
A Proposal for Transactions in the Semantic
Web

Ana Sofia Gomes and José Júlio Alferes

Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
2829-516 Caparica, Portugal

Abstract. The success of the Semantic Web project has triggered the
emergence of new challenges for the research community. Among them,
relies the ability of evolving the web by means of actions and updates in
accordance with some standard proposals as RIF or SPARQL-Update.
However, from the moment that actions and updates are possible, the
need to ensure properties regarding the outcome of performing such ac-
tions emerges. Moreover, this need also leaves open the specification of
such properties and requirements that an intended solution should com-
ply to.
In this paper we motivate the need for employing transactional properties
in this new Web and delineate a proposal for the requirements that such
solution should provide. Afterwards, we develop a logic, based on the
well-known Transaction Logic, that partially achieves such requirements,
as a first step of an ongoing work.

1 Introduction

The World Wide Web has dramatically changed the way we communicate and
share knowledge by aiding all kinds of users to access documents and participate
with their own content. This, along with the simplicity inherent of the Web
(which is in fact the most crucial factor for its popularity), enabled the explosion
of both range and quantity of Web contents.

However, this sheer growth has triggered the appearance of more efficient
ways to locate and search resources, and as a result, in the past decade, a
large trend has been developed to evolve from a static and informative web
to a linked web of data. Traditionally, data published on the Web was designed
mainly for humans and made available in strict formats such as CSV or XML, or
marked up as HTML tables, sacrificing much of its structure and semantics. As
a consequence, the exploration of web content by automated processes became
a synonym of a complex and painful task.

A community effort started with the advent of the Semantic Web, aims to dis-
rupt this tendency by explicitly defining the semantics of contents and links for
machine consumption. Underpinning this evolution is a demand to provide data
as “raw” and thereby enabling the construction of powerful linked data mashups

2 Ana Sofia Gomes and José Júlio Alferes

across heterogeneous data source collections, without further programming ef-
fort. This project known as Linked Data1 envisages to link arbitrary things in
the web, relying mainly on documents containing data in RDF [?] (Resource De-
scription Framework) format. This movement has gained such popularity that
today the amount of links between datasets as well as the quality of these links
has largely increased, paving the way to a Web of Data with the ultimate goal
to use the web like a single global database. Nevertheless, in order to achieve
such realization there are still several research quests that need to be addressed,
and before using the web as a huge database it is essential to ensure (at least
some) properties that one is used to see in standard databases [?]. Among these
features is the ability to perform transactions which is the subject of this paper.

2 Transactions on a Web of Data

2.1 The Evolving Web

The growth of popularity of the semantic web has triggered the appearance
of query languages capable of extracting knowledge from a complete distributed
and heterogeneous database. One example is the SPARQL language [?] endorsed
by W3C and able to perform SQL-like queries in RDF. This kind of languages
has the power to relate and extract information from completely different appli-
cations, sites and/or services such as RSS feeds, government data or individual
Friend of a Friend files.

Nonetheless, the (semantic) web, as envisioned, should be able to perform
more activities than just querying. Communication platforms such as wikis
(where several users can modify the same document), or online market places,
are examples of existing web applications that require updates according to client
requests or actions. However, if today’s web evolution means evolution of indi-
vidual web sites that are updated locally, lots of effort has been made to embrace
the idea of cooperative evolution [?].

Crucial to the success of the semantic web is a cooperative behavior to publish
web content in standard format (OWL [?] and RDF) in order to make intelligent
access possible. Likewise, cooperative evolution relates to a joint effort to provide
the web with the tools it needs in order to automatically evolve. Consequently,
along with OWL and RDF standards, others have been proposed to break up
with the conventional idea that the web is for read-only operations. In fact, the
same way it is intended to give intelligent agents tools to consult the web, it
is also the goal to allow these intelligent agents to perform automatic updates
according to some rules. One example of this is the RIF-PRD [4] specification
that intends to provide semantics for executing actions on the web in accordance
with some given production rules (If Condition then Action).

In a similar way, other proposals have been made to give the web not only
the capability to act but also to react automatically to changes and events.
In this context, Event-Condition-Action languages, which represent an intuitive
1 http://linkeddata.org/

http://linkeddata.org/

A Proposal for Transactions in the Semantic Web 3

and powerful paradigm for programming reactive system, have been largely used
to provide such semantics to the web [?,?,?].

As a result, from the original proposal of the Semantic Web by Tim Berners-
Lee in 1998 [?], a big effort has been made from the research community to shift
from a static web to a network of autonomous data sources capable of reacting
to changes and self-updating [?,?,?,?].

2.2 Motivating Transactions on the Web

With the adoption of the web of data as a new paradigm for the web, several
problems arise. Particularly, from the moment that actions and updates are
possible, it appears the need to ensure some properties regarding the outcome of
performing such actions. As an illustration, imagine some RIF-PRD production
rule stating that: If a customer reaches $5000 of cumulative purchases during
the current year then its status becomes Gold and a golden customer card will be
printed and sent to him within one week. In RIF-PRD syntax this is translated
into:

Prefix(ex <http://example.com/2008/prd1#>)

Forall ?customer ?purchasesYTD (

If And(?customer#ex:Customer

?customer[ex:purchasesYTD->?purchasesYTD]

External(pred:numeric-greater-than(?purchasesYTD 5000)))

Then Do(And(Modify(?customer[ex:status->"Gold"])

Execute(act:printCard(?customer,"Gold")))))

One obvious requirement of applying such rule is atomicity, that is, if the ac-
tion could not be performed completely, then it should not be performed at all.
In this particular example, a customer should not become a gold customer with-
out the emission of the corresponding card, neither a card should be delivered
to a customer whose status is not gold.

This kind of problems is generally solved in databases with the use of trans-
actions. Transactions ensure atomicity, consistency, isolation and durability of a
special set of actions. These properties, known as ACID, play a fundamental role
in providing reliability to standard databases. Atomicity requires a transaction
to follow an all-or-nothing rule – all operations should be performed as a unit
which means that if one part of the transaction fails then the entire transaction
must fail as well. The standard way to handle a failure of an ACID transaction
is by a rollback, i.e. by restoring the state of the system before the execution
of the failed transaction. Consistency ensures that a transaction either achieves
a state where consistency of data is preserved, or returns to the original (con-
sistent) state without changing data. Isolation guarantees that, even though a
set of transactions can be executed concurrently, the outcome is equivalent to
execute each transaction one-by-one in a given sequence. Durability states that

4 Ana Sofia Gomes and José Júlio Alferes

once a transaction has been committed, its changes will not be lost, even in the
event of some system failure2.

2.3 Why the ACID model is not enough

Albeit the advantages of the ACID model, it imposes severe demands [5] that
are not always suitable for some systems, e.g. Web Sources, as argued in [?,?].

Particularly, atomicity requires all the steps of the transactions to rollback
when the transaction fails. However, when these steps include external actions
like sending an email or printing some document, this property is no longer
possible to be guaranteed, since there is no way to revert these operations. In
addition, there are situations where a transaction may involve iterated infor-
mation exchange between different actors such as web services, human agents,
databases, etc., potentially lasting for hours or days. These transactions are de-
noted as long running transactions or sagas [5]. Since it is impossible to perform a
rollback when a transaction with such characteristics fails, other mechanisms are
required. The usual approach is to define compensation operations for each op-
eration to be performed. The idea is that these compensations lead the database
into a state that is considered equivalent to the initial one, thus achieving some
weaker form of atomicity. It is worth noting that the traditional rollback of an
ACID transaction can be seen also as a form of compensation.

Since the traditional ACID model as found in standard databases is not
suitable for the new context of the Semantic Web, we argue that transaction’s
properties must be redefined taken into consideration the characteristics of this
peculiar context. Nevertheless, it is unquestionable that ensuring at least a re-
laxed model of such properties will provide crucial reliability to this emergent
web of data.

2.4 Requirements for a new Web

After motivating the need for implementing transactional properties on the web,
and discussing the limitations of the standard ACID model, we now present some
argument on the necessary requirements for a new transactional model aimed
for the new Web.

Transparency and collaboration are key features of anything that is related
to the Web. One example of this concern is the W3C Recommendation RIF [?]
which was designed to provide a standard for rule interchange in the web. In
such context, declarative languages can play a fundamental role by providing
ways to define programs which are clear and quickly understandable by their
users. In fact, declarative languages have the advantage of being substantially
more concise and self-explanatory, as they state what is to be computed rather
than how it is to be computed. As a result, they are inherently high-level where

2 Durability is usually achieved by low-level software management and is hence outside
the scope of this study.

A Proposal for Transactions in the Semantic Web 5

programs can be viewed as theories and the details of the computation are left
to the abstract machine.

However, as motivated by the proposal of several dialects for RIF, a language
for the web needs not only to provide means to represent and reason about
knowledge, but also to allow the execution of rules and actions. In this sense we
are aiming for a declarative language that allow us to represent programs, but
also to execute them.

Moreover, in order to abandon the concept of a read-only web, it is necessary
to provide it the ability to react and respond to changes. In fact, the web is mainly
dynamic, in the sense that its resources may change their content over time, and
thus, a strong motivation exists in defining languages to specify updates and to
detect them immediately. Furthermore, it is important to not only enable the
detection of atomic events, but also of complex ones, in order for the solution to
be useful in real scenarios.

Additionally, when defining a language which is intended to specify transac-
tions it is obvious that this language must provide the ability to guarantee ACID
properties, and to this end, it is necessary to have some notion of state change
embedded in the theory. However, the web as a huge database consists of an
agglomerate of different sources accessed and updated by an unpredictable large
number of users, and thus it is impossible to control all the knowledge as well as
to guarantee its consistency. As a result, if by one hand it is important to ensure
ACID properties for local usage where one has total (or at least a high) control
of the data and its accesses; on the other hand, and continuing the argumenta-
tion provided in Section 2.3, we believe that these properties are too strong in
cases where it is not intended to restrict who can update the knowledge base,
and/or what is updated. Note that this coincides with the reasons for combining
open-world assumption with closed-world assumption for the semantic web con-
text [?]. This way, our argumentation is that the two possibilities must coexist
together, and the intended semantics must allow one to switch between pure
database transactions (which ensure all ACID properties), and a weaker model
of transaction designed for the web and loosening some properties like Isolation
and Atomicity.

Finally, it is necessary to take into account that the Web is accessed by an
unpredictable large number of users. This way, anything conceived for this kind of
context, needs to be scalable and provide concurrency features. Nevertheless, it is
worth noting that we are not interested here on “low-level” algorithms or efficient
implementations for the problem of integrating transactions in the Semantic
Web context. Particularly, the main goal of this proposal is concerned with
knowledge representation and what are the requirements that a language and
semantics must have in order to express transactions for this context. Therefore,
when we refer to properties such as scalability and concurrency, we are arguing
that these properties must be part of the intended semantics in a similar sense
as Concurrent Transaction Logic (CT R) [2] or the Calculus of Communicating
Systems (CCS) [?].

6 Ana Sofia Gomes and José Júlio Alferes

In summary, we believe that a semantics which defines transactional proper-
ties needs to provide the following properties in order to be considered suitable
for the context of a Web of Data: (1) Declarativity ; (2) Reactivity ; (3) Transac-
tional Properties (ACID model); (4) Weaker model of Transactional Properties;
(5) Concurrency.

3 A logic for transactions with external actions

As a first step to achieve the requirements proposed we propose a novel logic that
allows for the combination of standard ACID transactions with external actions.
Such logic has two main components, an “internal” component following the
standard ACID model that interacts and executes actions with an “external”
component. However, since it is impossible to rollback operations in a system
that is external, the logic ensures a relaxed form of atomicity in the external
domain by means of compensation operations.

As a starting point of the logic, we use Transaction Logic, a unique logic for
specifying transactions in a very flexible way.

3.1 Transaction Logic

Transaction Logic (T R) is an extension of predicate logic originally proposed in
[1] which provides a logical foundation to reason about state changes in arbitrary
logical theories (such as databases, logic programs or other knowledge bases),
and particularly, to deal with ACID transactions. Contrary to most logics that
reason about state change, T R does not use a separate procedural language to
specify programs, as programs are specified in the logic itself. T R is thus a single
representation language that can be used in two ways: to reason about programs
(and the properties that they need to satisfy), and to execute them. When used
for reasoning, one can, for instance, infer that a particular program preserves
the integrity constraints of a knowledge base; or that under certain conditions, a
transaction program is guaranteed not to abort. T R thus comes with a natural
model theory (to perform reasoning) and a sound and complete proof theory (to
specify and execute programs).

Moreover, reasoning in T R is flexible in the sense that it does not commit
to any particular logical theory. To achieve this flexibility, T R is parameterized
by a pair of oracles that encapsulate elementary knowledge base operations of
querying and updating, thus allowing T R to reason about states and updates
while accommodating a wide variety of semantics [1]. As a result, there is no
distinction in T R between formulas that query the knowledge base and formulas
that update it. As in classical logic, every formula has a truth value, but it
also may have a side effect by changing the state of the knowledge base. It is
thus the oracles’ responsibility to decide if the formula can be executed and its
corresponding effects.

Example 1 (Financial Transactions). As illustration of T R, consider a knowl-
edge base of a bank [1] where the balance of an account is given by the relation

A Proposal for Transactions in the Semantic Web 7

balance(Acnt,Amt). To modify it we have a pair of elementary update opera-
tions: balance(Acnt,Amt).ins and balance(Acnt,Amt).del (denoting the inser-
tion, resp. deletion, of a tuple of the relation). With these elementary updates,
one may define several transactions, e.g. for making deposits in an account, make
transfers from one account to another, etc. In T R one may define such trans-
actions by the rules below where, e.g the first one means that one possible way
to succeed the transfer of Amt from Acnt to Acnt′ is by first withdrawing Amt
from Acnt, followed by (denoted by ⊗) depositing Amt in Acnt′.

transfer(Amt, Acnt, Acnt′)← withdraw(Amt, Acnt)⊗ deposit(Amt, Acnt′)
withdraw(Amt, Acnt)← balance(Acnt, B)⊗ changeBalance(Acnt, B, B −Amt)
deposit(Amt, Acnt)← balance(Acnt, B)⊗ changeBalance(Acnt, B, B + Amt)
changeBalance(Acnt, B, B′)← balance(Acnt, B).del ⊗ balance(Acnt, B′).ins

State change and evolution in T R is caused by executing ACID transactions,
i.e. by posing logical formulas into the system in a Prolog-like style as e.g.
? − transfer(10, a1, a2). Since every formula is assumed as a transaction, by
posing transfer(10, a1, a2) we know that either transfer(10, a1, a2) can be exe-
cuted respecting all ACID properties evolving the knowledge base from an initial
state D0 into a state Dn (passing through an arbitrary number of states n); or
transfer(10, a1, a2) cannot be executed under these conditions and so the knowl-
edge base does not evolve and remains in the state D0. Also, in T R it is possible
to have several rules (or rule instances) for defining one transaction, thereby
allowing for the specification non-deterministic transactions.

3.2 External Transaction Logic

The characteristics shown make T R a unique logic for specifying transactions
as it provides a unifying framework combining declarative knowledge and exe-
cution, whilst achieving a high flexible semantics. As argued, these are some of
the features desired for transactional languages for the web.

Unfortunately T R is not suitable to model situations that require relaxing
the standard ACID model. This limitation makes it impossible to express in
T R external actions, that is, actions that are executed in an external entity.
Furthermore, since T R only considers internal knowledge, i.e. transactions can
only be executed in an internal knowledge base where one has a complete control
and there is no way to interact with external entities, it becomes impossible for
T R to react to external changes. In fact, as it is, T R is passive in the sense that
transactions are only executed upon requests and internally. This conventional
pattern has already been considered insufficient by the database community [?],
and today most DBMS provide reactive features.

With the goal to provide a solution for the aforementioned limitations, and
as a first step in achieving the requirements proposed in Section 2.4 we propose
External Transaction Logic (ET R). ET R is an extension of T R to accommo-
date interactions with an external domain. This interaction requires relaxing the
traditional ACID model, since one has no control over the external domain in
which actions are executed, external actions cannot be rollbacked, and thus, it is

8 Ana Sofia Gomes and José Júlio Alferes

no longer possible to ensure the standard ACID model. To address this, ET R fol-
lows the proposal of [5]. The idea is to define a compensation for each operation
to be performed. If the transaction fails and these compensations are performed
in backward order, then they lead the database into a state that is considered
equivalent to the initial one, thus ensuring a weaker form of atomicity.

3.3 Syntax and Oracles

ET R operates over a knowledge base which includes both an internal knowledge
base, and an external domain, on which actions may be performed. For that,
formally ET R works over two propositional languages: LP (states language), and
La (action language). Propositions in La denote actions that can be executed
in the external domain. Propositions in LP represent fluents that are true (or
false) in the internal knowledge base, as well as in the external domain.

To build complex logical formulas, ET R uses the usual classical logic con-
nectives (of conjunction, disjunction, etc) plus a special connective ⊗ to denoted
serial conjunction. Informally, the formula φ⊗ψ represents an action composed
of an execution of φ followed by an execution of ψ. To allow for the specification
of external actions ET R uses a special kind of formula ext(a, a−1) known as ex-
ternal. In ext(a, a−1), a is an external action formula, and a−1 its corresponding
compensation which can be internal and/or external actions as to make possible
for more flexible compensations.

Example 2. Consider the system of the web shop where clients submit orders.
In the end of each order, a final confirmation is asked to the client that may or
not confirm the transaction. If the client accepts it, the order ends successfully.
Otherwise, the transaction fails and consistency must be preserved. In this case,
it means that we need to rollback the update of the stock, and to compensate
for the executed payment. The obvious compensation here is to simply ask the
bank to refund the charged money. However, note that the transaction may fail
sooner. E.g. the transaction may fail if the bank cannot charge the given amount
in the credit card, or if the product is out-of-stock. This situation can be modeled
in ET R by the rules:

buy(Prdt, Card, Amt)← ext(chargeCard(Card, Amt), refundCard(Card, Amt))
⊗ updateStock(Prdt)⊗ ext(confirmTransaction(Product, Card, Amt), ())

updateStock(Prdt) ← product(Prdt, N, WHouse)⊗ N > 0
⊗ product(Prdt, N, WHouse).del ⊗ product(Prdt, N − 1, WHouse).ins

To reason about elementary updates, ET R is parameterized by a triple of
oracles Od, Ot and Oe respectively denoted the data, the transition oracle and
the external oracle. These oracles encapsulate the elementary knowledge base
operations, allowing the separation of elementary operations from the logic of
combining them. As a result of this separation, ET R does not commit to any
particular theory of elementary updates. An ET R program is then defined as
follows.

A Proposal for Transactions in the Semantic Web 9

Definition 1 (ET R actions, atoms, formulas and programs). Given propo-
sitional languages LP and La, an ET R action is either a proposition in La, or
ext(a, b) where a is a proposition in La and b is either a proposition in La or
a proposition in LP . An ET R atom is either a proposition in LP or an ET R
action. ET R formulas are inductively defined as follows:
– an ET R atom is an ET R formula;
– if φ and ψ are ET R formulas, then ¬φ, φ ∧ ψ, φ ∨ ψ, φ← ψ and φ⊗ ψ are
ET R formulas; nothing else is an ET R formula.

A set of of ET R formulas is called an ET R program.

3.4 Model Theory

An important concept in ET R’s model theory is the notion of compensation. A
compensation occurs when the executed transaction φ contains external actions
and fails. Since, in such a case, it is not possible to simply rollback to the initial
state before executing φ, a series of compensating actions are executed to restore
the consistency of the external knowledge base.

A transaction is, as usual, a sequence of actions that need to be performed
(among other things) in a all-or-nothing way, making the internal knowledge
base evolve from an initial state D1 into a state Dn. In ET R, since an external
domain is also considered, a transaction may also make this external domain
evolve from an initial state E1 into a state Em. During the execution of such a
transaction both the internal and the external domain pass through an arbitrary
number of intermediate states D1, D2, . . . , Dn−1, Dn and E1, . . . , Em. This no-
tion of sequence of states, denoted as path, is central to ET R’s model theory as
it represents the basic structure on which formulas are evaluated.

Given an ET R theory, formulas are evaluated on paths of internal states (as
also in the original T R), together with paths of external states, and with se-
quences of (external) actions (as we shall see, needed to perform compensations).
For that, an interpretation is defined as a mapping from such a pair of paths and
a sequence of actions into a set of ET R formulas (those true under that interpre-
tation). As in T R, interpretations are restricted such that formulas classically
true in a state are true in (internal) paths just with that state (evaluated by the
state data oracle Od), and such that, if a formula ϕ forces the internal state to
evolve from D1 into D2 (evaluated by the state transition oracle Ot), then it is
true in the path D1, D2. Moreover, to account for the behavior of the external
domain, we further restrict interpretations to obey to an external oracle Oe that
detects external changes, and in which the external actions are modeled.

Definition 2 (Interpretations). An interpretation is a mapping M that given
a path of internal states, a path of external states and a sequence of actions,
returns a set of transaction formulas (or >)3. This mapping is subject to the
following restrictions:
3 Similar to T R, for not having to consider partial mappings, besides formulas, inter-

pretation can also return the special symbol >. The interested reader is referred to
[3] for details.

10 Ana Sofia Gomes and José Júlio Alferes

1. ϕ ∈M(〈D〉, 〈E〉, ∅), for every ϕ such that Od(D) |= ϕ
2. ϕ ∈M(〈D1, D2〉, 〈E〉, ∅) if Ot(D1, D2) |= ϕ
3. A ∈M(〈D〉, 〈E1, . . . , Ep〉, 〈A〉)

if Oe(E1, . . . , Ep) |= A and p > 1

The definition of satisfaction of ET R formulas, over general paths, requires the
prior definition of operations on paths. These take into account how sequences
of action are satisfied, and how to construct the correct compensation.

Definition 3 (Paths and Splits). A path of length k, or a k-path, is any
finite sequence of states (where the Ss are all either internal or external states),
π = 〈S1, . . . , Sk〉, where k ≥ 1. A split of π is any pair of subpaths, π1 and π2,
such that π1 = 〈S1, . . . , Si〉 and π2 = 〈Si, . . . , Sk〉 for some i (1 ≤ i ≤ k). In this
case, we write π = π1 ◦ π2.

Definition 4 (External action split). A split of a sequence of external ac-
tions α = 〈A1, . . . , Aj〉 (j ≥ 0) is any pair of subsequences, α1 and α2, such that
α1 = 〈A1, . . . , Ai〉 and α2 = 〈Ai+1, . . . , Aj〉 for some i (0 ≤ i ≤ k). In this case,
we write α = α1α2.

Note that there is a significant difference between Definitions 3 and 4. In fact,
splits for sequences of external actions can be empty, and thus, it is possible to
define splits of empty sequences, whereas a split of a path requires a sequence
with at least length 1.

Besides the general definition of paths and splits of states and actions, we
also define special operations over internal paths and external actions to handle
compensations. The idea is that, if a transaction formula that contains external
actions fails, then the compensations of each external action performed need
to be executed in the backward order and the internal path rollbacked, i.e. the
initial internal state is restored as the current state. These notions are made
precise as follows.

Definition 5 (Rollback split). A rollback split of π = 〈D1, . . . , Dk〉 is any
pair of finite subpaths, π1 and π2, such that π1 = 〈D1, . . . , Di, D1〉 and π2 =
〈D1, Di+1, . . . , Dk〉.

Definition 6 (Inversion). An external action inversion of a sequence α where
α = (ext(a1, a

−1
1), . . . , ext(an, a

−1
n)), denoted α−1, is the corresponding sequence

of compensating external actions performed in the inverse way as (a−1
n , . . . , a−1

1).

Note that inversion is only defined for sequences where all action have are of
the form ext(a, a−1). In fact, if for one action in the sequence no compensation
is defined, then it is impossible to compensate the whole sequence. Building on
these definitions, we formalize what (complex) formulas are true on what paths.

Definition 7 (Satisfaction). Let M be an interpretation, π be an internal
path, ε be an external path and α be a sequence of external actions. If M(π, ε, α) =
> then M,π, ε, α |= φ for every ET R formula φ; otherwise:

A Proposal for Transactions in the Semantic Web 11

1. Base Case: M,π, ε, α |= p if p ∈M(π, ε, α) for any ET R atom p
2. Negation: M,π, ε, α |= ¬φ if it is not the case that M,π, ε, α |= φ
3. “Classical” Conjunction: M,π, ε, α |= φ ∧ ψ if M,π, ε, α |= φ and

M,π, ε, α |= ψ.
4. Serial Conjunction: M,π, ε, α |= φ⊗ ψ if M,π1, ε1, α1 |= φ and

M,π2, ε2, α2 |= ψ for some split π1 ◦ π2 of path π, some split ε1 ◦ ε2 of path
ε, and some external action split α1 ◦ α2 of external actions α.

5. Compensating Case: M,π, ε, α |= φ if M,π1, ε1, α1α
−1
1 φ and

M,π2, ε2, α2 |= φ for some split π1 ◦π2 of π, some split ε1 ◦ ε2 of path ε, and
some external action split α1α

−1
1 , α2 of α.

6. For no other M,π, ε, α, φ it holds that M,π, ε, α |= φ.

In the sequel we also mention the satisfaction of disjunctions and implications,
where as usual φ ∨ ψ means ¬(¬φ ∧ ¬ψ), and φ← ψ means φ ∨ ¬ψ.

Note that Definition 7 requires the definition of Consistency Preserving Path.
Intuitively, M,π, ε, αα−1 φ (defined below) means that, in the failed attempt
to execute φ, a sequence α of external actions were performed. Although the
internal state before the execution of the transaction is restored (by rollback
split), since it is impossible to perform external rollbacks, consistency is ensured
by performing a sequence of compensating actions α−1 in backward order (in
case such compensating actions were defined, i.e. if there is an inversion of α). A
formula φ is said to succeed over a compensating case if, although the execution
failed, it is possible to construct a consistency preserving path (cf. Definition 8)
and further succeed on an alternative execution.

Definition 8 (Consistency Preserving Path). Let M be an interpretation,
π be an internal path, ε an external path, and α be a non-empty sequence of
external actions such that α−1 is defined. Let π1 and π2 be a rollback split of
π. The path π′1 is obtained from π1 = 〈D1, . . . , Dn〉 by removing the state Dn

from the sequence; α−1 is a non-empty sequence of external actions obtained
from α by inversion; ε1 ◦ ε2 is a split of ε. We say that M,π, ε, αα−1 φ iff
∃b1 ⊗ . . .⊗ bi ⊗ . . .⊗ bn such that:
M,π′1, ε1, α |= φ← (b1 ⊗ . . .⊗ bi ⊗ . . .⊗ bn)
M,π′1, ε1, α |= b1 ⊗ . . .⊗ bi ⊗ ¬ bi+1

M,π2, ε2, α
−1 |=

⊗
α−1

where
⊗

represents the operation of combining a sequence of actions using ⊗.

The notion of satisfaction allows us to define models of ET R programs, and
entailment of ET R formulas, in a natural way. Intuitively, a formula φ entails
another formula ψ if, independently of the sequence of actions and internal and
external paths, whenever φ is true ψ is also true; similarly for entailment of
formulas by programs (i.e. sets of formulas). Formally:

Definition 9 (Models). An interpretation M is a model of a transaction for-
mula φ if M,π, ε, α |= φ for every internal path π, every external path ε, and
every action sequence α. In this case, we write M |= φ. An interpretation is a
model of a set of formulas if it is a model of every formula in the set.

12 Ana Sofia Gomes and José Júlio Alferes

Definition 10 (Logical Entailment). Let P be an ET R program and φ be
an ET R formula. Then P entails φ if every model of P is also a model of φ. In
this case we write P |= φ

4 Comparisons and Related Work

ET R can be compared to many logics that reason about state change or about
the related phenomena of time and action. These include action languages, the
situation calculus [9], the event calculus [8], process logic [6] and many others. An
extensive comparison of these formalisms with T R can be found in [1]. However,
this kind of logics was not designed to reason about database programs but
rather intended to describe changes in dynamic systems where one has little
or no control such as external domains. As a result, although these formalisms
provide powerful tools to specify changes and reason about their causalities in a
very general and abstract way, they are simply inappropriate to model database
transactions [1]. Moreover, the flexibility achieved by having an external oracle as
a parameter allows for the combination of ET R with several different languages
and semantics for describing the effects of actions in an external knowledge
base. As a result, it is our opinion that rather than an alternative to ET R, these
solutions, as action languages or situation calculus, should be seen as a possible
built-in component, orthogonal to ET R theory, as they can be used to define
the semantics of the external oracle.

On the other hand, one can also compare ET R to formalisms that involve
the notion of long-running transactions or sagas. Generally such formalisms are
based on process algebras, a family of algebraic systems for modeling concur-
rent communicating processes, as Milner’s Calculus of Communicating Systems
(CCS) and Hoare’s Communicating Sequential Processes (CSP), among others.
One clear difference between ET R and such systems is that ET R does not sup-
port concurrency and synchronization. However, extending ET R to provide such
features represents a next obvious step and is in line with what has been done
in Concurrent Transaction Logic [2].

Notwithstanding the major difference between ET R and other proposals
based on process algebras as [7,10] is mainly conceptual. In fact, the semantics
of these latter systems are mostly focused on the correct execution and synchro-
nization of processes whilst ET R semantics emphasizes knowledge base states.
As a result, process algebras solutions are interested in modeling the correctness
evolution of each transaction, thereby possessing a powerful operational seman-
tics, but they are normally not interested in knowing what is true in each state
of the knowledge base. In this sense, such solutions enclose powerful operators
that in some cases even allow the system to construct the correct compensation
for each action “on-the-fly” as in [11]. However, since these solutions, based on
process algebras, are designed to define programs and behaviors, they are not
suitable to be used as a knowledge representation formalism. Consequently, it is
not possible to model what is true at each step of the execution of these processes
nor to specify constraints on their execution based on this knowledge.

A Proposal for Transactions in the Semantic Web 13

5 Discussion and Future Work

This work represents a first step towards a more generic goal, that we intend to
pursue in our future work. Particularly we are interesting in developing a generic
solution able to ensure the requirements as presented in Section 2.4. With this
goal we already started to define top-down procedures for the serial-Horn subset
of the logic.

Moreover, as it is, ET R does not support concurrency and synchronization.
However, extending ET R to provide such features represents a next obvious step
and is in line with what has been done in Concurrent Transaction Logic [2].

Another important step is to address reactivity. Reactivity denotes the ability
to monitor changes and act accordingly to them. Such issue has always been an
important concern and several active database language and systems have been
proposed so far - a very incomplete list include [?,?,?,?,?,?]. Normally, reactive
system are based on an Event-Condition-Action (ECA) paradigm. ECA-rules
have the general syntax: on event if condition do action. Intuitively, events are
received as an input stream from the external environment. It is then the system’s
responsibility to interpret which events have occurred and identify which rules
should be triggered. The condition is a query to check if the system is in a
specific state, where the rule can be applied. Finally, the action part specifies
the actions that should be performed after the event occurs and the condition
is true. T R as defined is not suitable as the action component of such reactive
language as it does not account the possibility to interact with the external world,
and thus it becomes impossible to “receive” events as well as execute actions
externally. Contrarily, by having the possibility to interact with an external
oracle, ET R is able to perceive the effects of the external actions performed, but
also to model other arbitrary changes that have independently occurred in that
domain. These characteristics make ET R an ideal candidate for modeling the
semantics of the action component of an ECA language, providing the possibility
of combining internal ACID transactions with a relaxed model of transactions
for the accommodation of external actions.

Acknowledgements

This paper was submitted to SDIA 2011 - 3rd Doctoral Symposium on Artificial
Intelligence and is part of an ongoing PhD supervised by José Júlio Alferes
started on February 2010 and foreseen to be concluded on February 2014. Ana
Sofia Gomes is supported by the FCT grant SFRH / BD / 64038 / 2009.

References

1. A. J. Bonner and M. Kifer. Transaction logic programming (or a logic of declara-
tive and procedural knowledge). Technical Report CSRI-323, Computer Systems
Research Institute, University of Toronto, 1995.

14 Ana Sofia Gomes and José Júlio Alferes

2. A. J. Bonner and M. Kifer. Concurrency and communication in transaction logic.
In JICSLP, pages 142–156, 1996.

3. A. J. Bonner and M. Kifer. Results on reasoning about updates in transaction
logic. In Transactions and Change in Logic Databases, pages 166–196, 1998.

4. C. de Sainte Marie, G. Hallmark, and A. Paschke. RIF Production Rule Dialect,
June 2010. W3C Recommendation http://www.w3.org/TR/rif-prd/.

5. H. Garcia-Molina and K. Salem. Sagas. SIGMOD Rec., 16:249–259, December
1987.

6. D. Harel, D. Kozen, and R. Parikh. Process logic: Expressiveness, decidability,
completeness. In FOCS, pages 129–142, 1980.

7. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
8. R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New Generation

Comp., 4(1):67–95, 1986.
9. J. McCarthy. Situations, actions, and causal laws. Technical report, Stanford

University, 1963. Reprinted in MIT Press, Cambridge, Mass., 1968 pages 410-417.
10. R. Milner. Calculi for synchrony and asynchrony. Theor. Comput. Sci., 25:267–310,

1983.
11. C. Vaz and C. Ferreira. Towards compensation correctness in interactive systems.

In WS-FM, pages 161–177, 2009.

http://www.w3.org/TR/rif-prd/

	A Proposal for Transactions in the Semantic Web
	Ana Sofia Gomes and José Júlio Alferes

