
Static Energy Consumption Analysis in Variability
Systems

Marco Couto∗, Jácome Cunha‡, João Paulo Fernandes§, Rui Pereira∗, and João Saraiva∗
∗ INESC TEC/HASLab, Universidade do Minho, Portugal

‡ NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa, Portugal
§ LISP - RELEASE, Universidade da Beira Interior, Portugal

marco.l.couto@inesctec.pt, {ruipereira,jas}@di.uminho.pt, jacome@fct.unl.pt, jpf@di.ubi.pt

Abstract—Energy consumption is becoming an evident concern
to software developers. This is even more notorious due to the
propagation of mobile devices. Such propagation of devices is
also influencing software development: a software system is now
developed has a set of similar products sharing common features.

In this short paper, we describe our methodology aim at
static and accurately predict the energy consumption of software
products in such variability systems, typically called software
product lines.

I. INTRODUCTION

Software development has drastically changed from the
last to this new century. Software is now present in a wide
variety of hardware systems, ranging from different (mobile)
phones, portable computers, and consumer electronics. As
a consequence, software developers have to structure their
software so that it can be easily be ported to devices with
different characteristics.

The way we use software systems has also changed: large
wired computer main frames and personal computers, are not
the main and only hardware running our software. Nowadays,
we often use software systems in mobile devices, where time
to execute our software is not the only concern: energy con-
sumption, and as consequence the battery drain, is becoming
an important concern in software engineering [1].

In this paper we present a methodology to reason about
energy consumption in the context of software where there
are many variants of a similar product. This context is nicely
captured by the very active research area on Software Product
Lines (SPL). Software product lines are a suitable approach
also to develop software for mobile devices, where appli-
cations must be developed once for many platforms with
different characteristics, and where energy consumption is
becoming a software bottleneck.

We present a static analysis methodology so that we can
predict the energy consumption of each product in the line. As
a result, the methodology is able to statically identify products
with different energy consumption profiles, and, for example,
to identify the greenest product in a line.

We propose to adapt well-known static analysis techniques
to the SPL realm: first, we use SPL static analysis tech-
niques [2] to compute energy related properties from the code.
Second, we combine that with the Worst-Case Execution Time
(WCET) prediction approach to compute the energy comsump-

tion of a program, instead of its execution time. We call this
new technique the Worst-Case Energy Comsumption (WCEC).
Our technique aims to predict the energy consumption in a
feature-sensitive manner, instead of generating all products of
a SPL and analyze them individually.

II. STATIC ANALYSIS IN SPL

A SPL is a software system that is able of creating different
software solutions from reusable assets (i.e., code fragments,
visual assets, etc.). Such solutions are called products. A prod-
uct is characterized by the set of features that it includes/imple-
ments, which has the name of product configuration. A feature
is a specific functionality that can be included in one or more
products, and is usually defined as a code block/fragment.

To define if a code block belongs to a specific feature we
can use conditional compilation. This technique is based on
associating to the code block a pre-processor instruction, an
#ifdef Φ, where Φ is a propositional logic formula over
feature names. The syntax of a formula is as follows:

Φ ::= f ∈ F|¬Φ|Φ ∧ Φ|Φ ∨ Φ

Here, f is a feature name, drawn from a finite alphabet of
feature names F. This allows to indicate which features include
that code block, or which one must exclude it.

In order to statically analyze a program (or a set of programs
- a SPL) we use techniques that rely on the analysis of the con-
trol/data flow graph of such program(s). Every static dataflow
analysis needs to combine essentially three components: a
CFG - control flow graph (to represent the connection between
instructions), a lattice (to represent the values of interest for the
analysis), and the transfer functions (responsible for simulating
the execution of the program represented by the CFG). For
SPL analysis, we need to make the analysis feature aware, so it
can compute the results for all products at once. Following the
approach presented in [2], this can be achieved by extending
the three static analysis components. In other words, to each
CFG node we associate the list of features that implement the
corresponding instruction and the lattice element calculated by
the transfer functions for each possible product.

Figure 1 represents a SPL example, with two features (A
and B), with the source code (Figure 1a), the basic CFG for
a product with the two features (Figure 1b), and the SPL

void m() {
int x = 0;
#ifdef (A) x++;
#ifdef (B) x--;

}

(a) Example of a SPL

x = 0;x = 0;

x++;x++;

x­­;x­­;

(b) CFG

⟦TRUE⟧ : x = 0;

⟦A⟧ : x++;

⟦B⟧ : x­­;

∀c {{A}, {B}, {A, B}}:∈

({A} → , {B} → , {A, B}→)⊥ ⊥ ⊥

({A} → 0, {B} → 0, {A, B}→ 0)

({A} → +, {B} → 0, {A, B}→ +)

({A} → +, {B} → -, {A, B}→ 0/+)

(c) CFG for SPL Static Analysis

⟦TRUE⟧ : x = 0;

⟦A⟧ : x++;

⟦B⟧ : x­­;

∀c {{A}, {B}, {A, B}}:∈

({A} → , {B} → , {A, B}→)⊥ ⊥ ⊥

({A} → L
1
, {B} → L

1
, {A, B}→ L

1
)

({A} → L
2
, {B} → L

1
, {A, B}→ L

2
)

({A} → L
2
, {B} → L

3
, {A, B}→ L

4
)

...

...

EB1 = ({A} → J1, {B} → 0, {A,B} → J1)

Energy Model

J1

(d) Calculating local energy bounds for each node in the
CFG

Fig. 1: SPL example with program analysis and the energy estimation approach overview

static analysis CFG used for Sign Analysis (Figure 1c). This
approach will be the basis of our work.

III. STATIC ENERGY ANALYSIS IN SPL: THE IDEA

In order to achieve static energy consumption in SPL it is
necessary not only to determine the behavior of all products,
but also to understand how it can affect energy consumption. In
such analysis the goal is to give an upper/lower energy bound
for each instruction, determine how they are all related, and
calculate an estimation for the worst/best case scenario (similar
to worst/best case execution time estimation [3]).

In classic execution time prediction, in the first step, called
Processor Behavior Analysis, the processor is analyzed in
order to determine how it will behave when executing a certain
statement. Moreover, it allows to determine how it will behave
depending also on what statements were executed before.

Our goal for SPL static energy analysis is to create an
abstract model of such behavior, with all the processor states
that can affect energy consumption. This will be called our
prediction model, P. With the problem modeled that way, all
the properties from static dataflow analysis will be maintained.
This was already proven to work before [4]. For our purpose,
we want to use this approach to model every hardware
component that influences the energy consumption.

The prediction model P, together with the fixed point
computation of static analysis, will only return, for each node
of the CFG, the hardware components states in the worst/best
case scenario. In order to get an energy estimation, and
following the WCET/BCET principle, we need to first match
those states with an energy model, E, where the consumption
per state and instruction is specified, and then use a constraint
solving technique to get an upper/lower bound estimation, as
explained in [3].

In order to keep our approach feature-oriented we need to
combine these techniques with SPL static analysis concepts. In
other words, we need to calculate upper/lower energy bounds
for every product. The approach to follow for that is the exact
same one as presented in Section II: compute the information
in each node for every product of the SPL, using the three
static program analysis techniques.

The final result of this analysis allows us to predict how the
components will behave after executing every statement, and
for every valid product in the SPL. Figure 1d represents the
basic overview of our approach, when analyzing Example 1a.

IV. CONCLUSION AND FUTURE WORK

This paper presents ongoing work on the analysis of energy
consumption in SPL. We have chosen to combine energy
estimations with static program analysis and time estimation
techniques, and the precision and correctness of our approach
will obviously be dependent of the quality of our behavior
analysis. In other words, the more accurate the lattice and
transfer functions are, the more trustworthy the results will
be. In order to prove our concept we will first develop
our prediction model using only a subset of all hardware
components, and represent the basic behavior of them.

Even if we can model every component into a combination
of lattice and transfer functions, we still need an energy model
that can be used together with it. As we said before, we assume
that such a model can be provided by hardware manufacturers
in the future, but for proof of concept we will design a simpler
one that can be used with the simpler prediction model.

REFERENCES

[1] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about software
energy consumption,” in Proc. of the 11th Working Conference on Mining
Software Repositories, ser. MSR 2014. ACM, 2014, pp. 22–31.

[2] C. Brabrand, M. Ribeiro, T. Tolêdo, and P. Borba, “Intraprocedural
dataflow analysis for software product lines,” in Proc. of the 11th Annual
International Conference on Aspect-oriented Software Development, ser.
AOSD ’12. ACM, 2012, pp. 13–24.

[3] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström, “The worst-case execution-
time problem - overview of methods and survey of tools,” ACM Trans.
Embed. Comput. Syst., vol. 7, no. 3, pp. 36:1–36:53, May 2008.

[4] A. Møller and M. I. Schwartzbach, “Static program analysis,” May 2015,
department of Computer Science, Aarhus University.

