds.: Generative Programming and Component Engi-
neering, Second International Conference, GPCE 2003, Erfurt, Germany, September 22-25,
2003, Proceedings. Volume 2830 of LNCS., Springer (2003) 307–323

6. Holzner, S.: Eclipse. O’Reilly (May 2004)
7. Scaffidi, C., Shaw, M., Myers, B.: Estimating the numbers of end users and end user pro-

grammers. VLHCC ’05: Proceedings of the 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing (2005) 207–214

8. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6)
(1970) 377–387

9. II, M.F., Rothermel, G.: The EUSES Spreadsheet Corpus: A shared resource for supporting
experimentation with spreadsheet dependability mechanisms. In: Proceedings of the 1st
Workshop on End-User Software Engineering. (2005) 47–51

10. Connolly, T., Begg, C.: Database Systems, A Practical Approach to Design, Implementation,
and Management. Addison-Wesley, 3 edition (2002)

11. Ullman, J.D., Widom, J.: A First Course in Database Systems. Prentice Hall (1997)
12. Date, C.J.: An Introduction to Database Systems. Addison-Wesley (1995)
13. Beeri, C., Fagin, R., Howard, J.: A complete axiomatization for functional and multivalued

dependencies in database relations. In: Proc. of the ACM SIGMOD Int. Conf. on Manage-
ment of Data. (1977) 47–61

XVII

14. Cunha, J., Saraiva, J., Visser, J.: From spreadsheets to relational databases and back. In:
PEPM’09: Proc. of the 2009 ACM SIGPLAN workshop on Partial Evaluation and Program
manipulation, ACM (2009) 179–188

15. Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)
16. Peyton Jones, S.: Haskell 98: Language and libraries. J. Funct. Program. 13(1) (2003) 1–255
17. Abraham, R., Erwig, M.: UCheck: A spreadsheet type checker for end users. J. Vis. Lang.

Comput. 18(1) (2007) 71–95
18. Erwig, M., Burnett, M.: Adding apples and oranges. 4th Int. Symp. on Practical Aspects of

Declarative Languages (2002) 173–191
19. Abraham, R., Erwig, M.: Header and unit inference for spreadsheets through spatial analyses.

Visual Languages and Human Centric Computing, 2004 IEEE Symposium on (Sept. 2004)
165–172

20. Abraham, R., Erwig, M.: Type inference for spreadsheets. In Bossi, A., Maher, M.J., eds.:
Proceedings of the 8th Int. ACM SIGPLAN Conference on Principles and Practice of Declar-
ative Programming, July 10-12, 2006, Venice, Italy, ACM (2006) 73–84

21. Engels, G., Erwig, M.: ClassSheets: automatic generation of spreadsheet applications from
object-oriented specifications. In: ASE’05: Proc. of the 20th IEEE/ACM International Con-
ference on Automated Software Engineering, ACM (2005) 124–133

22. Cunha, J., Erwig, M., Saraiva, J.: Automatically inferring classsheet models from spread-
sheets. In: VL/HCC’10: IEEE Symp. on Visual Languages and Human-Centric Computing,
IEEE Computer Society (2010) 93–100

23. Beckwith, L., Cunha, J., ao Paulo Fernandes, J., Saraiva, J.: End-users productivity in model-
based spreadsheets: An empirical study. In: Proceedings of the Third International Sympo-
sium on End-User Development. IS-EUD ’11 (2011) 282–288

24. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Towards an Evaluation of Bidirectional
Model-driven Spreadsheets. In: USER’12: User evaluation for Software Engineering Re-
searchers. (2012) (to appear).

25. Cunha, J., ao P. Fernandes, J., Mendes, J., Pacheco, H., ao Saraiva, J.: Bidirectional trans-
formation of model-driven spreadsheets. In Hu, Z., de Lara, J., eds.: Theory and Practice of
Model Transformations. Volume 7307 of LNCS., Springer (2012) 105–120

26. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: MDSheet: A framework for model-driven
spreadsheet engineering. In: ICSE’12: Proc. of the 34rd International Conference on Soft-
ware Engineering, ACM (2012) 1412–1415

27. Cunha, J., Visser, J., Alves, T., Saraiva, J.: Type-safe evolution of spreadsheets. In:
FASE’11/ETAPS’11: Proc. of the 14th International Conference on Fundamental Ap-
proaches to Software Engineering, Springer-Verlag (2011) 186–201

28. Cunha, J., Mendes, J., Fernandes, J.P., Saraiva, J.: Extension and implementation of
classsheet models. In: VL/HCC ’12: IEEE Symposium on Visual Languages and Human-
Centric Computing, IEEE Computer Society (2011) to appear.

29. Cunha, J., Saraiva, J., Visser, J.: Discovery-based edit assistance for spreadsheets. In: Pro-
ceedings of the 2009 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). VLHCC ’09, Washington, DC, USA, IEEE Computer Society (2009) 233–237

30. Abraham, R., Erwig, M.: Inferring templates from spreadsheets. In: Proc. of the 28th Int.
Conf. on Software Engineering, New York, NY, USA, ACM (2006) 182–191

