
An Empirical Study on End-users Productivity Using
Model-based Spreadsheets∗

Laura Beckwith Jácome Cunha
HCIResearcher, Denmark Universidade do Minho, Portugal

beckwith@hciResearcher.com jacome@di.uminho.pt

João Paulo Fernandes João Saraiva
Universidade do Minho & Universidade do Minho, Portugal

Universidade do Porto, Portugal jas@di.uminho.pt
jpaulo@{di.uminho.pt, fe.up.pt}

ABSTRACT
Spreadsheets are widely used, and studies have shown that most end-user spreadsheets contain non-
trivial errors. To improve end-users productivity, recent research proposes the use of a model-driven
engineering approach to spreadsheets.
In this paper we conduct the first systematic empirical study to assess the effectiveness and efficiency
of this approach. A set of spreadsheet end users worked with two different model-based spreadsheets,
and we present and analyze here the results achieved.

1 INTRODUCTION

Spreadsheets can be viewed as programming environments for non-professional program-
mers, the so-called “end users” [Nardi, 1993]. An end user is a teacher, an engineer, a
secretary, an accountant, in fact almost anyone except a trained programmer. These people
use computers to get their job done; often they are not interested in programming per se.
End-user programmers vastly outnumber professional ones creating every year hundreds of
millions of spreadsheets [Scaffidi et al., 2005]. As numerous studies have shown, this high
rate of production is accompanied by an alarming high rate of errors, with some reporting
that up to 90% of real-world spreadsheets contain errors [Panko, 2000, Rajalingham et al.,
2001, Powell and Baker, 2003].
In order to overcome these limitations of spreadsheets, a considerable amount of research
has been recently done by the human computer interaction community [Abraham and Er-
wig, 2006, Cunha et al., 2010, 2009b,a, Engels and Erwig, 2005, Erwig et al., 2005]. One of
the promising solutions advocates the use of a Model-Driven Engineering (MDE) approach
to spreadsheets. In such an approach, a business model of the spreadsheet data is defined,
and then end users are guided to introduce data that conforms to the defined model [Cunha

∗Supported by Fundação para a Ciência e a Tecnologia, grants no. SFRH/BD/30231/2006and SFRH/
BPD/46987/2008. This work is funded by ERDF - European Regional Development Fund through the
COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT
- Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project
FCOMP-01-0124-FEDER-010048.



et al., 2009b]. Indeed, several models to represent the business logic of the spreadsheet
have been proposed, namely, templates [Abraham and Erwig, 2006, Erwig et al., 2005],
ClassSheets [Cunha et al., 2010, Engels and Erwig, 2005], relational models [Cunha et al.,
2009a]. Several techniques to infer such models from a (legacy) spreadsheet data have also
been studied [Abraham and Erwig, 2006, Cunha et al., 2010].
Although all these works claim that a MDE approach improves end-users productivity, there
is no detailed evaluation that supports this idea besides our first attempt in [Cunha et al.,
2011]. In this paper, we present a complete empirical study that we have conducted with
the aim of analyzing the influence of using models in end-users spreadsheet productivity.
In this study we consider two different model-based spreadsheets, as proposed in [Cunha
et al., 2009a,b]. We assess end-users productivity in introducing, updating and querying
data in those two model-based spreadsheets and in a traditional one. As the models we con-
sider represent database-like spreadsheets only it should be clear that we are not analyzing
all possible (types of) spreadsheets. Nevertheless, even considering spreadsheets strongly
related to databases, the domain of our tests is clearly the spreadsheet environment.
In this paper we wish to answer the following research questions:

RQ1 Do end users introduce fewer errors when they use one of the model-based spread-
sheet versus the original unmodified spreadsheet?

RQ2 Are end users more efficient using the model-based ones?

RQ3 Do particular models lead to fewer errors in particular tasks?

The study we conducted to answer these questions is necessary and useful, since it is based
on a sound experimental setting and thus allow us to draw sound conclusions for further
studies on how to improve spreadsheet end users productivity.
This paper is structured as follows: in Section 2 we present the model-based spreadsheets
we considered in our study. In Section 3 we describe the design of our study. We present
and analyze in detail the results of our study in Section 4. Several threats to validity are
discussed in Section 5. Finally, we draw our conclusions in Section 6.

2 MODEL-BASED SPREADSHEETS

There have been proposed two different techniques to tackle the problem of preventing
errors in spreadsheets [Cunha et al., 2009b,a]. In order to introduce these works we will rely
on the spreadsheet shown in Figure 1. This spreadsheet represents a movie renting system
registering movies, renters and rents. Labels in the spreadsheet should be self-explicative.

Figure 1: Part of a spreadsheet representing a movie renting system.

2.1 The Refactored Spreadsheet Model

The spreadsheet shown in Figure 1 defines a valid model to represent the information of the
renting system. However, it contains redundant information. For example, the information
about the client Paul appears four times in the spreadsheet! This kind of redundancy



makes the maintenance of the spreadsheet complex and error-prone, specially for end users.
A mistake is easily made, for example, by mistyping a name and thus corrupting the data.
The same information can be stored without redundancy. In fact, in the database commu-
nity, techniques for database normalization are commonly used to minimize duplication of
information and improve data integrity. Database normalization is based on the detection
and exploitation of functional dependencies inherent in the data [Codd, 1970]. We have
adapted these techniques to work with spreadsheets: from the spreadsheet data we infer a
set of normalized FDs, and from them, we compute a relational model [Cunha et al., 2009a].
A spreadsheet respecting such model is shown in Fig. 2.

Figure 2: Part of a refactored spreadsheet representing a movie renting system.

The obtained modularity solves two well-known problems in databases, namely update and
deletion anomalies [Codd, 1970]. The former problem occurs when we change information
in one tuple but leave the same information unchanged in the others. In our example, this
may happen if the user changes the rent per day of movie number mv23 from 0.5 to 0.6.
In the modular spreadsheet that value occurs only once in the movie table and so that prob-
lem will never occur. The latter problem happens when we delete some tuple and lose other
information as a side effect. For example, if the user deletes row 3 in the original spreadsheet
all the information about movie mv1 is eliminated. Since we have a deep knowledge about

Figure 3: Introducing a new row with a
previously used code produces an error.

the relations and relationships in the data, we can
generate spreadsheets that respect them. For ex-
ample, in the renter table, the generated spread-
sheet will not allow the user to introduce two
renters with the same number (renterNr). If that
error occurs the spreadsheet system should warn
the user as shown in Figure 3. Obviously, it is not
possible to perform this validation in the original
spreadsheet. The refactored spreadsheet not only
improves modularity and detects the introduction of incorrect data, it also eliminates redun-
dancy: the redundancy present in the original spreadsheet has been eliminated. As expected,
the information about renters (and movies) occurs only once. These features should help
end users to commit less errors. In the sequel, this model will be referred as refactored.

2.2 The Visual Spreadsheet Model

In [Cunha et al., 2009b], the authors proposed a technique to enhance a spreadsheet sys-
tem with mechanisms to guide end users to introduce correct data. Using the relational
database schema induced by the data we construct a spreadsheet environment that respects
that schema. For example, for the movie spreadsheet, the system does not allow end users
to introduce two different movies with the same number (movieID). Instead, it offers to the
user a list of possible movies, such that he can choose the value to fill in the cell. This
new spreadsheet, that we show in Figure 4, also includes advanced features which provide
information to the end user about correct data that can be introduced.
We consider 3 types of advanced features. First, we consider bidirectional auto-completion
of column values: based on the relational schema, we know that some columns (conse-
quents) depend on another column (antecedents). Both antecedent and consequent columns



Figure 4: Part of a visual spreadsheet representing a movie renting system.

have combo boxes that allow users to choose values instead of writing them. Using this
knowledge we created a mechanism that automatically fills in consequent columns when
antecedent columns are filled in. When values are written in consequent columns, the val-
ues in the antecedent columns are filtered, showing only the ones that can imply the chosen
consequents. Using the bidirectional auto-completion feature the spreadsheet system guar-
antees that the user does not introduce data that violates the inferred model. The second
feature is non-editable columns: this feature prevents the user from editing consequent col-
umns since this could break the relationship with the antecedents. Note that, such columns
are automatically filled in by selecting the corresponding antecedent. Finally, we consider
safe deletion of rows: the user receives a warning when the deletion of a row provokes the
deletion of information not represented elsewhere.
Like in modern programming environments, the refactored spreadsheet system also offers
the possibility of using traditional editing, i.e. the introduction of data by editing each of
the columns. When using traditional editing the end user is able to introduce data that vio-
lates the model inferred from the previous spreadsheet data. The spreadsheet environment
includes a mechanism to re-calculate the relational database model after traditional editing.
This new relational model is used to guide the end user in future non-standard editing of the
spreadsheet. From now on, this model of spreadsheet will be referred as the visual model.

3 STUDY DESIGN

As suggested in [Perry et al., 2000] we organized the study as follows:

1. Formulating hypothesis to test: we spent a considerable amount of time organizing our
ideas and finally formulating the hypothesis presented in this work: model-based spread-
sheets can help end users committing less errors when editing and querying spreadsheets.

2. Observing a situation: once we got enough and appropriate qualified participants we ran
the study itself. During the study, we screen casted the participants’ computers and after-
wards we collected the spreadsheets they worked on.

3. Abstracting observations into data: we computed a series of statistics, that we present
in detail in Section 4, over the spreadsheets participants developed during the study: we
graded their performance and measured the time they took to perform the proposed tasks.
All the data we used is available at the SSaaPP project web page http://ssaapp.di.
uminho.pt. The tasks and the spreadsheets participants received are also available.

4. Analyzing the data: the enormous collection of data that we gathered was later systemat-
ically analyzed. This analysis is also presented in this paper, in Section 4.

5. Drawing conclusions with respect to the tested hypothesis: based on the results we
obtained, we finally drawn some conclusions. We were also able to suggest some future



research paths based on our work, which are presented in the Section 6.

Our study aimed to answer if participants were able to perform their tasks with more accu-
racy and/or faster given the experimental environments. We used a within subjects design,
where each participant received 3 spreadsheets, one for each problem (DISHES, PROPER-
TIES, PROJECTS). Each of the 3 spreadsheets was randomly distributed under one of the
3 model (original, visual, refactored). Participants were asked to do various tasks in each
spreadsheet: data entry, editing, and calculations. They were encouraged to work as quickly,
but were not given time limits.

3.1 Methodology

Participants started the study by filling out a background questionnaire so we could col-
lect their area of study and previous experience with spreadsheets, other programming lan-
guages and English comfort (Portuguese is their mother language). An introduction to the
study was given orally in English, this was explicitly not a tutorial for the different environ-
ments because the goal was to see if even without any introduction to the various models
the participants would still be able to understand and complete the tasks. The participants
were asked to work as quickly and accurately as possible. Since the order of the spread-
sheets was randomized, they were told that the other sitting around them might appear to
be moving faster, but that some tasks were shorter than others. After 2 hours participants
were stopped if they were not already finished. Following the tasks they had a post session
questionnaire which contained questions assessing their understanding of the different mod-
els, (3 questions for refactored and 4 for visual). Correct answers could only be given by
participants having understood the running models. Grading the questionnaires was done as
follows: a correct answer receives total points; an incorrect answer receives 0 points and an
answer that is not incorrect nor (totally) correct receives half of the points. We recorded the
users screens using screen capture technology. At the end of the study the users completed
spreadsheets were saved and graded for later analysis.

3.2 Participants

Recruitment was conducted through a general email message to the university, asking for
students with spreadsheet experience and comfort with English. Of the hundreds that re-
sponded (here was a compensation involved), participants were selected based on spread-
sheet experience, comfort with English, and majors outside of computer science and en-
gineering. In total, 38 participants finished the study with data we were able to use (25
females, 11 males, and 2 who did not answer about their gender). Two participants did not
try to solve one of the proposed tasks; for these participants, we included in the study only
the tasks they undertook. A few participants’ machines crashed and therefore they were
eliminated from the study. The majority of participants were between 20-29 years of age,
with the remaining under 20. All were students at the university. About 2/3 were working on
their Baccalaureate degree, the remaining on their Masters. None were studying computer
science or engineering and the most represented majors were medicine, economics, nursing
and biology. A variety that is good for representing the end-user population of spreadsheets.

3.3 Tasks

The task lists were designed to include tasks that are known to be problematic in spread-
sheets, which involve data insertion, edition and the use of formulas. The tasks were 1) add



new information to the spreadsheet, 2) edit existing data in the spreadsheets and 3) do some
calculations using the data in the spreadsheets.
Some of the tasks asked users to add many new rows of data, with the aim of a repetitive
task being common in real-world situations. As we were designing the tasks, we imagined
a type of data entry office scenario, where an office worker might receive on paper data
which was initially filled out on a paper form and needed to be entered into a spreadsheet.
This first task of data entry, in theory, should be fastest (and done with fewest entry errors)
in the refactored spreadsheet. The second task, of making changes to existing data in a
spreadsheet should also be easier within a refactored spreadsheet, since the change only
needs to be made in one location, and therefore there would be less chance of forgetting to
change it. The final task was to do some calculations using the data in the spreadsheet, such
as averages, etc. This task was added because of the frequency of problems with formulas.
One of the spreadsheets used in the study, PROPERTIES, stores information about a house
renting system (adapted from [Connolly and Begg, 2001]). This spreadsheet has informa-
tion about renters, houses and their owners as well as the dates and prices of the rents.
A second spreadsheet, DISHES, contains information about sells of detergents to dish wash-
ers. Information about the detergents, prices and the stores where they are sold is present
on this spreadsheets (adapted from [Powell and Baker, 2003]).
The last spreadsheet, PROJECTS, stores information about projects, like the manager and
delivery date, employees instruments used (adapted from [Alhajj, 2003]).
In the task list for DISHES, 67% (39 out of 58 cells needed to be changed) of the tasks
consist of inserting new data, 21% (12/58) are editing tasks and 12% (7/58) involve calcu-
lations over the data in the spreadsheet. In the task list for PROJECTS, 80% (221/277) of the
tasks are for inserting new data, 7% (20/277) for edition and 13% (36/227) for calculations.
Finally, for PROPERTIES, inserting data tasks are 56% (64/115) of the total, whereas data
editing and calculation tasks are 19% (22/115) and 25% (29/115) of the total, respectively.
Grading the participants’ performance was done as follows. For tasks involving adding new
data to the spreadsheet or performing calculations over spreadsheet data, whenever a partic-
ipant executes a task as we asked him/her to, he/she is awarded 100% of the total score for
that task; on the contrary, if the participant does not at all try to solve a particular task, he/she
gets no credit for that. An intermediate situation occurs when participants try to solve a task,
but fail to successfully conclude it in its entirety. In this case, the participant is awarded
50% of the score for that task. For tasks involving editing data, a value in the interval

original refactored visual Total

DISHES 12 13 12 37
PROJECTS 11 13 13 37
PROPERTIES 14 11 13 38
Total 37 37 38

Table 1: Participants per spreadsheet/model.

0%−100% is awarded according to
the participants’ success rate in such
tasks. Table 1 shows the number
of participants that worked on each
spreadsheet and each model. Note
that the distribution of models and
spreadsheets by the participants is
homogeneous.

4 ANALYZING END-USER PERFORMANCE

We divide the presentation of our empiric results under two main axes: effectiveness and
efficiency. In studying effectiveness we want to compare the three running models for the
percentage of correct tasks that participants produced in each one. In studying efficiency
we wish to compare the time that participants took to execute their assigned tasks in each
of the different models. We start by effectiveness.



4.1 Effectiveness

Each participant was handed 3 different lists of tasks (insert, edit and query data) to perform
on 3 different spreadsheets (DISHES, PROJECTS, PROPERTIES). Each spreadsheet, for the
same participant, was constructed under a different model (original, refactored visual).
For each spreadsheet, and for each model, we started by analyzing the average of the scores
obtained by participants. We shown in Figure 5 the results of such analysis.

original refactored visual

DISHES 86% 76% 78%
PROJECTS 73% 68% 78%
PROPERTIES 75% 64% 62%

Figure 5: Global effectiveness results.

We notice that no spreadsheet model is the best for all spreadsheets in terms of effectiveness.
Indeed, we may even notice that spreadsheets in the traditional style, the original model,
turned out to be the best for both the DISHES and PROPERTIES spreadsheets. The visual
model suited the best for the PROJECTS spreadsheet.
In the same line of reasoning, there is no worst model: refactored achieved the worst results
for DISHES and PROJECTS; visual got the lowest average scores for PROPERTIES. Neverthe-
less, these results seem to indicate that the models that we have developed are not effective
in reducing the number of errors in spreadsheets, since one of them is always the model
getting the lowest scores. This first intuition, however, deserves further development. For
once, on the theoretical side, one may argue that original is, without a doubt, the model that
end users are accustomed to. Recall that in the study, we opted to leave out participants with
computer science backgrounds, who could be more sensible to the more complex models
refactored and visual, preferring to investigate such models on traditional users of spread-
sheets. On the other hand, we remark that these more complex models were not introduced;
a part of our study was also to learn whether or not they could live on their own.
Our next step was to investigate whether the (apparent) poor results obtained by complex
models are due to their own nature or if they result from participants not having understood
them. So, we studied participations that did not achieve at least 50%, which are distributed
by the spreadsheet models as follows: original, 0%, refactored, 25% and visual, 21%.
While in original no participation was graded under 50%, this was not the case for refac-
tored and visual, which may have degraded their overall average results. For these par-
ticipations, we analyzed the questionnaire that participants were asked to fill in after the
session. The average classifications for the post session questionnaires, for participations in
the study that were graded under 50% is 24% for refactored and 31% for visual.
These results show that participants obtaining poor gradings on their effectiveness, also got
poor gradings for their answers to the questions assessing how they understood the models
they had worked with. In fact, such participants were not able to answer correctly to (at
least) two thirds of the questions raised in the post session questionnaire. From such results
we can read that 1/4 of participants was not able to understand the more complex models,
which might have caused a degradation of the global effectiveness results for these models.
This also suggests that if these models are to be used within an organization, it is necessary



to take some time to introduce them to end users in order to achieve maximum effectiveness.
Nevertheless, even without this introduction, the results show that the models are competi-
tive in terms of effectiveness: at most they are 13% worst than the original model, and for
one of the spreadsheets, the visual model even got the best global effectiveness.

4.1.1 Effectiveness by Task Type

Next, we wanted to realize how effective models are to perform each of the different types
of tasks that we have proposed to participants: data insertion, data edition and statistics.

i) Data insertion: The results presented in Figure 6 show, for each model, how effective
participants were in adding new information to the spreadsheets they received.

original refactored visual

DISHES 91% 90% 81%
PROJECTS 76% 60% 75%
PROPERTIES 86% 67% 68%

Figure 6: Effectiveness results for data insertion.

The original model revealed to be the most effective, for all three spreadsheets, being
closely followed by refactored and visual for DISHES, and by visual for PROJECTS. The
refactored model, for PROJECTS, and the models refactored and visual, for PROPERTIES,
proved not to be competitive for data insertion, in the context of the study. Again, we be-
lieve that this in part due to these models not having been introduced previously to the study:
the insertion of new data is the task that is most likely to benefit from totally understanding
of the running model, and also the one that can be otherwise most affected. This is con-
firmed by the effectiveness results observed for other task types, that we present next.

ii) Data edition: Now, we analyze the effectiveness of the models for editing spreadsheet
data. The results presented in Figure 7 show that once a spreadsheet is populated, we can
effectively use the models to edit its data.

original refactored visual

DISHES 91% 82% 82%
PROJECTS 54% 62% 50%
PROPERTIES 65% 98% 48%

Figure 7: Effectiveness results for data edition.

This is the case of refactored for PROJECTS and specially for PROPERTIES. original is the
most effective in data editing for DISHES. visual is comparable to refactored for DISHES,



but for all other spreadsheets, it always achieves the lowest scores among the three models.

iii) Statistics: Finally, we have measured the effectiveness of the models for performing
calculations over spreadsheet data, obtaining the results shown in Figure 8.

original refactored visual

DISHES 52% 37% 57%
PROJECTS 19% 76% 13%
PROPERTIES 44% 57% 51%

Figure 8: Effectiveness results for statistical calculations.

We can see that visual obtained the best results for DISHES, and that refactored obtained
the best results for both spreadsheets PROJECTS and PROPERTIES. We can also see that all
models obtained the worst results for exactly one spreadsheet.
Results from i), ii) and iii) confirm that the models are competitive. On the other hand,
these results allow us to draw some new conclusions: if the models are going to be used
within an organization, it may not always be necessary to introduce them prior to their use.
Indeed, if an organization mostly edits spreadsheet data or computes new values from such
data, and does not insert new data, then the models, and specially refactored, may deliver
good results even without being explained. These results also show that it is inserting data
that models need to be better understood by end users in order to increase effectiveness.

4.2 Efficiency

In this section, we analyze the efficiency results obtained in our study by the models that
we have been considering in this paper.
We started by measuring, for each participant, and for each spreadsheet, the time elapsed
from the moment participants started reading the list of tasks to undertake until the moment
they completed the tasks proposed for that particular spreadsheet and moved on to a different
spreadsheet or concluded the study. We are able of calculating these times by looking at
the individual screen activity that was recorded during the study, for each participant: the
participant stopping interacting with the computer signals the end of his/her work on a
spreadsheet. The measured period therefore includes the time that participants took trying
to understand the models they received each spreadsheet in. Figure 9 presents the average
of the overall times, for each spreadsheet and for each model.
We can see that refactored and visual are competitive in terms of efficiency: participants
performed fastest for DISHES in visual, and fastest, by a marginal factor, for the PROPER-
TIES in refactored. original got the best efficiency measurements for PROJECTS, also by a
marginal factor. Again, note that no introduction to these models preceded the study. There-
fore, it is reasonable to assume that the results in Figure 9 include some time overhead. In
an attempt to measure this overhead, which is a consequence of participants having to an-
alyze a new model, we extracted some information out of the participants’ screen activity.
Indeed, we measured the time elapsed from the moment participants started reading, for
each spreadsheet, the list of tasks to perform, until the moment they actually began editing
the spreadsheet. We assume that this period corresponds exactly to the overhead of under-



original refactored visual

DISHES 35′ 32′ 28′

PROJECTS 39′ 40′ 41′

PROPERTIES 37′ 36′ 40′

Figure 9: Global efficiency results.

standing each model (obviously increased by the time spent reading the list of tasks, which
we are not able of isolating further, but that should be constant for any spreadsheet model,
since the task list does not change with the model). These results are presented in Table 2.
We notice that there is a constant average overhead of 2 minutes for almost all models and
spreadsheets, with the most significant exceptions occurring for refactored, for both DISHES

original refactored visual

DISHES 2′ 6′ 1′

PROJECTS 2′ 4′ 2′

PROPERTIES 2′ 2′ 2′

Table 2: Average overhead results.

and PROJECTS. In these cases, we can
clearly notice an important time gap, which
provides some evidence that refactored is
most likely the hardest model to under-
stand. This also comes in line with pre-
vious indications that the merits of mod-
els can be maximized if we explain them
to end users. For the particular case of ef-
ficiency, this means that the results shown
in Figure 9 could be further improved for the more complex models, and particularly for
refactored.

5 THREATS TO VALIDITY

As suggested by Perry et al. [Perry et al., 2000], we discuss three types of influences that
might limit the validity of our study.

Construct Validity: Do the variables and hypotheses of our study accurately model the
research questions?

i) Measuring the time overhead: when studying efficiency, we measured the overhead
of understanding each model as the period of time that participants stopped interacting
with a spreadsheet and started editing the next one. In this period, it might have been
the case that participants, instead of being focused on understanding the new model, took
the time to do something else, like resting. This could affect our conclusions in terms of
efficiency. However, during the study, participants where supervised by two authors, who
observed that this was not the case. Even if we were not able to spot a small number of such
occurrences, the differences in the results should be minimal and so they should not affect
our conclusions.
ii) Original model: In our study, we have used three spreadsheets that we have assumed to

be in the original model. What we are saying is that these three spreadsheets are represen-
tative of the spreadsheets normally defined by end users. Although this set of spreadsheets



may be too large to be represented by (any) three spreadsheets, we have taken DISHES,
PROJECTS and PROPERTIES directly, or with small changes, from other works on general
purpose spreadsheets [Alhajj, 2003, Connolly and Begg, 2001, Powell and Baker, 2003].

Internal Validity: Can changes in the dependent variables be safely attributed to changes
in the independent variable?

i) Accuracy of the analysis: Some of the inferences we make in this paper deserve further
analysis. To some extent, we assume that our models could achieve better results if a tutorial
has been given to the participants. In fact, we have no proof of this, but the evidences from
the study seem to strongly indicate this fact. A new study is required to prove this, though.
ii) Accuracy of measurements: Each task proposed to participants was individually graded.

For most of the cases, this was done automatically using OpenOffice scripts. These scripts
and their results were tested and checked. The cases for which an automatic grading was not
possible were carefully graded by hand. All grades were validated by two authors and were
randomly re-checked. Since we have more than 1400 grades, it is virtually impossible to
guarantee full accuracy. This could affect the results observed for dependent variables (effi-
ciency and effectiveness) without really the independent variables (the models considered)
having changed. Nevertheless, if imprecisions exist in the grades, they should be equally
distributed by the 3 models and thus they should not affect the overall results.
The measurement of times that lead to the results presented earlier was achieved by visual-
izing the screen casts made during the study for. Being a manual and repetitive task, it is
subject to imprecisions. Also, not being able to visualize the actual participants’ behaviour
now may lead to imprecise measurements. We are confident that, even if there are impreci-
sions, such imprecisions should be distributed evenly by all measurements and thus do not
influence the efficiency results or the conclusions that we draw based on them.

External Validity: Can the study results be generalized to settings outside the study?

i) Generalization: In this study we used three different spreadsheets from different do-
mains. We believe that the results can be generalized to other spreadsheets, although proba-
bly not to all. The models we developed are not restricted to any particular spreadsheet, and
thus, the results should be the same if the study was run with a different set of spreadsheets.
ii) Industrial usage: Participants were asked to simulate industrial activity: they received

some data on paper that they had to register in a spreadsheet. Although we have tried to
create a realistic environment for the study, it is likely that people would respond differ-
ently in an industrial context. Also, participants were University students whose technical
abilities and experience surely differ from other spreadsheet users. Nevertheless, we be-
lieve that this affects no spreadsheet/model in particular. Possible impacts would affect all
spreadsheets/models in the same way and thus the overall results apply. We believe that if
the study was conducted on an industrial environment, the conclusions should be similar.

6 CONCLUSIONS

In this paper, we have presented the results of an empirical study that we conducted in order
to assess the practical interest of models for spreadsheets.
According to [Perry et al., 2000], three topics deserve further analysis. The first is accuracy
of interpretation: this study was prepared carefully and a significantly large number of end
users participated in it. Our goal here was to guarantee that the results are not unknowingly



influenced. For this, it also contributes the fact that we make all the elements of this study
available, both in this paper and online. The second topic is relevance: MDE is one of the
most significant research areas in software engineering. We adapted some techniques from
this field to spreadsheets and showed that they can bring benefit not only for professional
users but also for end users. The last topic is impact: our first results show that MDE can
bring benefits for spreadsheet end users. This is a promising research direction, that we
believe can be further explored, particularly in contexts similar to the one of this paper.
From the preparation of the study, from running it and from its results, we can summarize
our main contributions as follows: we have shown that MDE techniques can be adapted
for end-users software; moreover, we provided empirical evidence that models can bring
benefits to spreadsheet end users; finally, we have proposed a methodology that can be
reused in studies similar to the one we have conducted.
Finally, we seek to answer the research questions that we presented in the introduction of
this paper, which correspond exactly to the questions our study was designed to answer.

RQ1: Our observations indicate that there is potential for improving end-user effectiveness
using model-based spreadsheets. Even if this is not always the case, our results also indicate
that deeper insight on the spreadsheet models is required to maximize effectiveness. Indeed,
we believe that the effectiveness results for refactored and visual could have been signif-
icantly better if these models had been preliminary presented to the participants of our study.

RQ2: We observed that, frequently, the more elaborate spreadsheet models allowed users
to perform faster. Nevertheless, we were not fully able of isolating the time that participants
took trying to understand the models they were given. So, we believe that the observed
efficiency results could also be better for refactored and visual if they had been introduced.

RQ3: Although this was not observed for inserting tasks, the fact is that, for editing and
querying data the models did help end users. Furthermore, the results seem to indicate that
the inserting data task is the one that benefits the most from better understanding the models.

With this study we have shown that there is potential in MDE techniques for helping spread-
sheet end users. The study of these techniques for professional users of spreadsheets seems
a promising research topic. Moreover, the use of MDE techniques in other non-professional
softwares should also be investigated.

References
Robin Abraham and Martin Erwig. Inferring templates from spreadsheets. In Proc. of the 28th Int. Conference

on Software Engineering, pages 182–191, New York, NY, USA, 2006. ACM. ISBN 1-59593-375-1.

Reda Alhajj. Extracting the extended entity-relationship model from a legacy relational database. Information
Systems, 28(6):597–618, 2003. ISSN 0306-4379. doi: http://dx.doi.org/10.1016/S0306-4379(02)00042-X.

E. F. Codd. A relational model of data for large shared data banks. Communications of the ACM, 13:377–387,
June 1970. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/362384.362685.

Thomas M. Connolly and Carolyn Begg. Database Systems: A Practical Approach to Design, Implementation,
and Management. Addison-Wesley Longman Publishing Co., Inc., Boston, USA, 2001. ISBN 0201708574.

Jácome Cunha, João Saraiva, and Joost Visser. From spreadsheets to relational databases and back. In PEPM
’09: Proceedings of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
pages 179–188, New York, NY, USA, 2009a. ACM. ISBN 978-1-60558-327-3.



Jácome Cunha, João Saraiva, and Joost Visser. Discovery-based edit assistance for spreadsheets. In Proc. of the
2009 IEEE Symposium on Visual Languages and Human-Centric Computing, pages 233–237, Washington,
DC, USA, 2009b. IEEE Computer Society. ISBN 978-1-4244-4876-0.

Jácome Cunha, Martin Erwig, and João Saraiva. Automatically inferring classsheet models from spreadsheets.
In Proc. of the 2010 IEEE Symposium on Visual Languages and Human-Centric Computing, pages 93–100,
Washington, DC, USA, 2010. IEEE Computer Society.

Jácome Cunha, Laura Beckwith, João Paulo Fernandes, and João Saraiva. End-users productivity in model-
based spreadsheets: An empirical study. In IS-EUD ’11: Third International Symposium on End-User
Development, 2011. to appear.

Gregor Engels and Martin Erwig. ClassSheets: Automatic generation of spreadsheet applications from object-
oriented specifications. In Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering, pages 124–133, New York, NY, USA, 2005. ACM. ISBN 1-59593-993-4.

Martin Erwig, Robin Abraham, Irene Cooperstein, and Steve Kollmansberger. Automatic generation and main-
tenance of correct spreadsheets. In ICSE ’05: Proceedings of the 27th International Conference on Software
Engineering, pages 136–145, New York, NY, USA, 2005. ACM. ISBN 1-59593-963-2.

Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End User Computing. MIT Press, Cam-
bridge, MA, USA, 1993. ISBN 0262140535.

Raymond R. Panko. Spreadsheet errors: What we know. What we think we can do. Proceedings of the
Spreadsheet Risk Symposium, European Spreadsheet Risks Interest Group, July 2000.

Dewayne E. Perry, Adam A. Porter, and Lawrence G. Votta. Empirical studies of software engineering: a
roadmap. In ICSE ’00: Proceedings of the Conference on The Future of Software Engineering, pages 345–
355, New York, NY, USA, 2000. ACM. ISBN 1-58113-253-0.

Stephen G. Powell and Kenneth R. Baker. The Art of Modeling with Spreadsheets. John Wiley & Sons, Inc.,
New York, NY, USA, 2003. ISBN 0471209376.

Kamalasen Rajalingham, David Chadwick, and Brian Knight. Classification of spreadsheet errors. European
Spreadsheet Risks Interest Group (EuSpRIG), 2001.

Christopher Scaffidi, Mary Shaw, and Brad Myers. Estimating the numbers of end users and end user program-
mers. In Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing,
pages 207–214, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2443-5.


