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CENTRIA - Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa

Abstract. Parametrized logic programs are very expressive logic pro-
grams that generalize normal logic programs under the stable model
semantics, by allowing complex formulas of a parameter logic to appear
in the body and head of rules. In this paper we study the decidability
of these rich programs and propose an implementation that combines,
in a modular way, a reasoner for the parameter logic with an answer set
solver.

1 Introduction

Parametrized logic programming [9] was introduced as an extension of answer
set programming [8] with the motivation of providing a meaning to theories
combining both logic programming connectives with other logical connectives,
and allowing complex formulas using these connectives to appear in the head and
body of a rule. The main idea is to fix a monotonic logic L, called the parameter
logic, and build up logic programs using formulas of L instead of just atoms.
The obtained parametrized logic programs have, therefore, the same structure
of normal logic programs, the only difference being the fact that atomic symbols
are replaced by formulas of L.

When applying this framework, the choice of the parameter logic depends on
the domain of the problem to be modeled. As examples, [9] shows how to obtain
the answer-set semantics of logic programs with explicit negation, a paraconsis-
tent version of it, and also the semantics of MKNF hybrid knowledge bases [15],
using an appropriate choice of the parameter logic. Moreover, [10] introduces
deontic logic programs using standard deontic logic [20] as the parameter logic.

Parametrized logic programming can be seen as a framework which allow us
to add non-monotonic rule based reasoning on top of an existing (monotonic)
language. This view is quite interesting, in particular in those cases where we
already have a monotonic logic to model a problem, but we are still lacking
some conditional or non-monotonic reasoning. In these situations, parametrized
logic programming offers a modular framework for adding such conditional and
non-monotonic reasoning, without having to give up on the monotonic logic at
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hand. One interesting example is the case of MKNF hybrid knowledge bases,
where the existing monotonic logics are description logics.

However, in order to make parametrized logic programming usable in prac-
tice, we need to prove that this rich combination does not compromise decid-
ability in the case of a decidable parameter logic. Moreover, given a decidable
parameter logic, for pragmatic reasons the implementation for a reasoner should
make a modular use of an existing reasoner for the parameter logic and an an-
swer set solver. This modularity is extremely important since it allows us to use
the large body of successful research done in the area of stable model semantics
implementation and answer set programming.

In this paper, after introducing the framework of parametrized logic pro-
grams (Section 2), we address the decidability of the stable model entailment
of parametrized logic programs and study the implementation of a reasoner for
parametrized logic programs, combining a reasoner for the parameter logic and
answer set solver in a modular way (Section 3). We also study some interesting
examples of parameter logics over a restricted language that have better com-
putational properties than the general case. We end with some conclusions and
draw some paths for future research (Section 4).

2 Parametrized logic programs

In this section we introduce the syntax and semantics of normal parametrized
logic programs [9].

2.1 Language

The syntax of a normal parametrized logic program has the same structure of
that of a normal logic program. The only difference is that the atomic symbols
of a normal parametrized logic program are replaced by formulas of a parameter
logic, which is restricted to be a monotonic logic. Let us start by introducing the
necessary concepts related with the notion of (monotonic) logic.

Definition 1. A (monotonic) logic is a pair L = 〈L,`L〉 where L is a set of
formulas and `L is a Tarskian consequence relation [21] over L, i.e., satisfying
the following conditions, for every T ∪ Φ ∪ {ϕ} ⊆ L,
Reflexivity: if ϕ ∈ T then T `L ϕ;
Cut: if T `L ϕ for all ϕ ∈ Φ, and Φ `L ψ then T `L ψ;
Weakening: if T `L ϕ and T ⊆ Φ then Φ `L ϕ.

When clear from the context we write ` instead of `L. Let Th(L) be the set of
logical theories of L, i.e. the set of subsets of L closed under the relation `L. One
fundamental characteristic of the above definition is that, for every (monotonic)
logic L, the tuple 〈Th(L),⊆〉 is a complete lattice with smallest element the set
Theo = {ϕ ∈ L : ∅ ` ϕ} of theorems of L and greatest element the set L of
all formulas of L. Given a subset A of L we denote by A`L the smallest logical
theory of L that contains A, and call it the logical theory generated by A in L.



In the following we consider fixed a (monotonic) logic L = 〈L,`L〉 and call
it the parameter logic. The formulas of L are dubbed (parametrized) atoms and
a (parametrized) literal is either a parametrized atom ϕ or its negation not ϕ,
where not denotes default negation. Default literals are those of the form not ϕ.

Definition 2. A normal L parametrized logic program is a set of rules

ϕ← ψ1, . . . , ψn, not δ1, . . . , not δm (1)

where ϕ,ψ1, . . . , ψn, δ1, . . . , δm ∈ L.
A definite L parametrized logic program is a set of rules without negations

as failure, i.e. of the form ϕ← ψ1, . . . , ψn where ϕ,ψ1, . . . , ψn ∈ L.

As usual, the symbol← represents rule implication, the symbol “,” represents
conjunction and the symbol not represents default negation. A rule as (1) has
the usual reading that ϕ should hold whenever ψ1, . . . , ψn hold and δ1, . . . , δm
are not known to hold. If n = 0 and m = 0 then we just write ϕ←.

Given a rule r of the form (1), we define head(r) = ϕ, body+(r) =
{ψ1, . . . , ψn}, body−(r) = {δ1, . . . , δm} and body(r) = body+(r) ∪ body−(r).
Given a parametrized logic program P we define form(P) to be the set of
all formulas of the parameter language L appearing in P, i.e., form(P) =⋃
r∈P({head(r)}∪body(r)). We also define the set head(P) = {head(r) : r ∈ P}.

2.2 Semantics

The semantics of parametrized logic programs is defined as a generalization of
the stable model semantics [8] of normal logic programs.

In the normal logic programs, an interpretation is just a set of atoms. In
a parametrized logic program, since we substitute atoms by formulas of a pa-
rameter logic, the first idea is to take sets of formulas of the parameter logic
as interpretations. The problem is that, contrary to the case of atoms, the
parametrized atoms are not independent of each other. This interdependence
is governed by the consequence relation of the parameter logic. For example, if
we take classical propositional logic (CPL) as the parameter logic, we have that
if the parametrized atom p∧ q is true then so are the parametrized atoms p and
q. If we take, for example, standard deontic logic SDL [20] as parameter, we have
that, since O(p∨ q),O(¬p) `SDL O(q), any SDL logical theory containing both
O(p ∨ q) and O(¬p) also contains O(q).

To account for this interdependence, we use logical theories (sets of formulas
closed under the consequence of the logic) as the generalization of interpretations,
thus capturing the above mentioned interdependence.

Definition 3. A (parametrized) interpretation is a logical theory of L.

Definition 4. An interpretation T satisfies a rule

ϕ← ψ1, . . . , ψn, not δ1, . . . , not δm

if ϕ ∈ T whenever ψi ∈ T for every i ∈ {1, . . . , n} and δj /∈ T for every
j ∈ {1, . . . ,m}.



An interpretation is a model of logic program P if it satisfies every rule of
P. We denote by ModL(P ) the set of models of P .

The ordering over interpretations is the usual one: If T1 and T2 are two
interpretations then we say that T1 ≤ T2 if T1 ⊆ T2. Moreover, given such
ordering, minimal and least interpretations may be defined in the usual way.

As in the case of non parametrized programs, we start by assigning semantics
to definite parametrized programs. Recall that the stable model of a definite
logic program is its least model. In order to generalize this definition to the
parametrized case we need to establish that the least parametrized model exists
for every definite L parametrized logic program.

Theorem 1 ([9]). Every definite L parametrized logic program has a least
model, denoted by SLP .

Note that this theorem holds for every choice of the parameter logic L.
The stable model semantics of a normal L parametrized logic programs is

defined using a Gelfond-Lifschitz like operator.

Definition 5. Let P be a normal L parametrized logic program and T an in-
terpretation. The GL-transformation of P modulo T is the program P

T obtained
from P by performing the following operations:

– remove from P all rules which contain a literal not ϕ such that T `L ϕ;
– remove from the remaining rules all default literals.

Since P
T is a definite L parametrized program, it has an unique least model J .

We define Γ (T ) = J .

Stable models of a parametrized logic program are then defined as fixed
points of this Γ operator.

Definition 6. An interpretation T of an L parametrized logic program P is a
stable model of P iff Γ (T ) = T . A formula ϕ is true under the stable model
semantics, denoted by P �SM ϕ iff it belongs to all stable models of P. We denote
by SM(P) the set of all stable models of L.

2.3 Examples

Parametrized logic programs are very general and flexible, allowing not only to
capture well-known extensions of the stable model semantics of normal logic
programs, but also to extend them further. In [9] it is shown that normal logic
programs and extended logic programs correspond to an appropriate choice of
the parameter logic.

One interesting case that already goes beyond the usual extensions of nor-
mal logic programs is to use a parameter logic over a full propositional language.
Note that this is different, and in fact orthogonal, to the so-called nested logic
programs [6]. Nested logic programs are propositional combinations of the logic
programming connectives. In the case of parametrized logic programs, proposi-
tional nesting only appears at the level of the atoms.



Example 1 (Propositional logic programs). Let us now consider a full proposi-
tional language L built over a set P of propositional symbols using the usual
connectives (¬,∨,∧,⇒). Many consequence relations can be defined over this
language. We present three interesting examples: classical logic, Belnap’s para-
consistent logic [2] and intuitionistic logic. Consider the following programs:

P1

{
p← ¬q
p← q

P2

{
p← ¬q ∨ q P3

 q ←
(q ∨ s)⇒ p←
r ← p

P4


r ←
¬p←
(p ∨ q)← r
s← q

P5

{
p← not q, not ¬q

P6

{
p← not (q ∨ ¬q)

P7

{
p←
¬p←

Let L = 〈L,`CPL〉 be Classical Propositional Logic (CPL) over the language
L. Let us study in detail the semantics of P1. Note that every CPL logical theory
that does not contain neither p nor ¬p satisfies P1. In particular, the set Taut
of tautologies of CPL is a model of P1. So, SCPLP1

= Taut. This means that
p,¬p, q,¬q /∈ SCPLP1

. We also have that SCPLP2
= {p}�ails. So, in the case of P2

we have that p ∈ SCPLP2
. Also, we have that r ∈ SCPLP3

and s ∈ SCPLP4
.

In the case of P5 its stable models are the CPL logical theories that contain
p and do not contain q nor ¬q. Therefore, we have that p ∈ SCPLP5

. In the case of
P6, since (p∨¬p) ∈ T for every CPL logical theory T we can conclude that the
only stable model of P6 is the set Theo of theorems of CPL. Therefore p /∈ SCPLP6

.
Regarding P7, it is clear that SCPLP7

equals the (inconsistent) set of all formulas.
Note that, like in answer-sets, stable models of parametrized programs can be
inconsistent, this being conceptually different from the case when there are no
answer-sets.

Consider now L = 〈L,`4〉 the 4-valued Belnap paraconsistent logic Four.
Consider the program P4. Contrarily to the case of CPL, in Four it is not the
case that ¬p, (p ∨ q) `4 q. Therefore we have that q, s /∈ SFourP4

.
Let now L = 〈L,`IPL〉 be the Intuitionistic Propositional Logic IPL. It is

well-known that q∨¬q is not a theorem of IPL. Therefore, considering program
P2 we have SIPLP2

= ∅`IP L . So, contrarily to the case of CPL, we have that
p /∈ SIPLP2

. Using the same idea for program P6 we can conclude, contrarily to
the case of CPL, that p ∈ SIPLP6

.

Another interesting class of logic that can be taken as parameter are modal
logics [5]. Modal logics are fundamental in many areas of Artificial Intelli-
gence. They are quite flexible, expressive, and quite often decidable. By using
parametrized logic programs with a modal logic as the parameter logic we are
thus adding a non-monotonic layer to an already expressive language.

Example 2 (Modal logic).
Consider modal logic language Lm built over a set P of propositional symbols

using the usual connectives ¬,∨,∧,⇒ and the modal operators �,♦. Let Lm =
〈Lm,`m〉 be a modal logic over the language Lm, where the consequence relation



is obtained from usual Kripke style semantics. Of course, the particular modal
logic we obtain depends on the restriction we impose in the Kripke models. Just
to mention a few interesting examples, Lm could be epistemic logic, usually an S5

modal logic, deontic logic, usually a KD modal logic and doxastic logic, usually
a KD45 modal logic. Our aim with this example is just to stress that we can
choose quite interesting and expressive logics as the parameter logic. Just to give
an example, in [10, 11] a very rich non-monotonic framework for reasoning about
normative systems can be obtained by choosing modal logic KD, also known as
Standard Deontic Logic [20], as the parameter logic.

3 Decidability and implementation

We have seen how general is the construction of logic programs using a parame-
ter logic. The question that naturally arises now is whether this combination of
a monotonic logic and a non-monotonic framework preserves decidability. More-
over, even if decidability is preserved, there is still the question of whether we
can use existing tools for the parameter logic together with an ASP solver to
implement a reasoning tool for the combination. In this section we address both
these issues. We first show that decidability is preserved if the parameter logic
is decidable and then we also show how to combine an existing reasoner for a
given parameter logic with an ASP solver.

We start with an interesting observation: even for logics over a propositional
logical language built from a finite number of propositional symbols, the number
of logical theories may be infinite. An immediate consequence is that the number
of possible stable models of a finite parametrized logic program can be infinite.
Interestingly, as we show below, decidability is not necessarily compromised.
The key idea is that, given a finite parametrized logic program P, we are able
to prove that only those logical theories generated by sets of formulas appearing
in P can be stable models of P, and these are in a finite number.

Theorem 2. Let P be a finite parametrized logic program. If T is a stable model
of P then there exists A ⊆ form(P) such that T = A`L .

Proof. Let T be a stable model of P. Consider the set A = T ∩ form(P), i.e.,
the restriction of T to the set of formulas appearing in P. Since T is a logical
theory of L, A ⊆ T and L is monotonic, we have that A`L ⊆ T`L = T . We aim
to prove that, in fact, A`L = T . Since A is the restriction of T to the formulas of
P we have that P

A`L
= P

T . Then, we have that A`L is also a model of PT . Since T
is a stable model of P it is the minimal model of PT . Therefore, we can conclude
T ⊆ A`L , which then implies that T = A`L . ut

The above theorem has as immediate consequence the fact that every finite
parametrized logic program has a finite number of stable models.

Corollary 1. Let P be a finite parametrized logic program. Then, P has finitely
many stable models.



With this, we can now prove the decidability result.

Theorem 3. Let P be a finite parametrized logic program over a decidable pa-
rameter logic L and ϕ a formula of L (not necessarily in P). Then, it is decidable
the problem of checking if P �SM ϕ is the case.

Proof. First of all, note that we are assuming that L is a decidable logic, i.e.,
the problem of checking Φ `L ϕ, for a finite set Φ of L formulas, is decidable.
Note also that the sets form(P) and its subset head(P) are finite.

Let us now introduce some necessary notation. Given a subset A of form(P)
we write C(A) to denote its closure under L consequence, i.e., C(A) = A`L ∩
form(P). Given a subset A of form(P), we can easily construct C(A) by check-
ing, for each ψ ∈ form(P) \A, if A `L ψ;

In Fig. 1 we sketch an algorithm showing the decidability of the problem
P �SM ϕ. It is based on the Gelfond-Lifschitz transformation with the additional
use of an L oracle. The fundamental tool supporting the algorithm is the result
in Theorem 2, since it restricts severely the number of L theories we need to
check. To cut even more the number of theories to be checked we also use the
well-known result in the logic programming area: a stable model of a normal
logic program is always a subset of the set of heads of rules of the program. ut

input: finite PLP P and L formula ϕ
for each Φ ⊆ head(P) compute C(Φ)
if Φ = C(Φ) then

compute P
Φ

compute least(P
Φ

) restricted to form(P):
define A0 := C({ϕ : ϕ← ∈ P})
compute Ai+1 := C({ϕ : ϕ← ψ1, . . . , ψn ∈ P and {ψ1, . . . , ψn} ⊆ Ai})
until Ak = Ak+1 for some k
then set least(P

Φ
) := Ak;

if least(P
Φ

) = Φ / ∗ in this case Φ`L is a stable model of P ∗ /
check if Φ `L ϕ

if Φ `L ϕ for every Φ ⊆ head(P) such that Φ`L is a stable model of P,
then P �SM ϕ is the case.

Fig. 1. Decidability algorithm

The algorithm in the proof of Theorem 3 is interesting since it is a (basic) stable
model like algorithm which, when necessary, makes queries to an L-oracle. This
makes it modular with respect to the L-reasoner and it minimizes the calls to the
L-oracle. The algorithm has, nevertheless, a major drawback: it is not modular
from the point of view of calculating stable models, in the sense that we cannot
use existing ASP solvers to compute the stable models of a parametrized logic
program. This modularity is extremely important since it would allow us to use



the large body of successful research done in the area of stable model semantics
implementation and answer set programming. Our aim is precisely to propose an
implementation of a reasoner for parametrized logic programs which modularly
combines an ASP solver (such as Clasp [7]) with a reasoner for the parameter
logic (such as the KED SDL solver [1] in the case of Standard Deontic Logic [20],
or the HermiT [16] reasoner in the case SROIQ description logic [13]).

We start by proving a theorem that sets the ground for the construction
of the modular reasoner. Consider a given parametrized logic program P, and
construct the following normal logic program PN from P:

PN = P ∪ {ϕ← ψ1, . . . , ψn : {ψ1, . . . , ψn} ⊆ form(P),
ϕ ∈ form(P)\{ψ1,...,ψn},
{ψ1, . . . , ψn} `L ϕ}.

We call PN the normal logic program obtained from P, since the L formulas
appearing in it are to be considered as normal logic programs atoms. The key
idea underlying the construction of PN , in order to enforce the interdependency
between the L formulas (which in PN are just atoms), is to enrich P with rules
that represent the possible reasoning in L occurring with the formulas of P.

Since we are now considering usual normal logic programs, and to distinguish
between the set of stable model of a parametrized logic program P (which is a
subset of 2ThL) and the set of stable models of P viewed as a normal logic
program (which is a subset of 2form(P)), we denote the latter by AS(P). Note
that SM(P) and AS(P) can be very different since AS does not take into account
the interdependency between the (parametrized) atoms. As a simple example
let L be a normal modal logic. Consider P = {�p ←; �q ← �(p ∨ r)}. Then,
SM(P) = {{�p,�(p ∨ r),�q}`L} but AS(P) = {{�p}}.

Theorem 4. Given a parametrized logic program P, we have that

SM(P) = {A`L : A ∈ AS(PN )}

Proof. Let us start with some notation and a general comment. We use PL to
denote the set of rules that are added to P in the definition of the program
PN , i.e., PN = P ∪ PL. Since the rules in PL represent sound consequences in
L, and since every logical theory of L is closed under L consequence, it follows
immediately that every L logical theory satisfies all the rules in PL.

We now prove the equality SM(P) = {A`L : A ∈ AS(PN )} by proving the
two inclusions. Let us start by proving the left to right inclusion. Let T be a
stable model of P. We aim to prove that there exists a stable model A of PN such
that T = A`L . Take A = T ∩ form(P). We first prove that A`L = T . Since L is
monotone, we have that A`L ⊆ T`L = T . To prove the reverse inclusion recall
that T is the minimal L logical theory that satisfies PT . Since A = T ∩ form(P),
it immediately follows that A satisfies PT . Therefore, A`L is an L logical theory
that satisfies PT . Since T is the minimal one, we have that T ⊆ A`L .

Now that we have proved that A`L = T , we need to prove that A is a
stable model of PN . First of all, observe that P

N

A = P
A ∪ P

L = P
T ∪ P

L. Let



B ⊆ form(P) be a model of P
N

A . Then, since B satisfies PL, B is closed under
L consequence. This in turn implies that B`L ∩ form(P) = B. Clearly B`L is
a model of PT , and, since T is the minimal L logical theory satisfying PT , we can
conclude that T ⊆ B`L . But then A = T ∩ form(P) ⊆ B`L ∩ form(P) = B.
Since this inclusion is the case for every B model of P

N

A , we can conclude that
A is the minimal model of P

N

A , i.e., A is a stable model of PN .
We now prove the right to left inclusion. Let A ⊆ form(P) be a stable model

of PN . We aim to prove that A`L is a stable model of P. Since A is a stable model
of PN we have that A is the minimal model of P

N

A = P
A∪P

L. Since A is a model of
PL we have that A is closed under L consequence, i.e., A`L ∩form(P) = A. We
then have that P

A`L
= P

A . Suppose there exists an L logical theory T such that
T ⊂ A`L and T satisfies P

A`L
. In that case, T ∩form(P) ⊂ A`L ∩form(P) = A

and T ∩ form(P) satisfies PA ∪ P
L = PN

A . But this contradicts the fact that A
is the minimal model of P

N

A . ut

There are some very important consequences of the above theorem. One
we already established in Theorem 2: the number of stable models of a finite
parametrized logic program is finite. The problem is that each of these stable
models is infinite. This is precisely where Theorem 4 gives its fundamental con-
tribution. It presents a finite representation of each of the stable models of P.

Our aim now is to compute the finite representations of the stable models of
P. The implicit algorithm in the construction of PN is quite basic. It just looks
at all possible relations between formulas of the parameter logic appearing in
the program. We now develop a more efficient implementation, assuming some
mild conditions about the parameter logic. These allow us to prune some search
paths in the construction of a normal logic program from P.

Let L = 〈L,`L〉 be a monotonic logic satisfying the following conditions.
The first condition, dubbed (Bot) is the existence of a bottom element in the
language, i.e., ⊥ ∈ L such that for any subset Φ ⊆ L we have that if Φ `L ⊥ then
Φ `L ϕ for every ϕ ∈ L. This condition allows to detect an inconsistent set of
formulas by checking if it entails ⊥. The second condition, dubbed (Prop), is that
L is built from a set of propositional symbols P and it satisfies: if propSymb(Φ)∩
propSymb(ϕ) = ∅ and 6`L ϕ then Φ 6`L ϕ. Intuitively this condition imposes that
if a non tautological formula does not have propositional symbols in common
with a set of formulas, then it should not be entailed by that set of formulas.

Note that these two conditions are quite mild, and they are satisfied by
every example of parameter logic we have shown above. For a parameter logic
satisfying these conditions, we can sketch an algorithm, in Fig. 2, that, given a
finite parametrized logic program P, returns a normal logic program Palg. This
algorithm is an improvement of the one constructing PN , by pruning several
search paths using the conditions imposed on the parameter logic.

We can then prove that the pruned paths do not affect the result of the
algorithm, i.e., the constructed program Palg has the same stable models as
PN . Given these improvements, the algorithm for constructing Palg does not,
in general, return exactly the normal logic program PN . In fact, one can readily



input: finite parametrized logic program P
set i = 1; k = lenght(head(P)); P alg := P ∪ {ϕ← : ϕ ∈ form(P) and `L ϕ}
while i ≤ k
for each subset A = {δ1, . . . , δi} of head(P) of size i

if A `L ⊥ then /* A is inconsistent */

for each ϕ ∈ form(P) \A
add ϕ← δ1, . . . , δi to Palg unless

there is ϕ← ψ1, . . . , ψn ∈ Palg with {ψ1, . . . , ψn} ⊆ A
else

for each ϕ ∈ form(P) \A such that propSymb(A) ∩ propSymb(ϕ) 6= ∅
if A `L ϕ then

add ϕ← δ1, . . . , δi to Palg unless

there is ϕ← ψ1, . . . , ψn ∈ Palg with {ψ1, . . . , ψn} ⊆ A
i=i+1

return Palg

Fig. 2. Construction of Palg

see that Palg ⊆ PN . As expected, we can, nevertheless, prove that the extra
rules of PN are redundant, in the sense that the set of stable model of PN and
Palg is the same.

Proposition 1. Let L be a monotonic logic satisfying conditions (Bot) and
(Prop). Then, for any finite parametrized logic program P over L, we have that

AS(Palg) = AS(PN ).

Proof. It follows immediately from the constructions of Palg and of PN that
Palg ⊆ PN . This implies that Mod(PN ) ⊆ Mod(Palg). Moreover, given S a
subset of head(P), we can readily see that if a rule r = ϕ ← δ1, . . . , δn is such
that r ∈ PN

S but r /∈ Palg

S , then there exists r′ = ϕ ← ψ1, . . . , ψm ∈ Palg

S
such that {ψ1, . . . , ψm} ⊂ {δ1, . . . , δn}. From this observation it follows that
Mod(P

N

S ) = Mod(P
alg

S ). Therefore, S is a stable model of PN (minimal model
of P

N

S ) iff S is a stable model of Palg (minimal model of P
alg

S ).

The above proposition is important since it allows the algorithm of Palg
to actually construct a finite representation of the stable models of a finite
parametrized logic program P. This can be done by constructing the normal
logic program Palg from P and then calculating the stable models of Palg. The
latter can be done using any ASP solver. Note that, as we aimed, this construc-
tion uses in a modular way a reasoner for the parameter logic and reasoner for
the stable model semantics. The reasoner for the parameter logic is only used for
the construction of Palg. Then, an ASP solver can be used to obtain the stable
models of Palg, which are the finite representations of the stable models of P.

Regarding complexity, it should be clear that the use of parametrized logic
programs, with default negation, increases the complexity of the parameter L



alone. This comes from the fact that the stable model semantics, with default
negation, adds, as usual, one extra level of non-determinism. From the point of
view of logic programming there is also an exponential increasing in the com-
plexity. Recall that in the construction of both PN and Palg we need to query an
L-oracle an exponential number of times. Moreover, we then need to compute
the stable models of Palg which, in the extreme case, can have exponentially
more rules than the initial program P.

This extra complexity is not surprising given the expressivity of the
parametrized logic programs. Recall that a parametrized logic program can have
any complex parametrized formula in the head and body of its rules. In some par-
ticular applications, however, there is no need for this general expressivity, and
we can play the usual game between expressivity and complexity. We end this
section with an example showing that we can consider restricted classes of pa-
rameter logics that have a more amenable complexity. These restricted languages
may well have the necessary expressivity for modeling non-trivial scenarios.

An interesting example is the case of parametrized logic programs over a
modal language that only contains literals, the necessity modal operator applied
to literals and negations of the necessity operator applied to literals.

Note that we can capture the possibility operator ♦ since ♦` ≡m ¬�`, where
` is the complementary literal of `, i.e., ` = p if ` = ¬p and ` = ¬p if ` = p. In
this restricted language the interaction between modal formulas is limited and,
depending on which modal logic axioms the particular logic satisfies, we can
construct the normal program Palg from P in a simple way.

Proposition 2. Let P be a finite parametrized logic program over a modal lan-
guage only with literals, necessity applied to literals and negations of necessity
applied to literals. Consider the following sets

PK ={ϕ← ⊥ : ϕ ∈ form(P)} ∪
{⊥ ← p,¬p : {p,¬p} ⊆ head(P)} ∪
{⊥ ← �p,�¬p : {�p,�¬p} ⊆ head(P)} ∪
{⊥ ← �`,¬�` : {�`,¬�`} ⊆ head(P)}.

PD ={¬�¬p← �p : �p ∈ head(P) and ¬�¬p ∈ form(P)} ∪
{¬�p← �¬p : �¬p ∈ head(P) and ¬�p ∈ form(P)}.

PT ={`← �` : �` ∈ head(P) and ` ∈ form(P)}.

Then,

– if L is the modal logic K then Palg = P ∪ PK ;
– if L is the modal logic KD then Palg = P ∪ PK ∪ PD;
– if L is the modal logic KT then Palg = P ∪ PK ∪ PT ;
– if L is the modal logic KTD then Palg = P ∪ PK ∪ PT ∪ PD.

Proof. The result follows easily from the observation that, for this restricted
language, we have that Φ `K ϕ iff one of the following conditions holds: for



some propositional symbol p, {p,¬p} ⊆ Φ or {�p,�¬p} ⊆ Φ; or {�`,¬�`} ⊆ Φ
for some literal `. If we add to K the seriality axiom D then we can also entail
ϕ from a set Φ of formulas if �p ∈ Φ and ϕ = ¬�¬p, or when �¬p ∈ Φ and
ϕ = ¬�p. In the case of the addition of the transitivity axiom T we can also
conclude ϕ from a set Φ of formulas if �ϕ ∈ Φ.

The above proposition is important because it gives a way to construct Palg
using only syntactical checks, i.e., we do not need to use a modal logic oracle. This
is only possible because the interaction between modal formulas in this restricted
language is limited and can be clearly described using the above rules. The four
rules of PK are related to contradictions. The first one refers to the so-called
explosion principle: from a contradiction everything follows. The others express
how to detect an inconsistency. The rules of PD are related to the connection
between necessity and possibility: if something is necessary then it is possible,
which holds in a modal logic satisfying D. The need for the rules in PT comes
from the fact that a formula follows from its necessity in a modal logic satisfying
the reflexivity axiom T . For lack of space, we did not add several more examples
of modal logics to the above proposition. Just to give an example, in the case of
doxastic modal logic, which is usually assumed to be a KD45 modal logic, we
have that Palg = P ∪ PK ∪ PD.

Regarding complexity, it is interesting to note that the maximum number of
rules added to Palg is linear in the number of rules of P.

4 Conclusions and future work

In this paper we have proved decidability for parametrized logic programs, as-
suming the decidability of the parameter logic. We have provided an implemen-
tation that combines in modular way a reasoner for a decidable parameter logic
with an answer set solver. We have studied examples of modal logics in a re-
stricted language. For those, the construction of a normal logic program Palg
from a given parametrized logic program P does not need to use a modal logic
oracle, and, moreover, the number of rules added to P in order to obtain Palg
is at most linear in the number of rules of P.

Regarding future work, we want to implement the algorithms presented in
this paper in the case of interesting parameter logics. One such example is the
case of standard deontic logic, which would then allow us to construct a declara-
tive non-monotonic framework for specifying normative systems [3]. We also want
to study in more detail the natural connection between parametrized logic pro-
gramming and the general approach of multi-context systems [4], along the lines
of [12]. Another interesting topic is to investigate belief change in our setting,
which would be a challenging problem due to the known difficulties in combining
belief change of rules and belief change in classical logic [17], although recent
developments have shown a possible unifying view [18, 19]. Finally, we would like
to study the well-founded semantics for parametrized logic programs along the
lines of what is done in [14] for hybrid MKNF.
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