
Deontic Logic Programs

(Extended Abstract)

Ricardo Gonçalves
rjrg@fct.unl.pt

José Júlio Alferes
jja@fct.unl.pt

CENTRIA & Dep. Informática, Faculdade Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

ABSTRACT
Deontic logic programming (DLP) is a framework combining
deontic logic and non-monotonic logic programming, and it
is useful to represent and reason about normative systems.
In this paper we propose an implementation for reasoning in
DLP that combines, in a modular way, a reasoner for deontic
logic with a reasoner for stable model semantics.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Languages, Theory, Algorithms

Keywords
Norms, Knowledge representation, Environments, Social and
organisational structure, Logic-based approaches and meth-
ods, Design languages for agent systems

Extended Abstract
Deontic logic programming (DLP) [5, 6] is a framework com-
bining Standard Deontic Logic (SDL) [9, 2] and Logic Pro-
gramming (LP) [7], for representing and reasoning about
normative systems. It has a rich language, allowing com-
plex SDL formulas to appear in the body and head of LP
rules, combined with the use of default negation. Moreover,
DLPs have a purely declarative semantics, stemming from
the stable model semantics (SMS) of logic programs [4]. The
language obtained is quite expressive and can be shown to
embed extant approaches such as input-output logic [8]. Our
aim in this paper is to propose an implementation of DLPs
that combines, in a modular way, an SDL reasoner with an
ASP reasoner for SMS. A DLP is composed by rules that
resemble usual logic program rules, but where complex SDL
formulas appear in the place where only atoms were allowed

Definition 1. A deontic logic program is a set of rules
ϕ← ψ1, ..., ψn, not δ1, ..., not δm

where each of ϕ,ψ1, ..., ψn, δ1, . . . , δm is an SDL formula.

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May, 6–10, 2013,
Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

As usual, the symbol ← represents rule implication, “,”
represents conjunction and not represents default negation.
The above rule has the usual reading that ϕ should hold
whenever ψ1, ..., ψn hold and δ1, ..., δm are not known to
hold. Given a DLP P we denote by frm(P) (resp. hd(P))
the set of SDL formulas appearing in P (resp. in the head
of a rule in P). The semantics of DLPs (see [5]) is a SMS
obtained by using SDL logical theories (sets of SDL formulas
closed under SDL consequence) as interpretations, thus ac-
counting for the interdependency between the SDL formulas
appearing in the rules. In it, a stable model T is a fixpoint
of a Γ operator, defined as the least theory (which always
exists) of a definite program obtained by deleting all rules
with not φ such that φ ∈ T , and deleting all remaining nots.
An SDL formula ϕ is a consequence of P , written P �SM ϕ,
if ϕ belongs to every stable model of P .

Our first result states that, although the number of SDL
logical theories is infinite, the number of stable models of a
finite DLP is finite. Using that, we can prove decidability.

Theorem 1. Let P be a finite DLP and ϕ any SDL for-
mula. Then, P has finitely many stable models, and it is
decidable the problem of checking if P �SM ϕ is the case.

Our aim is precisely to propose an implementation of a rea-
soner for DLPs which combines in a modular way a reasoner
for SMS (such as Clasp [3]) and for SDL (such as the KED
SDL solver [1]). This modularity is fundamental since it al-
lows using the large body of successful research done in the
area of SMS implementation and answer set programming.

Let P be a DLP. Consider the following normal logic pro-
gram PN obtained from P :
PN = P ∪ {ϕ← ψ1, . . . , ψn : {ψ1, . . . , ψn} ⊆ hd(P) and

ϕ ∈ frm(P) \{ψ1,...,ψn} and {ψ1, . . . , ψn} �SDL ϕ}.
PN is a normal logic program because the SDL formulas

in it are to be considered as normal logic programs atoms.
The key idea underlying the construction of PN, in or-

der to enforce the interdependency between deontic formu-
las (which in PN are just atoms), is to enrich PN with rules
that represent the possible deontic reasoning occurring with
the formulas of P . We denote by AS(PN) the set of stable
models of PN, viewed as a normal logic program. The fol-
lowing presents a finite representation of each of the stable
models of P , where A�SDL is the closure of A under �SDL.

Theorem 2. Given a deontic logic program P, we have
that

SM(P) = {A�SDL : A ∈ AS(PN)}.



Our aim now is to compute these finite representations of
the stable models of P . We sketch an algorithm that, given
a finite DLP P , returns a normal logic program Palg.
input: finite deontic logic program P
set i = 1; k = lenght(hd(P));
P alg := P ∪ {ϕ← : ϕ ∈ frm(P) and �SDL ϕ}
while i ≤ k

for each subset A = {δ1, . . . , δi} of hd(P) of size i

if A �SDL ⊥ (* A is inconsistent *)

then for each ϕ ∈ frm(P) \ A
add ϕ← δ1, . . . , δi to Palg unless

there is ϕ← ψ1, . . . , ψn ∈ Palg with {ψ1, . . . , ψn} ⊆ A
else for each ϕ ∈ frm(P) \ A

if propSymb(A) ∩ propSymb(ϕ) = ∅
then do nothing

else if ϕ← ψ1, . . . , ψn ∈ Palg with {ψ1, . . . , ψn} ⊆ A
then do nothing

else if A �SDL ϕ
then add ϕ← δ1, . . . , δi to Palg

i=i+1

return Palg

The above algorithm is an improvement of the definition
of PN, in the sense that it prunes some search paths using
well-known properties of both the area of logic programming
and of the area of deontic logic. Given these improvements,
the algorithm for constructing Palg does not, in general, re-
turn exactly PN. One can readily see that Palg ⊆ PN. As
expected, the extra rules of PN are redundant.

Proposition 1. Given a finite deontic logic program P,
we have that AS(Palg) = AS(PN).

The above proposition allows the use of the Palg algorithm
to construct a finite representation of the stable models of P .
This can be done by constructing the normal logic program
Palg from P and then calculating its stable models. The
former can be done using a SDL reasoner and the later can
be done using a SMS reasoner. Note that, as we aimed, this
construction is modular in the use of the two reasoners.

Regarding complexity, it should be clear that the use of
DLPs, with default negation, increases the complexity of
the SDL alone. This comes from the fact that the SMS,
with default negation, adds, as usual, one extra level of non-
determinism. From the point of view of LP there is also an
exponential increasing in the complexity. First, to construct
PN and Palg we need to query a SDL oracle an exponential
number of times. Moreover, we need to compute the stable
models of Palg which, in the extreme case, can have expo-
nentially more rules than P . This extra complexity is not
surprising given the expressivity of the language of DLPs.
Recall that a DLP can have any SDL formula in the head
and body of its rules. In some particular applications, how-
ever, there is no need for this general expressivity, and, in
those cases we can play the usual game between expressiv-
ity and complexity. We now study some classes of restricted
DLPs, which may well have the necessary expressivity for
modeling non-trivial scenarios.

Proposition 2. Let P be a DLP with only atoms and
deontic operators applied to atoms. Then Palg = P.
Another interesting example is the case of DLPs that only
contain literals, obligation applied to literals and negation
of obligation applied to literals. Contrarily to the previous
case, this language is expressive enough to capture the no-
tion of permission: recall that P(p) ≡SDL ¬O(¬p).

Proposition 3. Let P be a finite DLP with only literals,
obligation applied to literals and negations of obligations ap-
plied to literals. Then

Palg = P ∪ {ϕ← ⊥ : ϕ ∈ frm(P)}∪
{⊥ ← p,¬p : {p,¬p} ⊆ hd(P)} ∪
{⊥ ← O(p),O(¬p) : {O(p),O(¬p)} ⊆ hd(P)} ∪
{⊥ ← O(�),¬O(�) : {O(�),¬O(�)} ⊆ hd(P)} ∪
{¬O(¬p)← O(p) : O(p) ∈ hd(P) and ¬O(¬p) ∈ frm(P)} ∪
{¬O(p)← O(¬p) : O(¬p) ∈ hd(P) and ¬O(p) ∈ frm(P)}.
This proposition allows to construct Palg using only syn-
tactical checks, i.e., no need to use an SDL oracle. This is
possible because the interaction between deontic formulas
in this restricted language is limited and can be described
using the rules in the above definition. The first four lines
are related to the so-called explosion principle: from a con-
tradiction everything follows. The last two lines are related
with the connection between obligation and permission: if it
is obligatory then it is permitted. Moreover, it is interesting
to note that the maximum number of rules added to Palg is
(#hd(P))2+(2k+1)×#hd(P))

2
, where k is the maximum number

of formulas in a rule. Therefore, the number of rules is at
most quadratic in the number of rules of P .

Acknowledgments
R. Gonçalves was supported by FCT under the postdoctoral
grant SFRH/BPD/47245/2008. This work was partially
supported by FCT projects ERRO PTDC/EIA-CCO/121823/2010
and ASPEN – PTDC/EIA-CCO/110921/2009.

1. REFERENCES
[1] A. Artosi, P. Cattabriga, and G. Governatori. Ked: A

deontic theorem prover. In Workshop on Legal Appl. of
Logic Programming, pages 60–76. IDG, 1994.

[2] B. Chellas. Modal Logic: An Introduction. Cambridge
University Press, 1980.

[3] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
clasp : A conflict-driven answer set solver. In C. Baral,
G. Brewka, and J. S. Schlipf, editors, LPNMR, volume
4483 of Lecture Notes in Computer Science, pages
260–265. Springer, 2007.

[4] M. Gelfond and V. Lifschitz. The stable model
semantics for logic programming. pages 1070–1080.
MIT Press, 1988.

[5] R. Gonçalves and J. J. Alferes. An embedding of
input-output logic in deontic logic programs. In Deontic
Logic in Computer Science, 11th International
Conference, DEON 2012, Bergen, Norway, July 16-18,
2012. Proceedings, To appear, 2012.

[6] R. Gonçalves and J. J. Alferes. Specifying and
reasoning about normative systems in deontic logic
programming. In W. van der Hoek, L. Padgham,
V. Conitzer, and M. Winikoff, editors, AAMAS, pages
1423–1424. IFAAMAS, 2012.

[7] J. W. Lloyd. Foundations of Logic Programming.
Springer, 1984.

[8] D. Makinson and L. van der Torre. Constraints for
input/output logics. Journal of Philosophical Logic,
30:155–185, 2001.

[9] G. H. von Wright. Deontic logic. Mind, 60:1–15, 1951.


