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 Abstract 
 
 In this work we make a quantitative infrared analysis of the asymmetric stretching peak of SiO2 films 
thermally grown, and with thickenesses ranging between  16 nm and  527.5 nm. 
 For this effect, it was developed a software, FITIR, which is basically a nonlinear least-squares curve 
fitting program capable of executing two analysis methods: gaussian decomposition and dispersion analysis. 
 The results obtained by dispersion analysis are “biased” due to the fact that the studied spectra show 
higher values than the real ones. This problem has been partially solved, reducing the “bias” to, what we believe, 
acceptable values. 
 Gaussian decomposition strongly suggests that the asymmetric stretching peak is composed, not by one or 
two vibrational modes as suggested in literature, but by three, and that at least two of these modes show a 
longitudinal-optic  transverse-optic (LOTO) frequency splitting. This implies that LO modes are only observed 
in oblique incidence spectra of radiation polarized with the electric field vector parallel to the plane of incidence. 
 The majority of the gaussian parameters show large changes on their values with film thickness, thus 
explaining the asymmetric stretching peak shift with film thickness. 
 When the dielectric function is modelled by a set of lorentzian oscillators with a gaussian distribution of 
frequencies, dispersion analysis of transmittance spectra corroborates quite reasonably the results obtained in 
gaussian decomposition, namely in the number of vibrational modes and their respective relative intensities. 
However, this model starts failing for reflectance spectra. With this method of analysis, some properties of the 
dipoles responsible for the vibrational peaks were determined, as well as the SiO2 films complex dielectric 
function and complex refractive index. 
 The dispersion parameters, following the example of the gaussian parameters, also show a high 
dependence on film thickness. 
 There is some temptation to justify these parameters changes by assuming the existence of bond strains in 
the oxide, which in turn would also change with film thickness. However, if this is true, its effect is rather irregular 
since there are parameters that change, with film thickness, but not for all peaks. 
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 Resumo 
 
 Pretende-se com este trabalho analisar quantitativamente o pico de alongamento assimétrico de filmes de 
SiO2 formados termicamente e com espessuras entre  16 nm e 527.5 nm, observado na espectroscopia de 
infravermelhos. 
 Desenvolveu-se, para este efeito, um programa de computador, FITIR, que baseia o seu funcionamento 
no ajuste não linear de curvas pelo método dos mínimos quadrados e que vai executar dois métodos de análise: 
decomposição com gaussianas e análise dispersiva. 
 Os resultados obtidos através da análise dispersiva estão “distorcidos” pelo facto dos espectros de 
infravermelhos estudados apresentarem valores superiores aos reais. Este problema foi parcialmente resolvido, 
reduzindo a “distorção” a valores, que julgo serem, aceitáveis. 
 Da decomposição com gaussianas observa-se uma forte evidência no sentido do pico de alongamento 
assimétrico ser formado, não por um ou dois modos vibracionais conforme sugerido na literatura, mas sim por três, 
e que pelo menos dois dos modos apresentam uma divisão em frequência Longitudinal-óptica  Transversal-óptica 
(LOTO). Isto implica que os modos LO só são observados nos espectros de incidência oblíqua com radiação 
polarizada cujo vector campo eléctrico é paralelo ao plano de incidência. 
 A maioria dos parâmetros das gaussianas apresenta grandes variações com a espessura do filme de óxido, 
o que explica o deslocamento do pico de alongamento assimétrico com a referida espessura. 
 Quando a função dieléctrica é modelada por um conjunto de osciladores lorentzianos com uma 
distribuição gaussiana de frequências, a análise dispersiva dos espectros de transmitância corrobora bastante 
razoavelmente os resultados obtidos na decomposição com gaussianas, nomeadamente no número de modos 
vibracionais e respectivas intensidades relativas. No entanto, este modelo começa a falhar nos espectros de 
reflectância. Com este método de análise foi possível determinar algumas propriedades dos dipolos que originam 
os picos vibracionais bem como a função dieléctrica complexa e índice de refracção complexo dos filmes de SiO2. 
 Os parâmetros da dispersão, seguindo o exemplo dos parâmetros das gaussianas, também apresentam 
grandes variações com a espessura do filme. 
 Poder-se-à tentar justificar esta variação dos parâmetros, obtidos com ambos os métodos de análise, 
assumindo a existência de “esforços” nas ligações químicas (“bond strains”) do óxido, que por sua vez também 
variariam com a espessura do filme. No entanto, a ser verdade, o seu efeito é bastante irregular dado que existem 
parâmetros que só apresentam variações com a espessura do filme em alguns picos. 
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 Introduction 
 
 
 The properties of amorphous SiO2 (a-SiO2) films on single crystal Si (c-Si) substrates are very important 
from a technological viewpoint, given their application in the electronics industry. 
 The structure of the oxide layer and the nature of the SiO2 /Si interface have been extensively studied. 
However, they still generate considerable disagreement, namely concerning the existence of bond strains and the 
exact structural significance of the peaks occuring between  1000 cm-1 and  1300 cm-1. Although these features 
are generally accepted to arise mostly from asymmetric stretching vibrations of SiOSi bridging sequences, 
different interpretations still hold. Therefore, the study of this frequency region is very pertinent. 
 The present work is organized in the following manner. In Chapter 1, we make a brief introduction to 
silicon dioxide films, namely their applications, growing/deposition techniques, and infrared properties, where we 
enfasize the different interpretations and theories developed to try to explain the peaks structure between   1000 
cm-1 and  1300 cm-1. Chapters 2 and 3 are devoted to the basic development of the equations on which dispersion 
analysis is based upon: Fresnel equations for wave propagation and dielectric dispersion theory. In Chapter 4, the 
software specially developed for this work, FITIR, is briefly described. Chapter 5 gives the more important steps 
taken to calculate the models equations for gaussian decomposition and dispersion analysis. In  Chapter 6 the 
experimental procedure is described, and the obtained transmittance and reflectance spectra are plotted. These 
spectra are analysed in Chapter 7 and the results compared with the results of other authors. 
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 1 - Silicon dioxide films 
 

 1.1- Introduction 
 
 Oxide films are essential in the fabrication of integrated circuits, as they 1: provide isolation between 
devices; mask against impurities, dopant diffusion, and environmental effects; provide stability against mechanical 
damages, e.g., scratching; act as an insulating layer between conductors; act as the gate dielectric. 
 Silicon dioxide films, formed on a silicon surface, have the highest obtainable quality, in terms of 
electrical characteristics. In fact, for semiconductors other than silicon, the  attempts to form oxide films with good 
electrical properties have been made without any significant success. 
 Silicon dioxide films have the further advantage of being easily etched off with buffered hydrofluoric 
acid (solution of 34.6 % NH4F, 6.8 % HF, and 58.6 % H2O by weight) to which the underlying silicon is 
impervious 2. 
 The superiority of these films in comparison to other oxide films justify the overwhelming use of silicon 
technology in the industry of integrated circuits. 
 Oxide layers with thicknesses from 2 to 1000 nm are of technical interest 3. Their properties depend on 
their intended use. 
 Basically, silicon dioxide films may be divided in two groups: thermal oxides and deposited oxides. They 
complement each other. For instance, both gate and field oxide layers of a MOSFET (figure 1.1) are generally 
thermally grown because only this process is able to provide the highest quality oxides having the lowest interface 
trap densities 4. On the other hand, the multilevel interconnection technology requires insulating films to be 
deposited below 400C. For such low temperatures the best quality films are obtained by plasma enhanced 

chemical vapor deposition (PECVD) of silicon dioxide using tetraethoxysilane   TEOS Si OC H, 2 5 4
 and oxygen 

as gas reactants 5. 
 Deposited oxides also complement the thermal oxides in the way that the formation of silicon dioxide 
films over materials other than silicon (which is the case of the blue layers of figure 1.1) may only be done by 
deposition techniques, since thermal oxides are formed by the oxidation of the silicon wafer (section 1.2). 
 Both types of oxides will be briefly described in the two following sections. Section 1.4 gives a brief 
overview about the infrared properties of these oxide films. 
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Figure 1.1: Schematic view of a  n - channel MOSFET cross section. The gate oxide layer is a layer under which a 
conducting channel may be formed between the source and the drain. The field oxide layer provides isolation from 
other device structures. 
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 1.2 - Thermal oxides 
 
 The films with best electrical properties, that is, those with higher dielectric strength1, which is the 
applied electric field that will cause large amounts of current to flow in the oxide film, are formed by thermal 
oxidations in dry oxygen and in water-vapor-containing medium. 
 They are very reproducible and very stable chemically, being used as a standard for comparison with 
other types of oxides. 

 The basic structural unit of thermally grown silicon dioxide is a silicon ion ( Si4 ) surrounded 

tetrahedrally by four oxygen ions ( O2 ), as illustrated in figure 1.2a. These tetrahedra are joined together at their 
corners by oxygen bridges in a variety of ways to form the various phases or structures of silicon dioxide (also 
called silica). Silica has several crystalline structures (e.g., quartz - illustrated in figure 1.2c) and an amorphous 
structure. When silicon is thermally oxidized, the silicon dioxide structure is amorphous, which is illustrated in 
figure 1.2d. There is still considerable disagreement about the “degree of amorphicity” of this structure. However, 
we know that it has open spaces, reflected in the low density of amorphous silicon dioxide (a-SiO2) compared to 
that of crystalline silicon dioxide (c-SiO2) 2.27 g.cm-3 versus 2.65 g.cm-3. In spite of this open structure, silicon 
dioxide films are excellent barriers to the diffusion of several dopants (As, B, P, Sb, Ga, etc.) and metals (except 
Na). O2 and H2O have high diffusivities, an essential feature in thermal oxidation. During thermal oxidation, these 
oxidising species diffuse rapidly through the oxide layer growing on the silicon and continue to react with silicon 
at the silicon-oxide interface, according to the reactions2: 
 
  Si s O g SiO s( ) ( ) ( ) 2 2      (dry oxidation) 

or 
  Si s H O(g SiO s H g( ) ) ( ) ( )  2 22 2 2    (wet oxidation). 

 
 If the diffusivities of  O2 and H2O in SiO2 were low, the oxide formed at the initial stages of oxidation 
would have acted as a diffusion barrier and oxidation would have been self limited. 

Si
O

O

O

O

(a) (b)

(c)

2 65. A
o

165. A
o

(d)

 Si4+

O2- O
2-106.84

These values for the interatomic distances
and bond angle are only average for amorphous
structures

Oxygen ion (O2-)
Silicon ion (Si4+)  

 
Figure 1.2: (a) Basic structural unit of silicon dioxide. (b) Bond angle. (c) Two dimensional representation of a 

quartz crystal lattice. (d) Two dimensional representation of amorphous structure of silicon dioxide. 

                                                           
1  The dielectric or breakdown strength of the oxide film may be measured by fabricating a large number of capacitors, directly on the oxide. 
They are subjected to an increasing DC bias across the insulator and current is measured. Capacitors that pass more current than a preset value, 
usually 1-2 A,are considered failed. For a good oxide, practically all capacitors will fail when subjected to a field of about 107 V/cm or more 
across the oxide. 
2 The silicon surface has always a native oxide with a thickness in the range 0.5 - 2.0 nm depending upon the time of exposure to atmosphere 
after a chemical clean. 
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 Thermal oxidations are carried out at temperatures in the range 600-1250C, with the oxidizing species 
partial pressures ranging approximately between 0.1 - 30 atm. 
 When the oxidation process starts, the film thickness increases linearly with time. As the oxide thickens, 
the diffusion of the oxidizing species through the recently formed film starts to slow down the oxidation process 
and the rate of film growth is no longer linear but parabolic. 
 Oxides grown in dry oxygen have better electrical properties since in wet oxidation of Si wafers, the 
hidrogen produced reacts with oxygen ions in the oxide layer, as it diffuses out into the oxidising gas,  weakening 
the structure 6. However, their growing rate is considerably smaller than the growing rate achieved with wet 
oxidation. So, to produce thick oxides ( 200 nm), that are needed for field and masking applications, steam 
oxidations are more appropriated. 
 As mentioned above, SiO2 films on Si are very successfully used as diffusion barriers (or masks) for 
dopants. Ion implantation is used to introduce dopants in silicon. By controlling the energy and the dose rate of the 
implants, we will know in advance the junction depths and the surface concentrations of the created junctions. 
Oxide films are used as masks to prevent ion implantation in chosen regions of the silicon. The desired thickness 
necessary to obtain an effective ion implantation mask will depend on the dopant species and on its energy. For 
example, given a boron ion with an energy of 100 keV, its range in the oxide is 310.471.0 nm, suggesting that at 
least a 400.0 nm thick oxide layer should be used to stop such boron ions in a-SiO2. A greater thickness ( 550 
nm) will be used to allow for the diffusion in the oxide during the diffusion anneal 1. The diffusion depths in a-
SiO2 for the most well known dopants, such as antimony, arsenic, phosphorus and the above mentioned boron, are 
all given in tables. 
 High temperatures and high partial pressure of the oxidizing species increase the oxidation rate. This rate 
also depends on the substrate orientation. The comercially available crystalline silicon wafers are, normally, cut 
with the orientation <111> or <100> 6. The oxidation rate of <111> silicon substrates is higher than that of 
<100> substrates oxidized under identical conditions of substrate doping and oxidation. <111> surfaces have a 
higher density of silicon atoms for reaction with oxidant species which increases the reaction rate. This difference 
in the density of silicon atoms means that the oxides grown on <111> substrates are more dense than those grown 
on <100> substrates. 
 The oxide properties and its growth rate are also sensitive to impurities either in the oxidizing gas (such 
as water and chlorine) or in the silicon substrate (such as boron and phosphorus). Water as an impurity in the 
oxygen for dry-oxidation process increases oxidation rate constants. Chlorine is introduced into the oxidation 
ambient to improve both the oxide quality and the Si - SiO2 interface property. This element, contained either in 
chlorine gas or in such compounds as anhydrous HCl and trichloroethylene, removes certain impurities at the Si - 
SiO2 interface by changing them into volatile chlorides. The addition of chlorine also increases the oxidation rate 
and the dielectric breakdown strength, and reduces the interface trap density. 
 In silicon integrated-circuit fabrication, silicon is doped during crystalline growth and also during device 
processing. When doped silicon is oxidised, a redistribution of dopant between the silicon and the growing oxide 
occurs. The dopant could preferentially segregate in the silicon or in the oxide 4, and the dopant distribution will 
be affected by the relative dopant diffusivities in silicon and in SiO2. For instance, boron is lost to the oxide, 
decreasing its concentration in silicon at the oxide-silicon interface. This segregation weakens the silicon dioxide 
bond structure, which enhances diffusion of the oxidizing species through the oxide and thus increases the 
oxidation rate. Phosphorus, on the other hand, piles up in silicon at the interface3. Arsenic and gallium behave like 
phosphorus and boron, respectively, except that they redistribute somewhat differently because of different 
relative diffusivities in silicon and SiO2. Variation of dopant concentrations in silicon will affect the electrical 
characteristics of the devices 4. 
 There is no universally accepted theory that describes the interface a-SiO2 / c-Si. As an example, we refer 
the model proposed by Lewis and Irene 7. The transition from crystalline Si to an amorphous oxide is rather 
abrupt (about 3 Å), but there is a transition region of Si-rich SiO2 which extends several monolayers into the 
amorphous before a stoichiometric SiO2 structure is established. Although the oxide attains a stoichiometric SiO2 
composition within 5 - 10 Å of the interface, there is an additional transition region, extending to approximately 30 
Å which does not possess the properties of bulk SiO2. This region appears to be strained, with a distribution of 
tetrahedral rings different from the bulk. 
 
 
 

                                                           
3 At high phosphorus concentrations the oxidation rate increases. 
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 1.3 - Deposited oxides 
 
 Deposited dielectric films are used for insulation between conducting layers, for diffusion and ion 
implantation masks, for capping doped films to prevent the loss of dopants, and for passivation to protect devices 
from impurities, moisture, and scratches. Their basic structural unit is equal to that of the thermally grown films. 
There are three commonly used deposition methods: atmospheric-pressure chemical vapor deposition (CVD), low-
pressure chemical vapor deposition (LPCVD), and plasma-enhanced chemical vapor deposition (PECVD). 
 The deposition process is selected according to the required substrate temperature, deposition rate and 
film uniformity, morphology, electrical and mechanical properties, and chemical composition of the dielectric 
films. 
 Silicon dioxide films may be deposited by several methods. For low-temperature deposition (300 to 
500C), the films are formed by reacting silane, dopant, and oxygen. For example, the chemical reactions for 
phosphorus-doped oxides are 

  SiH g O g SiO s H gC
4 2

450
2 22( ) ( ) ( ) ( )     

 

  4 5 2 63 2
450

2 5 2PH g O g P O s H gC( ) ( ) ( ) ( )     

 
 The deposition process may be performed either at atmosphere pressure in a CVD reactor or at reduced 
pressure in a LPCVD reactor. The low deposition temperature of the silane-oxygen reaction makes it a suitable 
process when films must be deposited over a layer of aluminium. 

 Another low-temperature deposition is accomplished by using tetraethoxysilane   TEOS Si OC H, 2 5 4
  

and oxygen as gas reactants: 
 

   Si OC H g O g SiO s by productsC
2 5 4 2

300 500
2( ) ( ) ( )       

 
forming both SiO2 and a mixture of organic and organosilicon by-products. 
 Low-temperature depositions will become more important as device dimensions are reduced to submicron 
regions because there must be a minimization of the thermal broadening of dopant distribution due to diffusion. 
However, their capabilities are limited, especially for large-diameter wafers. 
 For intermediate-temperature deposition (500 to 800C), silicon dioxide may be formed by the thermal 
decomposition (pyrolysis) of TEOS in an LPCVD reactor. This compound is vaporized from a liquid source. It 
decomposes as follows: 
 

   Si OC H l SiO s by productsC
2 5 4

700
2( ) ( )     

 
 While the high temperature required for the reaction prevents its use over aluminium, it is suitable for 
polysilicon gates requiring a uniform insulating layer with good step coverage4. The oxides may be doped by 
adding small amounts of the dopant hydrides (phosphines, arsine, or diborane). 
 For high-temperature deposition (900C),silicon dioxide is formed by reacting dichlorosilane, with 
nitrous oxide at reduced pressure: 
 

  SiCl H g N O g SiO s N g HCl gC
2 2 2

900
2 22 2 2( ) ( ) ( ) ( ) ( )      

                                                           
4 Step coverage relates the surface topography of a deposited film to the various steps on the semiconductor substrate. In an ideal, or conformal, 
step coverage, film thicknesses are uniform along all surfaces of the step. The uniformity of film thickness, regardless of topography, is due to 
to the rapid migration of reactants after adsorption on the step surfaces. Nonconformal step coverage occurs when the reactants adsorb and react 

without significant surface migration. In this instance the deposition rate is proportional to the arrival angle of the gas molecules. 
film

Conformal step coverage

Substrate

film

Substrate

Nonconformal step coverage 
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 This deposition method gives excellent film uniformity and is sometimes used to deposit insulating layers 
over polysilicon. 
 Deposition methods and properties of silicon dioxide films are listed in table 1.1. In general, there is a 
direct correlation between deposition temperature and film quality. At higher temperatures, deposited oxide films 
are structurally similar to silicon dioxide that has been thermally grown. 
 The lower densities occur in films deposited below 500C. Heating deposited silicon dioxide at 
temperatures between 600 and 1000C causes densification, during which the oxide thickness decreases while the 
density increases to 2.2 g.cm-3. The refractive index of silicon dioxide is 1.46, at a wavelength of  632.8 nm. 
Oxides with lower indices are porous, such as the oxide from the silane-oxygen deposition, which has a refractive 
index of 1.44. The porous nature of the oxide is also responsible for the lower dielectric strength. The etch rates of 
oxides in a hydrofluoric acid solution depend on deposition temperature, annealing history, and dopant 
concentration. Usually higher quality oxides are etched at lower rates. 
 
 

Table 1-1: Properties of a-SiO2 formed by different methods 
 

 Method
 
 

Property 

Thermally grown 
at 1000C 

 
SiH4 + O2 
at 450C 

 
TEOS 

at 700C 

 
SiCl2H2 + N2O 

at 900C 

Composition SiO2 SiO2 (H) SiO2 SiO2 (Cl) 
DC resistivity 

( -cm at 25C) 
 

1014 - 1016(a) 
 

n.a. 
 

n.a. 
 

n.a. 
Density (g.cm-3) 2.2 2.1 2.2 2.2 
Energy gap (eV)  8 - 9  n.a. n.a. n.a. 
Linear thermal 

expansion 
coefficient ( ) 

 
0.510-6  

ppm per C 

 
n.a. 

 
n.a. 

 
n.a. 

Melting point  1700C n.a. n.a. n.a. 
Refractive index (at 
optical frequencies) 

 
1.46 

 
1.44 

 
n.a. 

 
n.a. 

Thermal 
conductivity 

0.014  
W/(cm. C) 

 
n.a. 

 
n.a. 

 
n.a. 

Dielectric strength 
(106 V.cm-1) 

 
> 10 

 
8 

 
10 

 
10 

Etch rate ( A
o

/min) 
(100:1 H2O:HF) 

 
30 

 
60 

 
30 

 
30 

Etch rate ( A
o

/min) 
(buffered HF) 

 
440 

 
1200 

 
450 

 
450 

Step coverage  Nonconformal Conformal Conformal 

 Note. Abbreviation used: (a) Contamination may lower this value; n.a.  not available. 
 
 

 1.4- Infrared ‘signature’ 
 
 From sections 1.2 and 1.3 we saw that silicon dioxide film properties may be made to change greatly, 
depending on the growing process. Infrared (IR) spectroscopy is an excellent tool for the study of the oxide film 
characteristics. The shapes of vibrational spectra observed in IR spectra are very sensitive to the chemical bonding 
and nature of the atomic species interacting with electromagnetic radiation. IR spectroscopy is also very appealing 
because the studied sample is not destroyed. 
 Therefore, the derivation of IR optical equations for insulating films (on semiconductors) is of major 
importance. Using Fresnel formulas for wave propagation we may calculate film transmittance and reflectance as a 
function of its dielectric function (Chapter 2), which, in turn, may be modelled by a set of lorentzian oscillators 
(Chapter 3). These oscillators represent the chemical bondings vibrations. 
 In this section it will be given a simple overview of the vibrational energies of the SiO2 molecule as well 
as its normal vibrational modes whose interpretation is still very controversial. 
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 Even though SiO2 is a polyatomic molecule we will start with the study of a diatomic molecule because, 
as we shall see, polyatomic molecules may be considered as a sum of simple oscillators if the correct axis system 
is chosen. 
 

 1.4.1- Vibrational energies of a diatomic molecule 

 1.4.1.1- Harmonic oscillator 
 
 Even though no exact mathematical expression for the potential energy curves of all molecules is known, 
there is a simple relation that yields curves similar to the real ones, called Morse function: 
 

   U q D ee
q( )   1

2         (1-1) 

 
where q measures the distortion of the bond from its equilibrium length; De is the dissociation energy measured 
from the equilibrium position, i.e., from the minimum of the curve (figure 1.3); and  is a constant for any given 

molecule and may be said to determine the narrowness, or curvature, of the potential well. 
 A straightforward procedure for deducing the allowed vibrational energies would be to substitute the 
Morse function into the Schrödinger equation and look for functions that solve the resulting differential equation. 
Since this procedure has some mathematical difficulties, it’s better to consider the following strategy: we know 
that the vibrations of a molecule result in only small distortions of the bond from its equilibrium position. So we 
are, fundamentally, only interested in an expression for the potential energy near the minimum in the potential-
energy curve. This suggests that a suitable expression for the potential energy may be obtained by a series 
expansion about the minimum. A Maclaurin series expansion about q=0, i.e., about the equilibrium length 8, 
gives 
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 The usual choice of U = 0 at q = 0, sets Uq=0 equal to zero. Furthermore, at q = 0 the potential energy has 
a minimum, and therefore (dU/dq)q=0 must be zero. If only the next higher term in the expansion is retained, we 
have the approximation, valid near the equilibrium position, 
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 This result should be recognised as identical to that which would have been obtained if it had been 
assumed that a chemical bond behaves as a spring following Hooke’s law, with a potential energy given by: 
 

  U q kq( ) 
1

2
2          (1-4) 

 
where k is the force constant. For a chemical bond the curve may be said to approximate a parabola only near the 
minimum. The force constant is then the value of d2U/dq2 near the minimum (figure 1.3). 
 When the parabolic function is used to approximate the potential energy of a chemical bond, the system is 
said to be treated as a harmonic oscillator. 
 The time-independent Schrödinger equation for a diatomic molecule with reduced mass 

   m m m m1 2 1 2 that vibrates harmonically is given by the following equation: 
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Figure 1.3: The harmonic oscillator (red line) and Morse (blue line) potential energy functions. 
 
 
 The wave function, , only exists for certain energy values characterized by a quantum number  which 

may take on the values 0, 1, 2, .... 
 The energies of the allowed states are given by the expression: 
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 A vibrating molecule may not interact with electromagnetic radiation unless a vibrating, or oscillating, 
dipole moment accompanies the molecular vibration. Qualitatively, one may picture an oscillating dipole as 
coupling with the electric field of the radiation so that energy may be exchanged between the molecule and the 
radiation. This stipulation that the vibration be accompanied by a dipole-moment change implies that all 
homonuclear diatomic molecules, which necessarily have zero dipole moment for all bond lengths, will fail to 
interact with radiation and will exhibit no vibrational spectral transitions. On the other hand, a heteronuclear 
diatomic molecule will generally have a dipole moment and, generally, the dipole moment will depend on the 
internuclear distance. The vibration of a heteronuclear diatomic molecule will, therefore, be generally 
accompanied by an oscillating dipole moment. Such molecules may interact with radiation and may absorb energy 
of the radiation changing their vibrational state to one of higher energy. They may, as well, emit radiation and 
thereby change their vibrational state to one of lower energy. 
 For harmonic oscillator type systems, the vibrational quantum number may change only by one unit, i.e., 
  1. 
 

 1.4.1.2- The anharmonicity of molecular vibrations 
 
 That the harmonic oscillator expression for potential energy is only an approximate representation of the 
correct potential energy function shows up in the presence of weak spectral transitions corresponding to 
   2 3, , ... , in violation of the   1 selection rule, and in the fact that the frequencies of these overtone 

transitions are not exactly  2,  3,... times that of the fundamental,   1, transition. 
 The retention of one additional term in the Maclaurin series expansion of equation (1-2) provides a better 
approximation to the potential energy . One has, then, 
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 This expression for the potential energy may be used in the Schrödinger equation to deduce the energy 
levels of the allowed states of an anharmonic oscillator. The solution is obtained by an approximate, or 
perturbation, method and leads to an energy level expression that may be written as 
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    is the spacing of the energy levels, expressed in cm-1, that would 

occur if  the potential curve were a parabola with the curvature that the actual curve has at the minimum, or 
equilibrum, position. The coefficient w xe e  is known as the anharmonicity constant; it is always positive and 

much less than w e . 

 With this new approximation the selection rule   1 is removed and we may have, for example, the 
transitions    0 2 or    0 3 . The probability of these transitions is very weak and their intensity is 
many times negligible. So, we may consider the harmonic oscillator aproximation as a good one, despite its 
simplicity.  
 
 

 1.4.2- Vibrational energies of  a polyatomic molecule 
 
 A molecule containing n atoms, with 3 cartesians coordinates used to describe each one of the n atoms, 
will have 3n degrees of freedom, i.e., there will be a total of 3n coordinates required for a description of the n 
atoms movements. 
 Molecular vibrations are described by 3n-6 (or 3n-5 for linear molecules) degrees of freedom because 3 
degrees describe the translations and 3 (or 2) degrees describe the rotations of the molecule. We say that the 
molecule has 3n-6 (or 3n-5) internal degrees of freedom and 6 (or 5) external degrees of freedom 9. 
 The Schrödinger equation for treatment of internal motion of a molecule in terms of 3n-6 (or 3n-5) 
normal coordinates5 may be deduced from the fact that the kinetic energy operator for a normal coordinate Qi is 

given by an expression of the type  h Qi
2 2 2 28   . 

The mass term that normally appears in the denominator of this operator is generally absorbed in the normal 
coordinate Qi. The operator for the potential energy is the potential energy function itself. Since, in terms of the 
normal coordinates, the kinetic energy is a function of squared terms, we may write 
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where the solution function  will, in general, be a function of the 3n-6 normal coordinates. 

 The potential energy is also a function of squared terms, 
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where  ’s are coefficients that depend on the force constants of the molecule. Equation (1-9) may now be written 
as 

                                                           
5 Normal coordinates are such that both the kinetic and potential energies of a system are expressed by the sum of terms each involving the 

square of a normal coordinate. 
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 If we separate this equation into 3n-6 equations, each involving only one of the normal coordinates we 
get: 
      1 2 3 6... n         (1-12) 

 
which replaced in equation (1-11) gives 3n-6 equations of the type: 
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This equation is identical to that already encountered in the diatomic molecule oscillating harmonically. Each 
normal coordinate Qi will lead to a set of energy levels with a constant spacing: 
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where  i is the vibrational frequency of the ith oscillator, or 
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 So, a molecule containing n atoms will have 3n-6 (or 3n-5) vibrational energy-level patterns. 
 Since the wave functions written in terms of normal coordinates are the same as discussed in Section 
1.4.1.1, the selection rules for transitions between the vibrational states for each normal coordinate are:   1. 
We may, therefore, expect an absorption of radiation corresponding to the transition from the   0 to the   1  
level of each energy-level pattern  other transitions with   1are much more scarce because at room 
temperature, and according to Maxwell-Boltzmann law, the higher energy levels are much less populated. 
 It is worth mentioning that in general we do not know the normal coordinates of a molecule. It is, 
however, sufficient to know that there are coordinates in terms of which T and U are both sums of squared terms, 
implying that the vibrational energy of a molecule is to be treated in terms of 3n-6 (or 3n-5) energy-level patterns. 
 

 1.4.3 - Vibrational modes in a-SiO2 films 
 
 The vibrational modes of amorphous silicon dioxide films may be characterized by oscillations in the     
Si-O-Si bonds. So, we will have 3 normal coordinates associated to 3 independent oscillators with frequencies 
  1 2 3, , . As the Si-O-Si bonds have no vibrational degenerescence (i.e., the number of normal vibrations is 

equal to the number of internal degrees of freedom), we would expect to see in a typical a-SiO2 infrared spectrum 
three peaks, one for each normal frequency. Many spectra show more than three peaks, though. These additional 
peaks are due to the longitudinal-optic  transverse-optic (LO  TO) frequency splitting of the vibrational modes 
in amorphous silicon dioxide, first proposed by Galeener and Lucovsky . 
 Although the physical meaning of this frequency splitting is well understood for crystals, in the case of 
amorphous materials, the significance of such splitting at the atomic level is still unclear. 
 In crystals this splitting arise as a long-range Coulomb forces which are a consequence of the internal 
electric field created by the motions of the ions during the vibrations. In glasses there is also some theoretical 
support for this. Payne and Inkson 1 have shown that the long-range Coulomb interactions may generate a 
uniform effective electric field which acts as an ordering force and overcomes the effects of the disorder in the 
amorphous material to produce well defined longitudinal and transverse vibrational modes. 
 In order to explain this frequency splitting in a simple manner, we are going to consider that the 

macroscopic electric field inside the oxide film (or effective electric field),

E1 , has a plane wave solution, 
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      
E E iwt ik r1 1

0  exp exp , where 

k  2  is the wave vector in the material, specifying the direction of 

wave propagation; and 

E1

0 specifies the amplitude as well as the direction of particle motion. We are also going to 

assume that the wavelengths of interest are long in comparison with the interatomic distance, so we may consider 
our material as continuos. 

 If we consider that the polarization is uniform within the oxide, we have that 

E1  is related to the external 

field,

E 0 , by the relation 

 

  
  
E E E d1 0           (1-15) 

 

where

E d  is the field due to the uniform polarization. This field is called the depolarization field (or induced field) 

because it tends to oppose the applied field 

E 0  (figure 1.4). 

 

E 0

P

E d

 
 

Figure 1.4: The depolarization field

Ed inside the oxide film is opposite to


P . The fictitious 

surface charges (oriented dipoles) are indicated: the field of these charges is

Ed within the film. 

 
 Some shapes of dielectric bodies, where the film shape is included (slab), are characterized by the 
following property: a uniform polarization produces a uniform depolarization field 2, that is, 
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where L is the depolarization factor. Applying this equation to equation (1-15) we get 
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 For an oxide film of sufficient thickness d, such that 

k d >> 1, L is given by 
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 If, on the other hand,

k d << 1, L is determined by the geometry of the material since 


k  is perpendicular 

to the film surface 3: 
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 As a result of the fact that L may take on two different values in a dielectric material, the system of 
electric dipole oscillators representing the film oxide may exhibit two different vibrational modes: a transverse 

mode (

E1


k ) corresponding to L=0, and a longitudinal mode (


E1 //


k ) corresponding to L=1. 
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 Usually, the LO mode frequency is higher than the associated TO mode frequency because the restoring 
forces associated with longitudinal oscillations are greater. 
 Actually, equations (1-18) and (1-19) have only be proven for crystals. The “extension” of these 
equations to amorphous materials is not very pacific, as we shall see further below. However, the somewhat 
“crystal-like” behaviour of the vibrational modes of a-SiO2 thin films suggests that this “extension” is reasonable, 
at least to start with. 
 I think it is worth mentioning that not all the amorphous materials show this frequency splitting of a 
vibrational mode. Only those where the disorder is not strong enough to overcome the ordering vibrational effect 
of the uniform field generated by the long-range forces show vibrational modes with LO-TO splitting. 
 From equation (1-19), LO modes are not observed in normal-incidence infrared spectra the electric field 

vector is always parallel to the film surface (therefore, perpendicular to vector 

k ). Figure 1.5 shows a typical 

normal incidence transmission spectrum for a-SiO2 as obtained from a 342-nm-thick oxide film grown thermally at 
 1000C on c-Si. Each of the three major transmission peaks may be characterized in terms of a particular 
vibrational mode of the oxygen atoms with respect to the silicon atom pairs which they bridge. Rocking (R) of the 
O atom about an axis through the two Si atoms (the oxygen atom motion is out of the plane of the SiOSi bond) 
characterizes the vibrational behaviour of the lowest-frequency peak centered at  460 cm-1. Symmetrical 
stretching (SS) (or bending) of the O atom along a line bisecting the axis formed by the two Si atoms characterizes 
the vibrational mode of the middle peak centered at  810 cm-1. The remaining peak and its high-frequency 
shoulder are due to an asymmetrical stretch (AS) motion in which the O atom moves back and forth along a line 
parallel to the axis through the two Si atoms. According to Kirk 14, the AS motion actually gives rise to two 
vibrational modes: (1) an AS1 mode in which adjacent O atoms execute the AS motion in phase with each other, 
and (2) an AS2 mode in which adjacent O atoms execute the AS motion 180 out of phase with each other. The 
AS1 mode is characteristic of the vibrational behaviour of the peak centered at  1076 cm-1  and the AS2 mode 
typifies the behaviour of the shoulder centered at  1200 cm-1. However, Almeida 15, showed no evidence of 
this AS2 mode in reflectance spectra. This high-frequency shoulder is not present in crystalline silicon dioxide. 
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Figure 1.5: Normal incidence infrared transmission spectrum for a-SiO2 obtained by us from a 342-nm-thick oxide film 

grown thermally at 1000C on a c-Si substrate showing the local vibrational motions of rocking (R), symmetrical stretching 
(SS), and asymmetrical stretching (AS) of the oxygen atoms (blue) with respect to the silicon atom (orange) pairs which they 
bridge that are associated with three major features of the transmission spectrum. The arrows represent the instantaneous 
distortions of atomic bonds. 

 
 
 We may try to shed some light into the region associated to the asymmetric stretch mode (approximately 
between 950 and 1300 cm-1) which is so controversial, by trying to identify the number of vibrational modes 
present in this region, and what they represent. 
 The number of vibrational modes may be identified by decomposing with gaussians that spectral region. 
Each gaussian corresponds to a vibrational mode. A gaussian profile is a good approach because the vibrational 
density of states (VDOS) of a-SiO2 have a gaussian-like continuos frequency distribution around each TO 
frequency (and LO frequency, as well ??). 
 This may be observed in the graphic of figure 1.6, taken from Ref. 14. In this graphic, Kirk 14, makes a 
comparison between the experimental values for the positions of the four pairs of LO-TO-mode peaks (predicted 
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by him) with the VDOS for a-SiO2 as obtained by Carpenter  and Price 16, from vitreous SiO2 using coherent 
inelastic neutron scattering. It may be seen from the graphic that peaks in the VDOS generally tend to coincide 
with the peaks of the TO modes (solid vertical lines) rather than the LO-mode peaks (dashed vertical lines). This is 
more evident in the higher-frequency region, where there tends to be less overlapping of the VDOS bands. In fact, 
judging from figure 1.6, there appear to be no prominent features in the VDOS spectrum which may be associated  
with the LO-mode peaks.  
 This observation of the correspondence between the TO modes and peaks in the VDOS of a-SiO2 agrees 
with theoretical results obtained by de Leeuw and Thorpe 17. They have shown, by including long- (infinite-) 
range Coulomb effects in the study of the vibrational properties of a random network with AX2 molecules, that 
only a single VDOS peak is associated with the splitting of a vibrational mode into a LO-TO pair, and that in the 
long-wavelength limit this peak corresponds closely in frequency to their calculated TO peak. Furthermore, they 
have also shown that in the long-wavelength limit their calculated LO peak occurs at a band edge in the VDOS. 
These results corroborates Kirk’s theory. 
 Even though Kirk’s theory is supported by some theorists, I think the graphic of figure 1.6 may also be 
reasonably interpreted by considering that the AS2 vibrational mode does not exist, that is, by considering that the 
AS1 and AS2 modes reduce to a single AS mode. In this case, the VDOS peak previously assigned to the TO 
component of the AS2 mode (TO2 in figure 1.6) should, in fact, correspond to the LO component of the AS mode, 
which has been predicted to lie in that wavenumber region (1200 cm-1). This different reading of the VDOS 
peaks may be acceptable in view of other authors’ theories, as we shall see below. 
 The rocking and symmetric stretch (or bending) modes should also exhibit this double peak structure. 
However, they are not observed in the graphic of figure 1.6 because their LO-TO components are very close to 
each other, and their superposition makes the two peaks look like only one peak. 
 

 
 

Figure 1.6: Comparison of experimental values for the four pairs of  LO-TO-mode peaks of a-SiO2 (predicted by 
Kirk ) with the VDOS spectrum for a-SiO2 as obtained by Carpenter and Price 6. The positions of the LO 
peaks are indicated by vertical dashed lines, the TO peaks by vertical solid lines, and the experimental values of  

the VDOS spectral plot by solid circles () joined by straight lines to guide the eye. 
 
 For normal incidence transmission spectra of very thin films (below 100 nm) where the high-
wavenumber shoulder has not been observed, the region of interest has been fitted with two gaussians by Boyd 
18. According to this author, this double feature may be the evidence for some kind of localized order within the 
amorphous structure of silicon dioxide films, disclaiming the generally accepted continuos random network (CRN) 
arrangement, since it only predicts one peak in this wavenumber region, while some models based on 
microcrystalline or quasiperiodic structures do predict the two peaks. 
 As the thickness increases the shoulder appears and grows in intensity, so a third gaussian must be added 
5. 
 This growth has several explanations. For example, according to Kirk 14, this results from a growth in 
the optical strength of the AS2 mode due to an increasing disorder-induced mode coupling between the AS1 and 
AS2 modes, as the film thickens. For very thin films the AS2 mode does not appear because the mode coupling is 
very reduced. This theory is confirmed by Lange 19, concluding that this mode coupling act as a “disorder” or  
“amorphicity”  indicator of the a-SiO2 film. 
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 Devine 20, refutes this theory, saying that this effect results from the inclusion of wavenumber 
dependent terms. As a consequence, he also explains, the intensity of this shoulder may not be used neither as a 
measure of the “amorphicity” of the film (otherwise the transition region would not be 3 nm thick, as proposed 
by Lewis and Irene 7, but, at least, 600 nm thick) nor as a comparison between amorphous films. 
 In turn, Almeida and Pantano 21, suggested that this shoulder is a broadened signature of the LO mode 
(associated to the asymmetric stretch TO mode), that is, a mixed LO/TO mode of dominant LO character. The 
shoulder wavenumber falls in the LO wavenumber range and it was observed that as the incidence angle for 
transmission measurements changes from 0 (normal incidence) to 80 off normal, the high-wavenumber shoulder 
sharpens its intensity and frequency increase. 
 This theory also explains the evolution of the shoulder intensity with film thickness. For very thin films, 
the long-range Coulomb interactions are unlikely to be effective along a direction perpendicular to such thin films, 
thus preventing the observation of the LO mode. 
 So, to explain the presence of a LO mode, normally forbidden in normal incidence, Almeida and Pantano 
21, as well as Goullet et al. 5, proposed that in amorphous materials there are no pure TO and LO modes, due 
to the long-range structural disorder effects on the effective electric field produced by long-range Coulomb 
interactions responsible for the TO-LO splittings. This fact may explain why the Raman peak positions of 
amorphous silicon dioxide, within the experimental error, do not appear to coincide with either the TO or LO 
components, except in the case of the bending mode where the coincidence might be fortuitous 15. (The 
agreement is especially poor in the LO case.) In this case, equation (1-19) no longer holds. 
 The fact of having assigned a LO mode to the high-wavenumber shoulder agrees with the above theory 
that LO modes should also exhibit peaks in the VDOS spectrum of figure 1.6. 
 For a thermally grown oxide, the transmission peak minimum associated with the asymmetrical stretching 
mode has a position (in wavenumbers) which is film thickness dependent  the other peaks, that is, the 
transmission peaks associated to the rocking mode and to the bending mode are essentially thickness independent. 
Devine 20 observed this shift for absorption spectra. His results are reproduced in figure 1.7. From the graphic 
we see that as the thermal oxide thickens, the position of the peak maximum shifts from around 1075 cm-1 for very 
thin films ( 20 nm) to around 1090 cm-1  in thicker films ( 1000 nm). The latter value is comparable with that 
measured in bulk, amorphous silica. The reason for this shift is still open to discussion. However, I think it can not 
be due to any kind of  “odd” strain that doesn’t exist in the bulk material, because, as mentioned in section 1.2, 
only a transition region with approximately 3 nm into the film has a distribution of tetrahedral rings different from 
the bulk (strained region). 
 Even though the graphic of figure 1.7 suggests that below  100 nm there is no significant shift, Boyd 
18 has verified that this shift also occurs for films with thicknesses in the range 2.8 - 45.0 nm.  
 

Position of the absorption AS peak maximum
as a function of the a-SiO2 film thickness
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Figure 1.7: Shift of the absorption AS peak maximum with film thickness . 

 
 Whereas for normal incidence spectra the presence of LO modes is controversial, for obliquely incident 
spectra their presence is quite expected. So, through oblique incidence reflectance spectra, we may verify if the 
high-frequency shoulder observed in the transmittance spectra corresponds to a LO mode or, on the contrary, 
corresponds to the AS2 mode. The existence of the AS2 mode implies the presence of two LO peaks in the interval 
950, 1300 cm-1. To verify this presence we need a spectrum with essentially no TO peaks, which may be 
accomplished using the Berreman effect. This effect is based on equation (1-19). For very thin films, the 
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wavevector,

k , of the effective electric field inside the film is perpendicular to the film surface. By using the       p-

polarized component (parallel to the plane of incidence) of oblique incident radiation which has subcomponents 
parallel and perpendicular to the film surface, both TO and LO vibrational modes may be excited, respectively, as 
shown schematically in figure 1.8 (a). 
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Figure 1.8: Excitation of TO and LO modes by the s (perpendicular) and p (parallel) components of radiation striking 
the surface of a thin film with an angle 0 (a) considering that LO modes are not observed in normal incidence 
spectra - Kirk’s model and; (b) considering that LO modes are observed in normal incidence spectra, since the s 
component also excites these modes - Almeida’s and Goullet et al.’s model. The subscripts in TO and LO give the 
radiation component which excites these modes. In both cases, film thickness, d, is much smaller than the 
wavelength, , of the incident radiation. 

 
 
 This effect may be enhanced by: 
 (i) removing with a linear polarizer the s-polarized component (perpendicular to the plane of incidence), 
whose spectra show the same peaks as the transmittance spectra obtained with normally incident unpolarized light. 
These peaks mask the LO components obtained with p-polarized light; 
 (ii) covering the side of the wafer opposite to the oxide with a metal. This may be arranged by the 
deposition of a metallic film or by mounting the oxidized wafer on a metal mirror, providing that the air gap is 
much smaller than the wavelength of the radiation used. Therefore, very plane mirrors and samples are necessary 
as well as dustfree handling . The metal practically eliminates the absorption by transverse modes without 
reducing the absorption band associated with the longitudinal modes. The reason for this is that almost no electric 
field may exist adjacent and parallel to a metalic surface; 
 (iii) making the infrared light strike the film with a high angle of incidence, 0. From figure 1.8(a) we 
easily see that the higher this angle of incidence, the bigger the subcomponent parallel to the film surface, and 
smaller the subcomponent perpendicular to that surface, that is, the bigger the LO subcomponent, and smaller the 
TO component. 
 It was mentioned that if LO modes are observed for normal incidence spectra, equation (1-19) no longer 

holds, which means that the wavevector,

k , of the effective electric field inside the film is no longer perpendicular 

to the film surface but makes an angle  with the normal  figure 1.8(b). In this case, both s and p components 
are capable of exciting LO modes. 
 Nevertheless, the Berreman effect still permits to obtain LO spectra since if we assume that the angle  is 
small, practically all the TOp component disappears due to the metal back. 
 
 Table 1.2 gives the approximate values of the TO and LO vibrational modes wavenumbers for an a-SiO2 
film thermally grown. 
 Even though the existence of the AS2  mode is still open to discussion, it was included in this table so that 
we may eventually compare its values with our own experimental data. 
 The AS2 -mode LO-TO frequency splitting is inverted as a result of lying between the AS1 -mode LO-TO 
pair frequencies. 
 
 

Table 1-2: TO and LO wavenumbers  
 

Oscillator mode j Tj   (cm-1 )  Lj   (cm-1 )  

1 (R) 457 507 
2 (SS) 810 820 

3 (AS1)/(AS)  1076  1256/ 1200 

0 
0



 
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4 (AS2)  1200  1160 

 
 
 With gaussian decomposition of a spectral region we may identify the number of vibrational modes, their 
central frequencies and obtain a measure of their strength and dispersion. However, this it is not sufficient to fully 
characterize a vibrational mode since it “says” nothing about, for example, the reduced mass or the effective 
charge of the dipole responsible for that vibrational mode. 
 An analysis tool that permits to find these and other relevant parameters is called dispersion analysis, 
which is based on the dielectric dispersion theory (Chapter 3) applied to the Fresnel equations of wave propagation 
(Chapter 2). With dispersion analysis, the transmittance and reflectance spectra may be related directly to the 
physical properties of the chemical bonds. 
 Implicit in dispersion analysis is the determination of the a-SiO2 frequency dependent complex dielectric 
function and complex refractive index defined, respectively, by ~  r i 1 2 , and ~n =n+ik. From the obtained 

values for 1 and 2, the TO and LO modes frequencies may be determined since, peaks in 2 reveal transverse 

modes, while peaks in    Im ~  1 2 1
2

2
2   r identify longitudinal modes. From the obtained values for n and 

k we may determine, respectively, the wave velocity (v = c/n) and the absorption in the oxide film. 
 Both Gaussian decomposition and dispersion analysis are accomplished by a nonlinear least-squares 
curve fitting of infrared spectra. We will return to this subject in Chapter 4. 
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 2 - Thin film optics 
 
 

 2.1- Introduction 
 
 Using the Fresnel theory of wave propagation, we may calculate the expressions that relate the 
transmitted and reflected intensities by a single film, with its dielectric function. Even though the silicon substrate 
has a finite thickness, it will be not treated as a layer, because, as we shall see in Chapter 6, its spectrum is deleted 
from the film-substrate spectrum. So, the optical properties may be described by the model of figure 2.1, where the 
silicon substrate is considered as semi-infinite. 

 

Air

a-SiO2

c-Si

 
 

Figure 2.1- Model used to simulate the oxidized wafer. 
 
 

 2.2- Wave propagation in a lossy dielectric 
 
 In order to study the wave propagation in a dielectric we are going to consider a sinusoidal travelling 
plane wave. This simple representation is valid since: 
 (i) an arbitrary wave may always be represented as a spectrum of plane waves; 
 (ii) any periodic wave may be represented as a Fourier series of sinusoids and any nonperiodic wave may 
be represented as a continuos spectrum of harmonics by the Fourier integral. 
 
 There are two types of loss mechanisms which attenuate a wave in a dielectric. The first arises when the 
dielectric is slightly conducting. In the case of a-SiO2, this mechanism may be neglected because its conductivity is 
very low. The second arises when energy is dissipated in the course of the polarization process even though the 
conductivity of the dielectric is zero. The dipoles experience friction as they flip back and forth in a sinusoidal 
field thus extracting energy from it. Because of such friction (polarization damping forces), the polarization vector 
P will lag behind the applied field 


E . The phase difference between 


P and 


E is accounted for by a complex 

permittivity ~   0
~ r , where 0 is the permitivitty in vacuum and ~ r is the dielectric (a-SiO2) relative permittivity: 

~  r i 1 2
6. 

 For a plane wave entering the plane boundary of an isotropic, absorbing medium, the planes of equal 
phase of the wave in the medium are perpendicular to the direction of propagation. Since the reduction in 
amplitude of the wave in the medium depends directly on the distance travelled in that medium, the points of equal 
amplitude will define planes parallel to the surface of separation (figure 2.2) . 
 

                                                           
6
 If we had not neglected the dielectric conductivity, we would have got a permittivity defined as follows: ~  


r i i

w
  1 2

0
, where  is 

the conductivity of the dielectric and w is the frequency of oscillation of the wave. 
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Figure 2.2- Propagation of a plane wave after being refracted into an isotropic, absorbing medium. 

 
 
 Thus if we consider a wave of frequency w travelling in the direction    , ,  (see figure 2.2) in a 

transparent medium of refractive index n, the electric vector may be written as, 
 

  E E iw t
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0 exp
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      (2-1) 

 
where c is the velocity of light in vacuum. 
 The corresponding expression in an absorbing medium becomes , 
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where      , ,  is the direction of maximum damping  i.e. the direction of the normal to the planes of equal 

amplitude. 
 For normal incidence, the expression for the wave may be written as 
 

  
 
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0 exp
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     (2-3) 

 
since, for this case, the direction of maximum damping coincides with the direction of propagation. 
 In equation (2-3), n is the ratio of the velocity of the wave in vacuum to that of the wave in the medium. k 
is known as the extinction coefficient and represents the energy absorption: the attenuation of the amplitude of the 
wave for a path of one vacuum wavelength in the medium is  exp 2k . 

 If we now go to the general case of oblique incidence equation (2-2), we get that the values of   and 
 depend on the direction of propagation in the medium and hence on the angle of incidence. If the angle of 

incidence is  0 and the angle between the planes of constant phase and those of constant amplitude is  , then it 

follows directly from the wave equation that , 
 

   2 2 2 2  n k         (2-4) 

    cos  nk          (2-5) 

     sin sin  0          (2-6) 

 
 The similarity between equations (2-1) and (2-3), for waves travelling in transparent and absorbing 
media, respectively, has resulted in (n+ik) being termed the ‘complex refractive index’: 
 
  ~n n ik           (2-7) 
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 This, in fact, suggests that in order to calculate the Fresnel equations for the transmitted and reflected 
intensities by an absorbing layer, we may start by assuming the layer is transparent with a real refractive index, n, 
and only after the equations are fully developed make the substitution of n by ~n . The final equations thus obtained 
are correct, and the mathematical difficulties implicit in equations (2-2) and (2-3) are avoided. This procedure will 
be adopted throughout this Chapter. 
 
 

 2.3- Reflection and Transmission of light at the surface of a 
transparent medium 
 
 For an isotropic medium, the laws of electromagnetism are given by the following equations: 
 

     
 
D E          (2-8) 

     
 
B H 0         (2-9) 
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       (2-11) 

 
where the symbols have their usual meanings except T , which takes into account the two loss mechanisms in a 

dielectric. For a medium in which there is no space charge, equations (2-8) to (2-10) may be rewritten as follows: 
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which represent the propagation of electromagnetic waves in an absorbing medium. For propagation in a 
transparent medium    0 , the above equations reduce to 
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         (2-14) 
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,         (2-15) 

 
the well known simple form of wave equation, which shows that electromagnetic waves travel with velocity: 

v
c c

nr r r r

   
1 1 1

0 0      
. If we consider a non-magnetic material then its relative permeability 

equals one   r  1 , consequently, 

 

  n r           (2-16) 

 
 The problem of determining the light reflected and transmitted at a boundary separating two media with 
different optical properties is dealt with by applying boundary conditions to the solutions of Maxwell’s equations. 
These require that the tangential components of both electric and magnetic vectors be continuos at that boundary. 
 We will consider a plane wave incident on the surface z=0, the plane of incidence being the plane x0z, 
the angle of incidence  0 and the angle of refraction 1  figure 2.3 (a). 
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Figure 2.3: (a) An example of light reflected and transmitted at a boundary separating two media. (b) Phase changes for external 
, or rare to dense, reflection and internal, or dense-to-rare, reflection. S stands for phase change of the s-polarized light, while 
P stands for phase change of the p-polarized light. B stands for  Brewster’s, or polarizing, angle and C stands for critical 
angle. 

 
 

 We denote the amplitudes of the electric field vector of the wave aproaching the surface by E 0/ /
  and 

E 0
  for the two components (the subscript // refers to the component parallel to the plane of incidence while the 

subscript  refers to the component normal to the plane of incidence). The reflected wave components are denoted 

by E 0/ /
  and E 0

  and the transmitted wave components by E1/ /
  , E1

 . The phase factors associated with the 

incident and the reflected waves are, respectively, of the form 
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whilst that for the transmitted wave is 
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where  is the wavelength in vacuum. 
 At the boundary (z=0), and considering that the point of incidence is the origin of co-ordinates, we have 
that the components of the electric and magnetic field vectors in the x- and y- directions are given by equations    
(2-17) and (2-18), respectively, for medioum 0 and medium 1, 
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 Applying the boundary conditions, we obtain equantions that may be solved to give the amplitudes of the 
transmitted and reflected vectors in terms of those of the incident vectors. We obtain, 
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r1// , r1 are known as the Fresnel reflection coefficients and t1//, t1 as the Fresnel transmission coefficients. 
 
 

 2.4- Reflection and transmission of light at the surface of an 
absorbing medium 
 
 The equations of propagation of light in a transparent medium may, as already mentioned, be applied to 
an absorbing medium by replacing the real refractive index by a complex term. The expressions for the Fresnel 
coefficients equations (2-19) to (2-22) also become complex. They may be written in the following form, 
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where 1/ / , 1 , 1/ /  and 1  represent the (real) amplitudes of the transmitted and reflected waves for unit 

incident amplitude and 1/ / , 1 , 1/ / and 1 are the phase changes at the surface. 

 

 2.5- Reflection and transmission of light by a single film 
 
 We may apply the results of section 2.3 to the determination of the reflection and transmission 
coefficients for a single non-absorbing layer, bounded on either side by semi-infinite non-absorbing layers. We do 
this by considering a beam incident on the film which is divided into reflected and transmitted parts. Such division 
occurs each time the beam strikes an interface so that the transmitted and reflected beams are obtained by 
summing all the transmitted and reflected beams, respectivelly. When we are only considering one layer, the 
summation may be easily made. The results are conveniently expressed in terms of the Fresnel coefficients. 
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 Suppose that a parallel beam of light of unit amplitude and of wavelength  falls on a plane, parallel-
sided, homogeneous, isotropic film of thickness d and refractive index n1 supported on a substrate of index n2 
(figure 2.4) 1. The refractive index of the first medium is n0 and the angle of incidence is  0 . 

 We may write down the amplitudes of the successively reflected and transmitted beams in terms of the 
Fresnel coefficients, given by equations (2-19) to (2-22). From the definitions of these coefficients, we see that 
they depend, for a given boundary, on the direction of propagation of light across the boundary. 
 In treating the problem of the single layer, we shall denote the Fresnel coefficients for propagation from 
medium 0 to medium 1 by r1 and t1 as given by (2-19) - (2-22). The corresponding coefficients for propagation 

from medium 1 to medium 0 will be written r1
 and t1

 . At last, the Fresnel coefficients for propagation from 

medium 1 to medium 2 will be denoted by r2 and t2. The expressions given below will be valid for either direction 
of polarization provided that r and t are given the appropriate values from equations (2-19) to (2-22). So the suffix 
// or  will be omitted. 
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Figure 2.4: Amplitudes of the successively reflected and transmitted beams in terms of the Fresnel coefficients. 
 
 
 From figure 2.4 we get that the amplitudes of the successive beams reflected into medium 0 are thus 

given by  r1 , t t r1 1 2 , t t r r1 1 1 2
2  , t t r r1 1 1

2
2
3 ( ) , ... and the transmitted amplitudes into medium 2 by t t1 2 , t t r r1 2 1 2 , 

t t r r1 2 1
2

2
2( ) , t t r r1 2 1

3
2
3( ) , .... From equations (2-19) and (2-21) we get that r1 is equal to  r1. So the reflected 

and transmitted amplitudes may be written, respectively, as r1 , t t r1 1 2 ,  t t r r1 1 1 2
2 , t t r r1 1 1

2
2
3 , ..., and t t1 2 , 

t t r r1 2 1 2 , t t r r1 2 1
2

2
2 , .... Writing 





2 d

 as the film thickness normalised to the wavelength, we have that 

n1cos(1) gives the beam phase change on traversing the film. The total reflected amplitude, r, will, therefore, be 
given by, 
 

    r r t t r i n t t r r i n     1 1 1 2 1 1 1 1 1 2
2

1 12 4exp cos exp cos ...      

 
 This sum represents a converging geometrical series7 (except for the first term). So, r may be written in a 
more compact form, 
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        (2-25) 

                                                           

7 Geometrical series: a n

n
1

1

1

r 





 . |r| < 1  S
a



1

1 r
(the series converges). 
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where the time-dependent factor is omitted. From equations (2-19) to (2-22) we have that: t t r1 1 1
21   , so we 

may simplify equation (2-25): 
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      (2-26) 

 
where   n1 1cos . 

 
 For the total transmitted amplitude, t, we have 
 

      t t t i n t t r r i n t t r r i n   1 2 1 1 1 2 1 2 1 1 1 2 1
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2
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1 13 5exp cos exp cos exp cos ...       

 
 This sum is also a converging geometrical series, therefore, 
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 Equations (2-26) and (2-27) are generally valid. For non-normal incidence, each takes two possible 
forms, depending on the state of polarization of the incident light. For light polarized with its electric field vector 
parallel to the plane of incidence, the reflected and transmitted amplitudes are obtained replacing r1 , r2 , t1 and t2 
from expressions corresponding to equations (2-19) and (2-20). For light polarized with the electric field vector 
perpendicular to the plane of incidence, the Fresnel coefficients as given by equations (2-21) and (2-22) are used. 
 In order to compute the reflectance , R, and the transmittance, T, we are going to calculate the energy in 

each medium, which is represented by the Poynting vector 

S 2: 

 

  
   
S E H E uS  




2
 , (W/m2)       (2-28) 

 

 The irradiance I is defined as the average power that crosses an unit area normal to 

S : 

 

  I S E 
 1

2

2


.        (2-29) 

 
 For oblique incidence of a beam on the film surface we consider that Ii, Ir, and It-film give the incident, 
reflected and transmitted irradiances, respectively. The corresponding beams cross sections (figure 2.5a) are 
A  cos  0 , A  cos  0 , and A  cos 1 , respectively, where A is the illuminated surface area. The incident power 

is, therefore,  I Ai cos  0 . Analogously,  I Ar cos 0 gives the power of the reflected beam, and  I At film cos 1  

gives the power of the transmitted beam into the film. The power transmitted to the substrate (figure 2.5b) is 

 I At cos 2 , where It gives the transmitted irradiance to medium 2. 

 Film reflectance, R, is defined as the ratio of reflected to incident power: 
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Figure 2.5: Cross sections of the incident, reflected and transmitted beams at the (a) interface medium 0 - medium 1 
(air - film) and;  (b) interface medium 1 - medium 2 (film - substrate). 

 
 
 Film transmittance, T, is defined as the ratio of transmitted to incident power: 
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      (2-31) 

 
where s n 2 2cos , and 0 0 0 n cos . 

 We will now make the following transformation to equations (2-26), (2-27) and (2-31): 
 

     n i i icos sin     0
2

0  ,  i = 1, 2     (2-32) 

 
 This relation may be obtained by considering Snell´s law. From figure 2.3, we have that  
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 So, we will get for  , in equations (2-26) and (2-27):       n1 1 1 0
2

0cos sin    ,and for s , in 

equation (2-31):    s n  2 2 2 0
2

0cos sin    . 

 The film reflectance and transmittance may, therefore, be written, respectively, as: 
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 If we are dealing with an absorbing film, equations (2-33) and (2-34) are still valid; we only have to 
replace the value of n1 by its corresponding complex quantity, ~n1 . 

 
 

 2.6- n and k as functions of 1 and 2 
 
 From equation (2-16) we may deduce the relations of n and k with the real and imaginary components of 
the dielectric function ~  r i 1 2 : 

 

  ~ ~n n ik ir1 1 2              (2-35) 

 
 Squaring both terms of this equation we get: 
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 We have obtained a second degree equation, which may be easily solved by the usual formula: 
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Since  1
2

2
2 is always greater or equal than 1 , the minus sign has to be removed, otherwise n would be 

complex, which is, by definition, not true. So, 
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The minus sign was removed because n is always positive. 
 Now, for the extinction coefficient, k, we have that: 
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 If we multiply the numerator and the denominator of the square root by   1 1
2

2
2  we get: 
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 From the value of n we may determine the wave velocity (v = c/n) in the oxide film. This value is in 
certain frequency ranges smaller than one, meaning that the wave velocity is greater than the velocity c of light in 
vacuum. This is, at first sight, a contradiction to one of the fundamental results of the theory of relativity, 
according to which c is the highest attainable velocity. There is actually no contradiction here, however, since 
relativity applies to the velocity with which energy (a light signal) is transmitted, and this is always less than c. We 
know that energy travels with the group velocity u. So, we require that it is c/u that shall be greater than unity, 
rather than c/v. u and v are related by the following equation 
 

  
c

u
n

dn

d
  


         (2-38) 

 
where  is the wavelength in vacuum. It was demonstrated 4 that this ratio is always greater than one. Therefore 
the group velocity is less than c, and there is no violation of the principle of relativity. 
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 3 - Dielectric dispersion theory 
 
 

 3.1- Introduction 
  
 The intrinsic and extrinsic properties of  a material influence its dielectric function. As these properties 
are related to the kind of interatomic bonds present in that material and since these bonds may be treated as 
oscillators, it seems reasonable to model the dielectric function with a set of independent lorentzian oscillators. It 
will be shown that, in fact, this is so.  
 This theory of modelling the dielectric function is known as Dielectric dispersion theory. It enables the 
direct study of the molecular structure of silicon dioxide films by specifying the oscillators parameters that allow 
the synthesis of curves having reasonable agreement with the optical data, which, in this work, will be 
transmission and reflection spectra. 
 The infrared spectra of amorphous silicon dioxide is very similar to that of crystalline, with the main 
difference being a general increase in the widths of the absorption bands and the appearance of a high-frequency 
“shoulder” in the band associated to the asymmetric stretch motion (see Chapter 1). 
 Given that the medium and long range structure of a-SiO2 is considerably different from the ordered 
crystalline arrangement in c-SiO2 , this suggests that the IR spectra are primarily dominated by the Si-O chemical 
bond which must be similar in both materials. We may, therefore, try to determine the a-SiO2 dielectric function by 
making some simple transformations on the crystalline dielectric function, which is easier to calculate. 
 We will consider that a-SiO2 is perfectly isotropic. Otherwise, the dielectric function,  r , would depend 

on the direction of the electric field, that is, it would not be a scalar but a tensor of the second rank. 
 
 

 3.2- Dielectric function for crystalline silicon dioxide 
 
 Consider the permanent electric dipole created by two atoms (or ions)  with different electronegativities 
(e.g., the Si-O chemical bond). Under the influence of an external electric field, this dipole suffers a distortion x, 
i.e., the interatomic distance departs from its equilibrium position. Considering the mechanical equivalent of two 
masses connected by a spring, we have that this distortion originates a restoring force that counteracts the 
distortion and is directly proporcional to the last. There is also a damping force directly proporcional to the 

velocity dx/dt, originated by the friction that the dipole experiences when it flips back and forth. If w x0
2 gives the 

restoring force and 
dx

dt
the damping force, we have for the dipole the following equation of motion: 

     
d x

dt

dx

dt
w x e E iwtx

2

2 0
2   * exp       (3-1) 

 
where   is the dipole reduced mass;   is the damping coefficient; w0 is the dipole natural angular TO frequency 

of vibration; e* is the effective dipolar charge (we have to consider the electrons that are also orbiting around other 
ions which don’t make part of the dipole); and  E iwtx exp  is the external applied electric field. The solution of 

equation (3-1) shows that x varies sinusoidally with an complex amplitude (due to the damping force) given by 
: 
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 The dipolar moment is then: 
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 If we have N such dipoles per unit volume the polarization will be: 
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 We know that, 
   
D E E Pr    0 0 . From this relation we have that 
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 . As we are 

considering an isotropic medium, we may work only in one dimension, so 
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From this equation we get that the dielectric function,  r , is frequency dependent, and is complex, as expected: 
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 In Chapter 1 it was shown that a polyatomic molecule may be treated as a set of 3n-6 (or 3n-5 for linear 
molecules) oscillators, where n is the number of atoms in the molecule. We may, by analogy, make the same 
reasoning for the dielectric function. So, we will have the dielectric function of a polyatomic molecule with n 
atoms given by a sum of independent lorentzian oscillators: 
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 If there is an optical electronic contribution to the polarization from the ion cores, this must be taken into 
account as well. This is done by replacing the constant term, 1,  of  ~ r  by the optical or high frequency dielectric 

constant,   2. So, we get, 
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      (3-8) 

 
 
 The dielectric function may be written as a function of the wavenumber,  , since w c 2  , where the 
angular frequency is given in s-1, the speed of light in vacuum is 31010 cm.s-1, and the wavenumber is given in  
cm-1: 
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 This equation may be written in a simpler form: 
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where      pj j j jN e c2 2 2
02 *    , 0 0j j  , and lj j c  2  are the strength, vibrational frequency, and 

Lorentzian width, respectively, of the materials jth lorentzian oscillator. These parameters are known as dispersion 
parameters. 
 The real and imaginary parts of the dielectric function, 1 and  2 , respectively, are calculated as follows: 
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and, 
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 3.3- Dielectric function for amorphous silicon dioxide 
 
 The accomodation required to change from a crystalline to an amorphous structure, proposed by Naiman 
et al. 3, introduces a distribution in bond strengths, and thereby a distribution in oscillator frequencies. We take 

this distribution to be gaussian and hence replace pj
2 in equations (3-11) and (3-12) by: 
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wheregj , also a dispersion parameter, is the gaussian half width at half maximum for the jth oscillator 

distribution (1201 2. gj j  , where  j is the standard deviation). The ratio  1 1201. gj is the normalization 

factor. 
 A gaussian distribution is a good approach because the vibrational density of states (VDOS) spectrum of 
a-SiO2 also shows a gaussian-like continuos frequency distribution around each peak (see Chapter 1). 
  Equations (3-11) and (3-12) now become 
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and, 
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 All the calculations necessary to compute these integrals are given in Chapter 5. 
 This model for amorphous materials is correct if we consider that only TO modes are observed for normal 
incidence spectra, which means that we are accepting Kirk’s theory 4 about the existence of two asymmetric 
stretching modes (AS1 and AS2). On the other hand, if we consider that LO modes may also be observed in these 
spectra, then our model is incorrect, which is expected since we have considered that the only difference when 
going from a crystalline structure to an amorphous structure is a gaussian broadening of our peaks. If we were to 
consider that this model could also be used for LO modes, then these would correspond to peaks in 2 and not to 
peaks in Im( ~ )1  r , as it ought to be.  

 
 Equations (2-33), (2-34), (2-36) and (2-37) from Chapter 2, along with equations (3-11), (3-12), (3-14), 
and (3-15) from this Chapter, make possible the determination of some features of the a-SiO2 molecular structure 
through the parameters  , pj ,0 j , lj  (and gj  if we are considering the dielectric equation for amorphous 

silicon dioxide) that give agreement with reasonable accurate transmittance and reflectance spectra of that film. 
 This method of analysing the molecular structure of a material through its optical data is known as 
Dispersion Analysis. This method is very powerful since we may compute in a relatively easy manner some of the 
microscopic properties of a material, such as the effective dipolar charge, e*, the dipole reduced mass, , and the 
density of dipoles, N, with a determined moment. 
 A dispersion analysis is successful if it fulfills the following requirements: 
 (i) within the wavenumber region of interest, the theory should fit the data within reasonable estimates of 
the experimental error; 
 (ii) the number of oscillators used is the minimum number that the data requires; 
 (iii) the parameters  , pj ,0 j , lj  (and gj  if we are considering the dielectric equation for 

amorphous SiO2) are uniquely determined within reasonable uncertainties by the requirement of fitting the data. 
 In this method reasonable values are chosen for the dispersion parameters, the reflectance (or 
transmittance) is then calculated by computer, and the parameters are adjusted until agreement is obtained with 
experiment. This take us to Chapter 4. 
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 4 - FITIR , a nonlinear least-squares 
  curve fitting program 
 
 

 4.1- Introduction 
 
 In order to find the dispersion parameters or the gaussian profiles parameters which predict correctly the 
measured infrared spectra, we must use a curve fitting procedure. For that we must choose a figure-of-merit 
function (“merit function”, for short) that measures the agreement between the data (infrared spectrum) and the 
model (Fresnel equations or gaussian profiles) with a particular choice of parameters. The merit function is 
arranged so that small values represent close agreement. The parameters of the model are then adjusted to achieve 
a minimum in the merit function, yielding best-fit parameters. The adjustment, or curve fitting, process is thus a 
problem in minimization in many dimensions (as many as the number of parameters). The merit function is the 
chi-square function. The reason for having selected this particular function will be explained in section 4.2. 
 However, fitting of parameters does not ends the parameter estimation. For instance, data points are 
generally not exact. They are subject to measurement errors. Thus, typical data never exactly fit the model that is 
being used, even when that model is correct. So, we need to assess whether or not the model is appropriate, that is, 
we need to test the goodness-of-fit against some useful statistical standard. 
 We also need to know the accuracy with which parameters are determined by the data set, i.e., the likely 
errors of the best-fit parameters. 
 Finally, it is not uncommon in fitting data to discover that the merit function is not unimodal, with a 
single minimum. This means that when a minimum is found, it is often not obvious whether it is a local or a global 
minimum. This problem is generally very difficult to solve. 
 So, to be useful, a fitting procedure should provide : 
 (i) parameters; 
 (ii) error estimates on the parameters; 
 (iii) a statistical measure of goodness-of-fit. 
 
 These are the main goals of program FITIR. It uses sophisticated algorithms (briefly described in section 
4.3) that have been developed to fit data to models which depend nonlinearly on the set of parameters, as is our 
case: dispersion analysis and gaussian decomposition. 
 The computer language used was FORTRAN 77 with some FORTRAN 90 features. This language was 
chosen by two reasons: 
 (i) it is specially designed for mathematical calculations; 
 (ii)  almost all the available mathematical software libraries are written in this language. 
 
 The FORTRAN compiler used was the F77LEM/32 from Lahey Computer Systems, Inc.. This compiler 
had available some basic graphic routines. From these routines and from some MS-DOS interrupt functions it was 
possible to build a graphics library that has as main features  the following points: 
 (i) visualize the evolution of the model curve as the parameters are adjusted, in contrast with the curve we 
wish to fit, as well as the difference between the two curves (residuals); 
 (ii) visualize the parameters values, the merit function value, the number of iterations; 
 (iii) possibility to change the original data we want to fit, with the objective of making it more “easy” to 
fit. As examples, we may refer the capacity to select the spectral region we wish to fit, the capacity to interpolate 
or give weights to selected regions of the curve, and the capacity of smoothing the curve (noise filtering); 
 (iv) possibility to change the parameters values whenever we wish to do so (before and during the fit). 
This is very important since it often happens that during the minimization process one or more parameters evolve 
to values without any physical meaning. This correction possibility will, therefore, permit to put the “stray” 
parameters “back into the right track”; 
 (v) besides these possibilities to change the data or the parameters values, it is also possible to stop a 
fitting process in order to change a few other inputs, such as the minimization code; 
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 (vi) easy-to-use program due to its structure of windows and pressing buttons. 
 
 Table 4-1 shows the number of lines, subroutines and functions of FITIR. “Homemade” stands for those 
lines, subroutines and functions specially developed for this program, while “Imported” stands for those that are of 
public domain, namely the minimization codes. 
 

Table 4-1: Number  of lines, subroutines and functions of FITIR 
 

Source Lines Subroutines Functions 

“Homemade” 12140 157 4 
“Imported” 13125 74 18 

Total 25265 231 22 

 
 

 4.2- Chi-square fitting 
 
 If we know both the form of the model to be fitted and the form of the distribution of random error in the 
observations, each independent piece of data has a “probability” that varies with each choice of a set of values for 
the parameters. The product of the probabilities of all the data points, for a given set of values for all the 
parameters, is called the likelihood of that set. There is usually a particular set that maximizes this product; it is 
termed the maximum likelihood set. 
 When the distribution of random disturbances is normal (or gaussian), the maximum likelihood estimates 
may be found by a simpler procedure called the method of least-squares. 
 The least-squares (LS) method says: ”Find the values for the parameters in the chosen model equation 
that minimize the sum of the squared deviations of the observed values from those predicted by the model.”. That 
is, 
 

 minimize over p1 ,..., pM :   y y x p pi i M
i

N



 ; 1

2

1

      (4-1) 

 
where we are fitting N data points (xi , yi ) i = 1,...,N, to a model, y(xi ; p1 ... pM), that has M adjustable parameters 
pj j = 1,...,M. 
 The justification for this statement is given by the Gauss - Markov theorem 2, which states that the 
estimates obtained are the most precise unbiased estimates that are linear functions of the observations. It is 
assumed, of course, that the correct model has been chosen. By “most precise” we mean the estimates in 
(imagined) successive sets of data taken under identical circumstances scatter around the true values with 
minimum variance. By “unbiased” we mean that the LS estimates averages out to the true values for a sufficient 
big number of data sets. By “linear”  minimum variance estimates we imply that, although there may be other 
estimates that have even  smaller variances, they will not be linear functions of the observations. This property of 
linearity is advantageous in its simplicity, but there may be nonlinear estimates with much smaller variance. 
However, when the random errors are normally distributed, the LS estimates are maximum likelihood estimates 
and are of possible minimum variance. 
 The first two of the following three key assumptions of the LS method are also crucial assumptions of 
maximum likelihood. 
 The first assumption is that we know, or have chosen, the correct model. If the model is not correct the 
parameters values obtained are meaningless. 
 The second assumption is that the data are typical, that is, that they are a representative sample from the 
whole range of situations about which we want to generalize. It is obvious that a model which represents the 
typical behaviour of a system may not be derived from nontypical data. 
 The third key assumption of the LS method is that the yi -observations are statistically independent. Each 
yi is taken to be made up of a “true” value,  (eta), plus a random component, e. If we denote any two of these 
random components by ej and e j , then this assumption may be stated as: if the probability of e j  appearing in 

some range of values is the same, regardless of the magnitude of ej appearing in some range, then e j  is 

statistically independent of ej. 
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 There are also two less important assumptions for the LS method. The first assumption is that all 
observations on yi have the same (though unknown) variance. (When the variance of the dependent variable 
changes in a known way, then the more general weighted least squares (or chi-square) method  weighting each 
point inversely by its variance  may be used.) The second is that all the values of the independent variables         
(x1 , x2 , ... , xN), are known without error. 
 In addition to the requirements already stated for LS estimation, nonlinear estimation requires that: 
 (i) the model by definition be nonlinear in some of its coefficients; 
 (ii) preliminary estimates of all the parameters be available. If these estimates are not close “enough”, the 
program will not converge to the best values. 
 
 All that has been said until now may be more or less summarized as follows: we are going to suppose that 
each data point yi has a measurement error that is independently random and with a Gaussian distribution around 
the “true” model y(xi ; p1 ... pM). And we are also going to suppose that the standard deviations  of these normal 
distributions are the same for all points. Then the probability of the data set is the product of the probabilities of 
each point, 

  
 

P
y y x p p

yi i M

i

N

 



































 exp

;1

2
1

2

1




      (4-2) 

 
 Maximizing equation (4-2) is equivalent to maximizing its logarithm, or minimizing the negative of its 
logarithm, namely, 
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Since N, , and y are all constants, minimizing this equation is equivalent to minimize equation (4-1) which is 
the LS method. 
 
 For real data, the normal distribution is often rather poorly realized. However, if data are taken in a 
sufficient big number and carefully enough, the LS method gives a good approximation to the maximum 
likelihood set. 
 As mentioned above, if we know the standard deviation of each point yi then equation (4-2) is modified 
only by putting a subscript i on the symbol . That subscript also propagates into equation (4-3), so that the 
maximum likelihood estimate of the model parameters is obtained by minimizing the quantity 
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called the “chi-square”. 

 Equation (4-4) may be written in a different form by defining the weight of yi as w i i 1 2 , and by 

putting the parameters in the vectorial form,   p p p M 1 , , : 
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 The difference  y y x pi i ;


is known as the ith point residual, and 2 the sum of squares of the residuals 

(SSR). 
 
 

 4.3- Mathematical software  
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 FITIR program uses eight FORTRAN codes which solve nonlinear least squares problems: DN2G, 
DN2F, DN2GB, DN2FB, LMDER, LMDIF, MRQMIN, and FRPRMN. 
 The algorithms these codes implement are based on three methods, Levenberg-Marquardt, augmented 
Gauss-Newton and Conjugate Gradient. 
 The reason for using all these codes is due to the fact that there is no perfect minimization algorithm. 
They all have strong points and weak points. If, for a given set of initial parameters, the selected code fails to 
converge, maybe one of the other codes will work well. 
 All the three methods solve the unconstrained nonlinear least squares problem except codes DN2GB and 
DN2FB, where there are a priori limitations on the allowed values of the parameters, that is, the parameters have 
upper and lower bounds (defined by the user), which is 3,4: 
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
p FM M N  , : , for unconstrained optimization; 

  

p D F DM M M N   , : , for constrained optimization. 

 

by finding a zero of the gradient of 2 , that is, an 

p  such that 
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where J is the Jacobian of F (this is a necessary condition for a solution). The Levenberg-Marquardt and the 

augmented Gauss-Newton methods use variations of Newton’s method to find a zero of the gradient of 2 . The 

Newton step, 

p , for improving an approximate solution 


p  of equation (4-7) is the solution of the following 

system of equations 
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or, equivalently, 
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Here 2 2 is the Hessian matrix of 2 ,   2 2
2 2


 
ij

i jp p
, i,j = 1,...,M, and 2 fi is the Hessian matrix of the ith 

residual. We are going to refer to the term f fi ii

N


 2
1

, in equation (4-9) as S. The variations of Newton’s 

method involve the approximation of this S term. 
 The Levenberg-Marquardt method  approximates S with D, where D is a diagonal matrix and , a 
scalar, is the Levenberg-Marquardt parameter. The following codes implement the Levenberg-Marquardt method: 
LMDER, LMDIF, and MRQMIN. 
 In the augmented Gauss-Newton method 5, part of S is computed exactly and part is approximated by a 

quasi-Newton updating method. This approximation guarantees that 2 fi  is always positive definite. The 

algorithm sometimes reduces to a Gauss-Newton or Levenberg-Marquardt method. Close to the minimum, the 
approximation approaches the true Hessian and we obtain the Gauss-Newton method. The following codes 
implement the augmented Gauss-Newton method: DN2G, DN2F, DN2GB, and DN2FB. 
 The conjugate gradient method , here typified by the Polak-Ribiere algorithm, says that 


p  has the 

direction that is somehow constructed to be conjugate to the old gradient, and, insofar as possible, to all previous 

directions traversed (two vectors, 

u  and 


v , are said to be conjugate when 

 
u f vi  2 0 ). The code that 

implements the conjugate gradient method is FRPRMN. 
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 Obviously, all the codes need a user-supplied routine that evaluates  y x pi ;

our model. The 

calculations necessary to compute the models equations are given in the next Chapter. 
 Inherent in the above three methods and therefore in all the codes used in FITIR is the Jacobian matrix, J, 
of F. The codes may be divided into two groups: those that use analytical Jacobian (Group 1: DN2G, DN2GB, 
LMDER, MRQMIN, FRPRMN) and those that do not (Group 2: DN2F, DN2FB, LMDIF). 
 The codes that use the analytical Jacobian have more accurate information about a problem than the codes 
that do not use it. 
 The main reason for dividing the codes into two groups is that Group 1 codes require the user to supply a 
subroutine that evaluates the Jacobian. If we had supplied to Group 1 codes, subroutines that approximate the 
Jacobian instead of evaluating the analytical Jacobian, then the grouping of the codes would have been arbitrary. 
In fact, the only difference between LMDER and LMDIF, DN2G and DN2F, DN2GB and DN2FB is that 
LMDER, DN2G and DN2GB calls the user-supplied routine, which evaluates the Jacobian, while LMDIF, DN2F 
and DN2FB calls a library routine, which calculates the finite difference approximation to the Jacobian. 
 Some properties of these codes are summarized in Tables 4-2 and 4-3. 
 The calculations needed to make the routine that computes the Jacobian matrix analitically are given in 
Appendix E. 
 In order to guarantee small rounding off errors, all the calculations performed by the codes are made in 
double precision (8 bytes reals). 
 

Table 4-2: Group 1 - Codes that require the Jacobian to be supplied 

 
Name Source Method Length of  

call list 
Return 
criteria 

Special 
remarks 

DN2G NBER GN+ 12 8  
DN2GB NBER GN+ 13 8 constrained 

minimization 
LMDER MINPACK LM 26 9  

MRQMIN NRF LM 13a 2 select which 
parameters to fit 

FRPRMN NRF CG 5 2  

 Note. Abbreviations used: GN+  augmented Gauss-Newton; LM  Levenberg-Marquardt; CG  Conjugate Gradient; 
 NRF  Numerical Recipes in FORTRAN (see References). 
 a Two of the arguments in the calling list are vectors involving many parameters. 
 

 
Table 4-3: Group 2 - Codes that do not require the Jacobian to be supplied 

 
Name Source Method Length of  

call list 
Return 
criteria 

Special 
remarks 

DN2F NBER GN+ 12 8  
DN2FB NBER GN+ 13 8 constrained 

minimization 
LMDIF MINPACK LM 26 9  

 Note. Abbreviations used: GN+  augmented Gauss-Newton; LM  Levenberg-Marquardt. 
 a Two of the arguments in the calling list are vectors involving many parameters. 
 

 
 The implementation of the codes, that is, their call list length, varies a great deal with respect to what the 
code requires of the user, as may be seen in Tables 4-2 and 4-3. In FITIR, however, the inputs the user must enter 
are more or less the same for all codes, which are mainly the infrared spectrum data and the initial set of 
parameters. Convergence tolerances, maximum number of iterations, and multiplicative scale factors for the 
parameters are, amongst others, defined internally by FITIR. This was done in order to simplify its operation. 
 The codes return to the user for several reasons, that is, when they have found a solution, found an error, 
or performed too much work. The return criteria vary substantially among the codes used. The codes check on 
either the relative or absolute change in the values of the parameters from iterate to iterate and/or the size of the 
residuals (fi ) at the new 


p  value. Some codes check the size of the gradient, and so on. On the basis of these 

checks, the codes return, claiming a solution. The other most common reason for returning is too much work: 
either to many function evaluations or too many iterations have been performed. 
 All the codes have minor changes which were necessary in order to make them “compatible” with the 
characteristics of FITIR. Their performance has, by no means, changed, though. 
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 Nevertheless, it was found that the main routines of codes DN2G and DN2GB had an error which did not 
permit the correct determination of the Jacobian. This error, which was in fact a subroutine missing, has been 
corrected as follows: the original version presented the following code line: 
 
50 CALL CALCJ(N, P, X, IV(NFGCAL), V(DR1), UI, UR, UF) 
 
 The corrected version replaced the above code line by: 
 
50 MODE=35 
 DINIT=38 
 IF (IV(MODE) .LT. 0 .AND. V(DINIT) .EQ. 0.d0) 
           & CALL DV7SCP(P, V(D1), 1.d0) 
 CALL CALCJ(N, P, X, IV(NFGCAL), V(DR1), UI, UR, UF) 
 

 4.4- Statistical treatment  
 
 Each time the code returns or the user stops the fitting procedure, FITIR always asks if the fit is to be 
accepted. If the answer is negative, we may retry the fit or start a fresh new fit by changing some or all of the input 
variables. Conversely, if the answer is positive, FITIR enters the statistical treatment. 
 With the parameters found, we have to determine whether or not they are reliable because, even when the 
curve obtained with the model is very similar to that we wish to fit, that does not mean that the parameters are the 
true ones (assuming the model is correct, of course). From what was told in section 4.1, this determination may be 
done by the statistical measurement of goodness-of-fit and by the error estimates on the parameters. As we shall 
see in Chapter 7, their values play a crucial role in the analysis our IR spectra. 
 

 4.4.1- Goodness-of-fit  
 
 A quantitative measure for the goodness-of-fit of the model is given by the chi-square distribution for 
=N-M degrees of freedom. This probability function may be computed using the complement of the incomplete 
gamma function : 
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 Equation (4-10) gives the probability Q that the chi-square should exceed a particular value 2 by chance 

even for a correct model. 
 If Q is a very small value probability for some particular data set, then the apparent discrepancies are 
unlikely to be chance fluctuations. Much more probably either (i) the model is wrong  may be statistically 
rejected, (ii) the measurement errors are larger than supposed, or (iii) the measurement errors may not be normally 
distributed. Possibility (iii) is fairly common. for this reason one often accepts models with Q more or less greater 
than 0.001. 
 On the other hand, if the probability Q is too large, too near to 1, it generally means that the measurement 
errors have been overestimated. 
 Care must be taken when applying the Q value to measure the model goodness-of-fit, though. The more 
the model is nonlinear in the parameters, the less reliable is the computed Q value. Since our model is pretty 
nonlinear, we must define an alternate quantity that also measures the goodness-of-fit of the model. This quantity 
is the standard error of the curve-fit (SCF) defined as the square root of the ratio between the chi-square function 
and the number of degrees of freedom: 

  SCF
N M



2

         (4-11) 

 
 FITIR computes both quantities. It is left to the user to decide which one of them is more reliable. 
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 4.4.2 - Error estimates on the parameters  
 

 We may estimate the errors on the parameters by assuming that near the minimum, the 2  function is 

approximately quadratic. In this case, the diagonal elements of the covariance matrix  C  give the variances of 
these parameters. This matrix is calculated by the following formula 
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 So, the estimated standard deviation for the jth parameter (j = 1, ..., M) is given by 
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 4.5 - Data saving  
 
 If the user wishs to do so, FITIR creates files where it saves the most important data obtained in the curve 
fitting process. Table 4-4 summarizes the name of the files created, as well as the data they store. 
 

Table 4-4: Files created by FITIR 
 

File name Data stored

 
 

OUTPUT.Fxx 

Program name; spectrum analysed; type of fitting; name of the file with 
the experimental data; name of the file with the initial set of parameters; 
film thickness; angle of incidence; code used; number of points for Gauss-
Legendre quadrature;  code return criterium; time spent fitting; number of 
iterations; initial and final adjusted values for the parameters; lower and 
upper parameter bounds if the code used was either DN2GB or DN2FB. 

PARAM.Fxx Final adjusted parameters (best-fit parameters). 

nfedwe.Fxx Region of the experimental curve fitted with the transformations, if any, 
performed by the user. 

CURVE.Fxx Curve obtained with the best-fit parameters. 

COVAR.Fxx Covariance matrix (only created if this matrix was computed 
successfully). 

 
STAT.Fxx 

Number of data points; number of parameters; number of degrees of 

freedom; 2
(SSR) value; Q value; SCF value; estimated standard 

deviation for the best-fit parameters. 

RESID.Fxx Residuals as a function of the wavelength, that is, difference between the 
experimental curve and the curve obtained with the best-fit parameters. 

EPS1.Fxx(a) Real component of the silicon dioxide film dielectric function as a 
function of the wavenumber calculated with the best-fit parameters. 

EPS2.Fxx(a) Imaginary component of the silicon dioxide film dielectric function as a 
function of the wavenumber calculated with the best-fit parameters. 

NN.Fxx(a) Real component of the silicon dioxide film complex index of refraction as 
a function of the wavenumber calculated with the best-fit parameters. 

KK.Fxx(a) Imaginary component of the silicon dioxide film complex index of 
refraction as a function of the wavenumber calculated with the best-fit 
parameters. 

GAUSS.Fxx(b) Individualized gaussian profiles as a function of the wavelength. 

Note. Notation used: xx is a number between 0 and 99 defined by the user; nfedwe means name of the file with the 
experimental data without extension (for example if the file name is TRANS5.TRA then  nfedwe.Fxx will be 
TRANS5.Fxx. 
(a) created only in Dispersion analysis; (b) created only in Gaussian decomposition. 
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 4.6 - FITIR flow chart  
 

 
 Basically, we may devide the software in two blocks. The first deals with the user inputs and options: 
 
 definition of the spectrum to be studied (either transmittance or reflectance); 
 
 selection of the analysis method (either gaussian decomposition or dispersion analysis);  
 
 definition of the files names with the experimental data and the initial set of parameters;  
 
 modifications on the experimental data (optional);  
 
 modifications on the initial set of parameters (optional);  
 
 minimization code selection. 
 
 
 The second block deals with the execution of selected analysis method: 
 
 curve fit  (stop/pause available); 
 
 store data (optional); 
 
 retry fit/make new fit; 
 
 change user inputs and options. 
 
 

Block 1
User inputs and options

Block 2
Execution of the selected
analysis method

 
 
 
 The two following flow charts describe in more detail the structure of these two blocks. 
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- Block 1: 

NO

YES

NO

YES

File
status

                   Window  :              Curve changes
- Normalize; - Interpolate; - Noise filter; - Weight data;
- Select curve region to be fitted;- Go back to initial data. 

                Window  :     Input files
Enter file name with experimental data plus file name
with initial guess for the parameters to be fitted.

If numerical integration required select number of 
integration points.

             Window :         Spectrum selection
- select spectrum to be analysed (either transmission
 or reflection);
- Select method of analysis (either dispersion analysis
 or gaussian decomposition).

Presentation window

  Last window
(program ends)

EXIT
UNDO

Only undo
one action

OK

Window : Parameters Changes
     Change parameters values.

  Last window
(program ends)

EXIT

NO

YES Redefine
parameters

Undo last set
of changes

PREVIEW
Accept changes

                        Window  :                  Code selection
Select one of the 8 available minimization codes:DN2G, DN2F,
DN2GB, DN2FB, LMDER, LMDIF, MRQMIN, FRPRMN.

OK

OK

NO NO NO

YES YES YES

Enter number used
to determine initial
step bound.

NO
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Enter file name with the
limits for the parameters
to be fitted.

CONTINUE OK OK

NO

YES Window : Select parameters that
will remain fixed

OK

                                   Main Window
Plots of measured vs calculated spectra, and residuals; 
minimization code; initial set of parameters; film thickness;
angle of incidence; polarization; SSR value; if dispersion analysis
then a flag says if the lorentzian oscillators have a gaussian 
distribution of frequencies.

Enter 
Levenberg-Marquardt
parameter.

NO

YES

  Last window
(program ends)

^X Exit FITIR
?

NO

YES

  Last window
(program ends)

^X Exit FITIR
?

Continue
?

Continue
?

?

DN2GB,
DN2FB

LMDER,
LMDIF

MRQMIN
???

Continue
?

MRQMIN

?
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- Block 2: 
 

YES

Proceed ABORT

      Curve fitting in progress
Actualization after each iteration:
calculated spectra;  SSR value;
number of iterations; parameters
values.

PAUSE
CODE
STOPS Program

paused

Curve fit completed
-time spent fitting;
-stopping reason.

STOP

Stop FITIR
         ?

YES
RESTART

YES

      Compute
covariance matrix
            ?

Computing
YES

YES

Enter extension number
for this simulation

OK
Output files
created

OK

NO

Window : Input variables change
Select input variables to be modified:
- spectrum to be analysed;
- file with experimental data;
- file with initial set of parameters;
- minimization code;
- changes made to experimental spectrum;
- parameters values from input file;
- parameters values obtained in fit;
- number of nodes for Gauss-Legendre
quadrature (only activated if numerical
integration required).

Retry fit

Accept fit

New simul
       ?

Change all
       ?

YESYES

NO

NO   Last window
(program ends)

NO

YES

Any change
       ?

OK

YES

NO

Curve fit will proceed
without any changes

Depending on the selected
changes, the program goes
to the appropriate window(s)

NO

NO

Goto window:
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NO
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YES

? ?

?

Store data
?

Confirm
?
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 5 - Models equations 
 

 5.1- Introduction 
 
 As mentioned before, program FITIR, implements two spectra analysis methods: dispersion analysis and 
gaussian decomposition. This Chapter presents  the more important steps taken to calculate the models equations, 
y x pi( ; )


, for these two methods. 

 Section 5.2 treats the model for dispersion analysis, which is either the film transmittance (T) or the film 
reflectance (R), as a function of the dispersion parameters: 
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 Section 5.3 treats the model for gaussian decomposition, which are gaussian profiles. 
 
 

 5.2- Model for dispersion analysis 
 
 It was shown in Chapter 2, that for a film-substrate system, the complex Fresnel formulas for the 
transmitted and reflected intensities may be written in the form 
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(    2 d  is the film thickness d normalised to the wavelength  , and   ~ sin  r 0
2

0  involves the 

complex dielectric function ~  r i 1 2  of the film material and the angle of incidence 0 ); 

s s   0
2

0sin and 0 0 0 n cos are functions of the refractive indices of the two media adjacent to the 

film (index 0  medium of incidence; index s  substrate) and of the angle of incidence, once again. 
 Owing to the oblique incidence of light, it is distinguished between perpendicular ( j =  ) and parallel  (j 
= //) polarisation with respect to the plane of incidence. Here, rij and tij are the corresponding Fresnel coefficients 
of the two interfaces (i = 1  medium of incidence/film, i = 2  film/substrate), given by the equations: 
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 We consider that both the medium of incidence (air) and the substrate (silicon8) have no losses, so their 
refractive indexes (and dielectric functions) are real: 
 

                                                           
8 The dispersion in silicon is, for the frequency range we are interested in, negligible. The small absorption actually present in the silicon is 
partially compensated by the reference wafer (Chapter 6). 
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  n i0 0 1 0    

  n is s   3 0.42  

 
 Since the required calculations are very long, they will be presented by steps. First of all, we calculate the 
real and imaginary parts of the a-SiO2 dielectric function (section 5.2.1), which will be needed for the 
transmittance and reflectance equations (calculated in sections 5.2.2 and 5.2.3, respectively). 
 
 

 5.2.1- Dielectric function 
 
 In program FITIR we may fit the transmittance and reflectance curves either with the dielectric dispersion 
theory for crystalline materials or with the dielectric dispersion theory for amorphous materials. The reason for 
considering the model for crystals in the study of amorphous silicon dioxide lies in the fact that there are authors 
that claim to have acomplished good fits using such model 1. 
 The relations that describe the dielectric function for crystals are given by equations (3-11) and (3-12) of 
Chapter 3. The only difference between these two equations and the ones we will use in FITIR is that the sum is 
not done over all the 3n-6 oscillators, but only over the oscillators present in the frequency range we wish to study. 
So, if this desired number of oscillators is nosc, we will have the following equations for the real and imaginary 
parts of the dielectric function of a crystalline material: 
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and, 
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 For amorphous materials the same relations are given by equations (3-14) and (3-15) , also from Chapter 
3. The reason presented above for replacing 3n-6 by nosc maintains, obviously, its validity. So we will have the 
following equations for the real and imaginary parts of the dielectric function of an amorphous material: 
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and, 
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 These integrals have no analytical solution. However, they may be calculated quite efficiently by the  
Gauss-Legendre quadrature (see Appendix A): 
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where wk and xk are the Gauss-Legendre weights and nodes, respectively; n gives the number of nodes (and 
weights) used to compute the integral. 
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 At first sight it seems wrong to use the Gauss-Legendre quadrature to calculate an integral with the upper 
limit equal to + , since the upper limit b must be finite. This inconsistency is removed when we consider the 
nature of the integrand function: it has in the numerator a gaussian, meaning that not very far away from its mean 
value, the integrand function is very close to zero and may, therefore, be neglected. So, equations (5-6) and (5-7) 
may be written as follows: 
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and, 

  

   
 







  
2

2

0
2

2 2 2 2
2

2

1 1201

1201
( )

.

exp
.




























 




 









pj lj

gj

i j

gj

i lj

i

ll

ul

j

nosc

d     (5-10) 

 
where ll1, ul1, ll2 and ul2 are such that the integrands outside the ranges defined by these limits have a very small 
value and may, therefore, be neglected. The determination of these limits will be given in section 5.2.1. Applying 
equation (5-8) to equations (5-9) and (5-10) we will have 
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and, 
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where, 
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5.2.1.1- Finding the integration limits 
 
 The integration limits ll1, ul1, ll2, and ul2 may be found with a good approximation by the two following 
procedures: 
 (i) visualisation of the graphics that show the evolution of the 1 and  2 integrands as functions of the 

integration variable i  and of the ratio  g l ; the wavenumber  , and the parameters  p , and 0  are 

constants. Some of the studied graphics are drawn in Appendix B; 
 (ii) comparison of the values obtained in (i) with those obtained with a FORTRAN 77 program that finds 
the integration limits by calculating, for each set of parameters, the values  where the integrands are greater than a 
certain value, for example 10-3. This program is printed in Appendix I. 
 
 The values thus obtained are given by the following equations: 
 

  

ll

ul

ll ll

ul ul

mid mid

mid mid

1

1

2 1

2 1

 
 



 
 




        (5-13) 

 
where, 

  


mid
g

lfactor
 




 

0
0         (5-14a) 

 
   mid gslope          (5-

14b) 
 
with factor = 20, and slope = 2.75. 
 The value of mid has the following constraint: 

                      0 0j mid j mid mid  

 
 The value of mid also has constraints, given by: 

    mid imum
v cm

min
min  2 1  

   mid imum
v cm

max
max  100 1  

 

 5.2.2- Transmittance equation 
 
 In this case we are only interested in normal incidence, so 0 = 0 , which simplifies the calculations: 

 

     ~r n ik  

  s s sn   342.  

  0 0 1 n  

 
 For normal incidence there is no difference between perpendicular and parallel polarisation, so we may 
remove the index j from the Fresnel coefficients. Knowing that (n+ik) gives the film refractive index, we get for 
the Fresnel coefficients  equations (2-19) to (2-22) of Chapter 2  the following results 
 

  t e
n ik

i
1 1

1
2

1
 

 
 

( )
        (5-15a) 
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2
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

 
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       (5-15b) 

 

  r e
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n ik
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1 1
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1

1
 

 
 
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( )
        (5-15c) 

 

  r e
n ik n

n ik n
i s

s
2 2

2 
 
 

  ( )

( )
       (5-15d) 

 
 From the transmitted amplitude we get that, 
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 Since a ib a b  2 2 2 , we have that e iseni  
2 2

1  cos . Applying this result to the equation 

for t
2

we get 
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So, 

 T ts

0

2

     
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    
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1 2 1 22 2 2 2exp exp cos
     (5-16) 

 
 Now we have to write     1 2 1 2 1, , , , and 2  in terms of n and k. They are as follows   derived in 

Appendix C: 

  
 

1
2

2 2

4

1


 n k
        (5-17a) 
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        (5-17b) 
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1

1
2

1
2
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

a
r

r i
cos  , i1 1 10 2           (5-17d) 
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  2
2

2
2

2
2




a
i

r i
sin , r2 2 20           (5-17f) 

     r i2 2 2 20 0 2         

 

where, r1 = 1-n2-k2 ; i1 = 2k; r2 = n2  ns
2 + k2 ; and i2 = 2nsk. 

 So, if we replace equations (5-17) into equation (5-16) we will get a transmission intensity that depends 
only on n and k. But our intention is to write T as a function of the parameters to fit. For that we use equations (2-
33) and (2-34) from Chapter 2 (repeated below) that give n and k as functions of 1 and  2 , and the equations of 

section 5.2.1. 
 

  n 
   1 1

2
2
2

2
        (5-18) 

  

  k 
    1 1

2
2
2

2
        (5-19) 

 
 

 5.2.3- Reflectance equation 
 
 In this case we will consider any angle of incidence (between 0 and 90 , obviously) and both types of 
polarisation. 

 First of all we are going to separate the real and imaginary parts of   ~ sin  r 0
2

0 . 

 

               ~ sin sin sin      
r

in ik n k i nk e0
2

0
2 2

0
2 2 2

0 2  

        2 2 2 2 2
0 2e n k i nki sin  

             2 2 2 2
0

22 2 2cos sin sinn k nk  

 

If we make: sqjrl n k sqjim nk    2 2 2
0 2sin  , we will get that: 

 

       2 22 2cos sin   sqjrl sqjim  
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 Since 2nk is always greater or equal than zero, angle 2 is comprised between 0 and 180. This implies 

that    0o o,90 . 

 The equation for reflectance is given by,  
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 We will develop separately the numerator and the denominator of the above equation. Starting with the 
numerator (nume) we get: 
 

                   1 1 1 1 2 22 2j j j j j ji icos sin exp sin exp cos( )      
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 The square of the modulus of this expression is: 
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where  var sin1 2    and  var cos2 22j j    . 

 
 For the denominator (dene) we get: 
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 The square of the modulus of this expression is: 
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 So, reflectance is given by the equation 
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 Now we have to write   1 2 1j j j, , and 2 j  in terms of n and k. They are as follows   derived in 

Appendix D. 
 
 - If the electric field vector is parallel to the plane of incidence (j = //) then: 
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     n ksin cos / / / /        0 22 2        (5-22b) 

where, 
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 - If the electric field vector is perpendicular to the plane of incidence (j = ) then: 
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     k ncos sin         0 21 1        (5-23b) 

where, 
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     n ksin cos         0 22 2        (5-24b) 

where,  

    v n n ks3
2 2

2
2 2 2

   cos   ;        v n n ks4 22     cos cos sin  

 
 So, if we replace equations (5-21) to (5-24) into equation (5-20) we will get a reflectance equation that 
depends only on n and k. But our intention is, once again, to write R as a function of the parameters to fit. For that 
we do the same thing as was done for transmitance, i.e., use equations (5-18) and (5-19) that give n and k as 
functions of 1 and  2 , and the equations of section 5.2.1. 
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 5.3- Model for gaussian decomposition 
 
 For gaussian decomposition, the calculations are much simpler. For a transmittance spectrum, 
decomposition with L gaussians will be given by the following equation: 
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where Tmax gives the maximum value of T in the spectral region to be analysed, and is the gaussians baseline; Aj , 
Bj, and Cj are the parameters to adjust, and they give the amplitude, the central frequency, and the width (standard 
deviation), respectively, of the jth gaussian. 
 The minus sign after Tmax  means that the gaussians are inverted, that is, they point downwards, like the 
transmittance peaks. 
 For a reflectance spectra, the model is given by: 
 

  y R A
B

CR j
j

jj

L

( ) expmin


  

























 1

2

2

1

     (5-26) 

 
where Rmin gives the miniimum value of R in the spectral region to be analysed, and is the gaussians baseline. All 
the other values keep their previous meanings. 
 The plus sign after Rmin  means that the gaussians point upwards, like the reflectance peaks. 
 
 
 
 
 

 References 
 
1 GROSSE, P., HARBECKE, B., HEINZ, and MEYER R.; OFFENBERG, M., Appl. Phys. A 39, 257-268 (1986) 
 
 
 



53 

 
 

 6 - Experimental procedure 
 
 
 To test our software, and the theories discussed in Chapter 1 related to the asymmetric stretch peak 
spectral region in the a-SiO2, oxide films were prepared, characterized by ellipsometry, and their ir-transmittance 
and ir-reflectance spectra obtained for normally incident and obliquely incident light, respectively. 
 My participation in the above mentioned experimental procedure was limited to the measurement of the 
infrared spectra, which took place at the “Laboratoire des Plasmas et Couches Minces” in the “Institut des 

Matériaux de Nantes”, France. 
 The oxide films, ranging in thickness from 16 to 527.5 nm were thermally grown 
in water vapor (wet oxidation) at  1000C on crystalline one-side polished silicon 
wafers. The diameter, thickness, orientation, and doping of these wafers in not known. 
The wafer diameter and thickness are not important to our work. It is sufficient to know 
that the wafer thickness (in the order of the millimetres) is far more greater than the oxide 
film thickness. The diameter is not important since the infrared spectra were obtained 
from a portion of the oxidized wafer cut to fit inside the spectrometer chamber where the 
sample support was located (figure 6.1). However, remembering Chapter 1, we realize 
that orientation  and doping are two parameters important to our work, since they both 
affect the oxide film properties. Orientation modify the film density, and the dopants, if 
any, may modify the film structure weakening it. 
 The precise oxidation procedures, such as the wafers treatment prior to 
oxidation, the characteristics of the oxidation furnace, the temperature steps taken during 
oxidation and the time taken for each step, the H2O (oxidizing species) partial pressure, 
the annealing done after oxidation (if any), and so on, are not known. 
 Elipsometry was used to characterize the oxide films in terms of their thickness. 
The obtained thickness values had an uncertainty of about 10 nm which is, for the thinner 
films, a very high error. 

 All ir-spectra where measured with a Nicolet 20 SXC FTIR (Fourier-transform infrared) single-beam 
spectrometer (see Appendix F) equipped with a DTGS detector (pyroelectric detector with a triglycine sulfate acid 
surface). In this detector, the variation of temperature caused by the IR radiation that strikes its surface induces a 
variation of the charge and gives rise to an electrical signal. A linear polarizer  a KRS-5 crystal with an 
aluminium grid  was added for the oblique incidence reflectance measurements. The step of the grid is calculated 
for 4004000 cm-1. 
 The spectra were taken at room temperature and at a pressure a little below 1 atm in order to decrease the 
peaks due to the molecules present in the atmosphere, such as H2O  the chamber where the samples were placed 
was, in fact, a little vacuum chamber. With the sample placed in its position and the chamber hatch closed, we had 
to wait a few minutes until the pressure stabilized, before starting our measurements. 
 The nominal resolution was 4 cm-1 and 150 scans, over the spectral range 400 ... 4000 cm-1 , were done to 
average the data. In order to subtract the contribution of the substrate spectral features, we must have a reference 
spectrum which is the spectrum of the wafer with no oxide layer. The spectrum of the oxide film is then calculated 
as the ratio between the oxidized wafer spectrum and the reference spectrum (measured separately). So, the 
transmitted or reflected intensity by the oxide film is given by: 
 

  I
I

ISiO
SiO Si

Si
2

2


          (6-1) 

 
 Obviously, this ratio is always smaller or equal to 1, since the oxide film is an energy absorber, not an 
energy producer. 
 The reference spectrum was obtained by etching off the oxide with a HF solution. This method has the 
disadvantage of roughening the wafer surface. If the size of these roughenesses is of the same order of magnitude 
of the radiation wavelength that strikes the surface, then reflection by this surface is no longer specular but diffuse. 
If we remember that the oxide was grown on a polished wafer surface, which implies an interface           a-SiO2/Si 
with no roughnesses, we conclude that light in this interface is reflected specularly (mirror like). This difference of 
behaviour of light in the rough surface in contrast to the behaviour at the interface may have the following 

  3 cm

  1.5 cm

 
 
Figure 6.1- Cut portion of 
the oxidized wafer used to 
obtain the ir spectra. 
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consequence: when light is reflected diffusely by the rough surface, less radiation than predicted (by considering a 
polished surface) reaches the detector, which was positioned to receive the light reflected specularly. So, our 
reference spectrum is not as intense as it should be. From equation (6-1) we conclude that the value of ISiO2

will 

be larger than expected, and may even reach values greater than 1 (or 100, in percentage). 
 In fact, this was what happened to most of our spectra. In order to try to reduce to a minimum this 
difference, program FITIR has an option which divides in a spectrum all the values by its maximum. We will see 
in Chapter 7 that this procedure is, in some cases, not enough, though. 
 So, the main goal of our work, the quantitative analysis of the asymmetric stretching peak of SiO2 films, 
loses partially its meaning. This is specially true for dispersion analysis. However, we will assume that the 
difference between the real and the measured ISiO2

after being corrected will only “bias” a little our results, and 

that on the whole they are still acceptable. 
 Gaussian decomposition should not be affected by this problem since it is made with respect to a line 
which keeps always its relative position in relation to the peaks we wish to fit. 
 Normal incidence beam transmission spectra of the oxidized wafers were obtained using unpolarized 
light. Oblique incidence reflection spectra were obtained using polarized light. In this case the angles of incidence 
ranged from 15 to 75. 
 At oblique angles of incidence, two unique polarizations of the incident beam may be distinguished, 
depending on how the plane of the oxidized wafer is tilted with respect to the polarization direction of the incident 
beam: one is the case in which the electric field vector of the incident light lies in the plane of the oxidized wafer 
(s polarization). The other is the case in which the magnetic field vector of the incident beam lies in the plane of 
the oxidized wafer (p polarization). s-polarized oblique incidence oxidized wafer reflectance spectra show the 
same peaks as the oxidized wafer transmission spectra obtained using normally incident unpolarized light. p-
polarized oblique incidence oxidized wafer reflectance spectra exhibit new peaks in addition to the peaks found in 
the s-polarized reflection spectra, due to the Berreman effect (see section 1.4 of Chapter 1). 
 The transmittance and reflectance data were stored in files. Tables 6.1 and 6.2 summarize the main 
features of these spectra. They are plotted in figures 6-2 to 6-26. From these figures we see that almost all the 
spectra have regions with intensities greater than 100%, which is expected by the diffuse reflectance of the etched 
surface. However, this “theory” does not predict the observed increase of the transmittance values with film 
thickness. This increase is explained if we consider the film as a Fabry-Perot interferometer. To derive the 
transmitted interference pattern we will start by considering the oxide film as non-absorbing (which will enable a 
simple mathematical treatment). In this case, the transmitted intensity is obtained replacing equations (5-17) into 
equation (5-16), of Chapter 5, and by making k, the extinction coefficient, equal to zero: 
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     (6-2) 

 
where, ns and n are the substrate and film refractive indexes, respectively, and    2 d  (d = film thickness; 

=incident radiation wavelength in vacuum). 
 From equation (6-2) we see that transmittance, T, is maximum when cos(2n) equals zero, that is, 
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     , m = 0,1,2,3,...    (6-3) 

 
 For an absorbing film, equation (6-3) is still valid if we consider d not as the true thickness, but as an 
effective thickness slightly different from the true one. From this equation we conclude that the greater the film 
thickness the lower will be the first frequency maximum. So, as expected, we only observe the first maximum in 
the thickest films (484 and 527.5 nm). The other films have their maximum at frequencies out of the range of our 
spectra, that is, above 4000 cm-1. The thinner the more distant will be this maximum, giving the idea that the 
intensities decrease when the film thickness also decreases. 
 Obviously, this Fabry-Perot interference pattern is also observed in the reflectance spectra. 
 We also observe in several transmittance spectra a sharp peak at  670 cm-1. This peak corresponds to an 
absorption band of the silicon substrate, which confirms the deficiencies associated to our reference spectra. 
However, since it is out of the frequency range we wish to analyse, 970,1300 cm-1, it will be neglected. 
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 Some of the spectra show considerable noise. With program FITIR, it is possible to smooth the spectrum 
with a Savitzky-Golay filter. However, some care must be taken when applying this technique, since a bias is 
introduced when the underlying function has a nonzero second derivative. In the spectrometric application, a 
narrow spectral line has its height reduced and its width increased. Since these parameters are of interest to us, the 
bias introduced is distinctly undesirable. 
 Smoothing was only applied to the reflectance spectrum s15.ref since it was the only spectrum with a 
large amount of noise in the wavenumber interval 970,1300 cm-1. 
 
 

Table 6-1: Transmittance spectra files 
 

File name film thickness 
(nm) 

Polarization Angle of 
incidence () 

Spectral 
range (cm-1) 

Number of 
data points 

trans1.tra 527.5 unpolarized 0 4004000 1867 
trans2.tra 422.0 unpolarized 0 4004000 1867 
trans3.tra 484.0 unpolarized 0 4004000 1867 
trans4.tra 376.5 unpolarized 0 4004000 1867 
trans5.tra 342.0 unpolarized 0 4004000 1867 
trans6.tra 254.0 unpolarized 0 4004000 1867 
trans7.tra 311.0 unpolarized 0 4004000 1867 
trans8.tra 238.0 unpolarized 0 4004000 1867 
trans9.tra 293.0 unpolarized 0 4004000 1867 
transa.tra 197.0 unpolarized 0 4004000 1867 
transb.tra 325.0 unpolarized 0 4004000 1867 
transc.tra 218.5 unpolarized 0 4004000 1867 
transd.tra 71.0 unpolarized 0 4004000 1867 
transe.tra 276.5 unpolarized 0 4004000 1867 
transf.tra 107.5 unpolarized 0 4004000 1867 
transg.tra 165.0 unpolarized 0 4004000 1867 
transh.tra 150.5 unpolarized 0 4004000 1867 
transi.tra 16.0 unpolarized 0 4004000 1867 
transj.tra 136.0 unpolarized 0 4004000 1867 
transk.tra 53.0 unpolarized 0 4004000 1867 
transl.tra 43.0 unpolarized 0 4004000 1867 

 
 
 
 

Table 6-2: Reflectance spectra files 
 

File name film thickness 
(nm) 

Polarization Angle of 
incidence () 

Spectral 
range (cm-1) 

Number of 
data points 

p15.ref 520.0 p 15 4004000 1867 
s15.ref 520.0 s 15 4004000 1867 
p50.ref 520.0 p 50 4004000 1867 
s50.ref 520.0 s 50 4004000 1867 
p65.ref 520.0 p 65 4004000 1867 
s65.ref 520.0 s 65 4004000 1867 
p75.ref 520.0 p 75 4004000 1867 
s75.ref 520.0 s 75 4004000 1867 
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Transmittance spectra 
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Figure 6.2 - Transmittance spectrum: dox = 16 nm 
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Figure 6.3 - Transmittance spectrum: dox = 43 nm 
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Figure 6.4 - Transmittance spectrum: dox = 53 nm 

 

60

105

400 4000
cm-1

T (%)

71 nm

 
Figure 6.5 - Transmittance spectrum: dox = 71 nm 
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Figure 6.6 - Transmittance spectrum: dox = 107.5 nm 
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Figure 6.7 - Transmittance spectrum: dox = 136 nm 
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Figure 6.8 - Transmittance spectrum: dox = 150.5 nm 
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Figure 6.9 - Transmittance spectrum: dox = 165 nm 
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Figure 6.10 - Transmittance spectrum: dox = 197 nm 
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Figure 6.11 - Transmittance spectrum: dox = 218.5 nm 
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Figure 6.12 - Transmittance spectrum: dox = 238 nm 
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Figure 6.13 - Transmittance spectrum: dox = 254 nm 
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Figure 6.14 - Transmittance spectrum: dox = 276.5 nm 
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Figure 6.15 - Transmittance spectrum: dox = 293 nm 
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Figure 6.16 - Transmittance spectrum: dox = 311 nm 
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Figure 6.17 - Transmittance spectrum: dox = 325 nm 
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Figure 6.18 - Transmittance spectrum: dox = 342 nm 
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Figure 6.19 - Transmittance spectrum: dox = 376.5 nm 
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Figure 6.20 - Transmittance spectrum: dox = 422 nm 
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Figure 6.21 - Transmittance spectrum: dox = 484 nm 
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Figure 6.22 - Transmittance spectrum: dox = 527.5 nm 
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Reflectance spectra 
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 Figure 6.23 - Reflectance spectrum: i = 15 
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 Figure 6.24 - Reflectance spectrum: i = 50
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 Figure 6.25 - Reflectance spectrum: i = 65 
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 Figure 6.26 - Reflectance spectrum: i = 75
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 7 - Spectra analysis 
 
 

 7.1- Introduction 
 
 All transmittance and reflectance spectra were studied by gaussian decomposition and dispersion analysis 
in the asymmetric stretch (AS) vibrational region. 
 The procedure followed was, first, try to identify, by gaussian decomposition, the number of oscillators 
that vibrate in the above mentioned wavenumber region. Second, see whether or not, dispersion analysis 
confirmed the results obtained in the first step, as well as, determine the physical properties of the vibrating 
dipoles. 
 In both steps all eight codes implemented by the program FITIR were tested. Their performance will be 
commented in section 7.4. 
 All spectra which had an intensity maximum greater than 100% were divided by this maximum. The 
other spectra were divided by 100. 
 Also, several initial sets of parameters were used in order to: 
 (i) make a reliable code testing; 
 (ii) assure that for each fit the codes are, in fact, converging to the global minimum of the 2 function and 
not to a dubious local minimum. This means that there is only one set of best-fit parameters, for each spectrum 
analysed. 
 The error bars plotted in the graphics which show the best-fit parameters correspond to their estimated 
standard deviations, whose values were calculated using equation (4-13)  Chapter 4. 
 Some of the fits performed by program FITIR and analised in this chapter are plotted in Appendix G. 
 

 7.2- Gaussian decomposition 
 

  7.2.1- Transmittance spectra 
 
 In the wavenumber interval 970,1300 cm-1, all transmittance spectra were successfully fitted with three 
gaussians, as may be seen in the two examples of figure G.2 (Appendix G). 
 Fitting with two and four gaussians was also attempted. Two gaussians are insufficient to achieve a good 
fit, clearly evident in figure G.1 (Appendix G). Fitting with four gaussians (figure G.3 in Appendix G) has slightly 
reduced the SCF (standard error of the curve fit) obtained with three gaussians. The best-fit parameters and their 
estimated standard deviations obtained with three and four gaussians are also plotted in the graphics of figures 7.1 
to 7.6, and in tables in Appendix H. 
 At first sight, this SCF decrease suggests that the asymmetric stretching peak decomposes not in three but 
four vibrational modes. However, a more careful study reveals that this is not so. Adding one gaussian to the set of 
three increases the estimated standard deviations of the best-fit parameters which define the two gaussians with 
higher mean value  referenced in the graphics as “third gaussian” and “fourth gaussian”. ( The other two 
gaussians remain essentially the same with this addition.) This increase may be visualised by comparing the 
graphics of figures 7.1 to 7.3 (corresponding to the curve fits with three gaussians) with the graphics of figures 7.4 
to 7.6 (corresponding to the curve fits with four gaussians). Even more, when we add the fourth gaussian, we have 
that the SCF reduction becomes higher as the films gets thicker. However, the estimated standard deviations of the 
best-fit parameters do not decrease. In fact, they increase for the “third” and “fourth” gaussian. 
 These two arguments are not, by themselves, quite sufficient to refuse the presence of the fourth gaussian, 
since even though the estimated standard deviations increase, their values are still acceptable. 
 The decisive argument in favour to refuse the fourth gaussian comes from the gaussian decomposition of 
oblique incidence s-polarised spectra (see section 7.2.2). The number of predicted peaks is the same for these 
reflectance spectra and for the normal incidence transmittance spectra, so the number of gaussians ought to be the 
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same. As we shall see in the next section, the curve fit with four gaussians fails clearly for the reflectance spectra 
obtained with s-polarised light. So, we must also refuse the fourth gaussian in our transmittance spectra. 

Evolution of the gaussian profiles intensities with film thickness
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Figure 7.1 - Evolution of the gaussian profiles intensities with film thickness. Number  of gaussians = 3. 

Evolution of the gaussian mean values with film thickness
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Figure 7.2 - Evolution of the gaussian profiles mean values with film thickness. Number  of gaussians = 3. 

Evolution of the gaussian profiles widths with film thickness
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Figure 7.3 - Evolution of the gaussian profiles widths with film thickness. Number  of gaussians = 3. 
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Evolution of the gaussian profiles intensities with film thickness
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Figure 7.4 - Evolution of the gaussian profiles intensities with film thickness. Number  of gaussians = 4. 

 

Evolution of the gaussian profiles mean values with film thickness
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Figure 7.5 - Evolution of the gaussian profiles mean values with film thickness. Number  of gaussians = 4. 

 

Evolution of the gaussian profiles widths with film thickness
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Figure 7.6 - Evolution of the gaussian profiles widths with film thickness. Number  of gaussians = 4. 
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 Now with the number of gaussian profiles confirmed to three, we will analyse in more detail the graphics 
of figures 7.1 to 7.3. 
 The gaussian profiles intensities increase with film thickness, except the lowest wavenumber gaussian 
(referenced in the graphics as “first gaussian”) which starts decreasing for thicknesses higher than 136 nm. This 
gaussian, which is the main profile for the thinner films, loses its “leading position” to the middle and higher 
wavenumber gaussians (referenced in the graphics as “second gaussian” and “third gaussian”, respectively). 
 The increase of the intensity with film thickness is expected since a greater thickness implies a higher 
absorption, therefore a lower transmission. So, the behaviour of the first gaussian is somewhat “odd”. However, its 
origin is also “odd”. According to Boyd , who was the first to signal it when studying films with thicknesses in 
the range 2.8 nm to 45 nm, this lower wavenumber gaussian may be the consequence of a microcrystalline or 
quasiperiodic structure for the silicon dioxide films thermally grown. This author has fitted the AS vibrational 
mode region with only two gaussians since, and contrary to us, he did not observe the high wavenumber shoulder. 
This may be due, for example, to different wafer oxidation conditions because we know that they may alter the 
oxide characteristics. (However, may these changes be so dramatic ?) 
 The evolution of the intensities with film thickness may be also visualised in the graphic of figure 7.7. 
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Figure 7.7: Increase of the high-wavenumber shoulder as a function  of  the film thickness. 

 
 
 For the parameter mean value we verify that for the first gaussian it remains essentially unchanged ( 
1060 cm-1) below 100 nm. For higher thicknesses the mean value starts decreasing reaching the final value of    
1040 cm-1. The second gaussian mean value only presents small variations around  1090 cm-1. The third gaussian 
mean value shows a steady increase with film thickness if we consider that, despite its small estimated standard 
deviation, the value obtained for the thinnest film studied (16 nm) is an outlier, biased by the low ratio 
Signal/Noise. 
 I do not know the explanation for this observed “movement” of the “first” and “third” gaussians. At first, 
one should be tempted to say that it was due to the existence of bond strains which change with film thickness. 
However, this may not be so, if we consider as true that silicon dioxide films have the same properties of bulk 
samples, except for a region approximately 3 nm thick situated at the interface wafer/film (see Chapter 1). Even 
more, should not changes in bond strains affect all the three peaks instead of only the lowest and highest 
wavenumber peaks (as well as the rocking and bending mode peaks)? 
 Finally, for the gaussian widths, we verify that in the case of the first gaussian, this parameter shows a 
steady increase with film thickness, while that for the second gaussian we observe the opposite behaviour. For the 
third gaussian there is almost no change. Once again, the justifications for these behaviours are not easy. 
 These results may be interpreted in terms of dipoles numbers, as each gaussian area is proportional to the 
number of dipoles that vibrate with the average mean value of the corresponding gaussian. So, we have that for 
very thin films the majority of the dipoles vibrate with an average wavenumber  1060 cm-1 (first gaussian mean 
value). However, as the film thickness increases, this majority decreases, “transferring” to vibrational frequencies 
with higher average values given by the second and third gaussians mean values. This “transfer” is so drastic that 
for the thickest films studied, the first gaussian represents the band with fewer dipoles, while the second and the 
third gaussians represent the bands with higher number of vibrating dipoles. 
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 These changes of the gaussian parameters explain the shift of the AS peak to higher frequencies with film 
thickness (see Chapter 1). Figure 7.8 shows this shift in our transmittance spectra. From it, we conclude that even 
though the first gaussian mean value decreases with increasing film thickness, it is counteracted by the increase in 
the third gaussian mean value together with the relative growth in intensity of the second and third gaussian when 
compared with the first gaussian intensity. 
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Figure 7.8: Shift of the transmittance AS peak minimum as a function of  the film thickness. 

 
 
 The results obtained with gaussian decomposition of normal incidence transmittance spectra are in good 
agreement with the results obtained by Boyd   and by Goullet et al. 2. 
 As already mentioned, Boyd obtained two gaussians for thermally grown films with thicknesses between 
2.8 nm and 45 nm. The lowest wavenumber gaussian (mean value around 1050 cm-1) had a higher intensity and 
width than the higher wavenumber gaussian (mean value around 1085 cm-1), which agrees with our results in this 
thickness range for the first and second gaussians. The only difference between our results and Boyd’s is the 
absence of the third gaussian in Boyd’s fits. The average mean values obtained by Boyd are plotted in the graphic 
of figure 7.2. 
 Goullet et al. 2 obtained three gaussian profiles for a 450 nm thick film thermally grown. Their mean 
values (1049 cm-1, 1093 cm-1 , and 1177 cm-1)are close to ours (as may be seen in the graphic of figure 7.2). There 
is also agreement in the relative intensities and widths of the three gaussians. 
 
 

 7.2.2- Reflectance spectra 
 
 The reflectance spectra were fitted with three, four and five gaussians. Examples of these fits are plotted 
in figures G.4 to G.8 (Appendix G).The best-fit parameters and their estimated standard deviations are also plotted 
in figures 7.9 to 7.23, and in tables in Appendix H. 
 Some caution must be taken when analysing these fits since the adjusted parameters show some 
dependence on the chosen initial set of parameters. Nevertheless, we will consider them as reliable, except for the 
parameters obtained in the fits of the spectrum obtained with p-polarized light having an angle of incidence, 0, of 
15. In this particular case, the final set of parameters depended severely on their initial guess, so they had to be 
rejected. 
 We started with three gaussians (see figures G.4 and G.5 in Appendix G). Comparing the gaussian mean 
values obtained for s- and p-polarized light we see that they do not agree (see graphics of figures 7.10 and 7.13). 
We may try to explain it by considering that in the spectra obtained with p-polarized light (p-spectra) there are 
vibrational modes, namely the LO modes, which are not observed in the spectra obtained with s-polarized light (s-
spectra). Therefore, we may try to verify the acceptability of this supposition by adding more gaussians to our fits. 
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Evolution of the gaussian profiles
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Figure 7.9 - Evolution of the gaussian profiles intensities with angle of incidence. s-polarization. Number  of gaussians = 3. 
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Figure 7.10 - Evolution of the gaussian profiles mean values with angle of incidence. s-polarization. Number  of gaussians = 3. 
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Figure 7.11 - Evolution of the gaussian profiles widths with angle of incidence. s-polarization. Number  of gaussians = 3. 
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Evolution of the gaussian profiles
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Figure 7.12 - Evolution of the gaussian profiles intensities with angle of incidence. p-polarization. Number  of gaussians = 3. 
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Figure 7.13 - Evolution of the gaussian profiles mean values with angle of incidence. p-polarization. Number  of gaussians = 3. 
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Figure 7.14 - Evolution of the gaussian profiles widths with angle of incidence. p-polarization. Number  of gaussians = 3. 

 
 

 The fit with four gaussians of the s-spectra (figure G.6 in Appendix G) must be rejected since the 
estimated standard deviations of the best-fit parameters are on the whole extremely high (see graphics of figures 
7.15 to 7.17). This rejection has already been mentioned in the previous section as being the strongest reason to 
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reject the four gaussian fit of the transmittance spectra. However, for the p-spectra (figure G.7 in Appendix G), 
and with the exception of the spectrum obtained with 0 = 15 (rejected by the above mentioned reason), we verify 
that adding the fourth gaussian improves the fits obtained with three gaussians, namely in the SCF’s and in the 
estimated standard deviations of the best-fit parameters (see graphics of figures 7.18 to 7.20). 
 These results seem to confirm that LO modes are only excited by oblique incidence p-polarized light. 
 Since, both transmitted spectra and reflectance spectra obtained with s-polarized light were adjusted with 
three gaussians, we conclude that there are three TO modes in the AS vibrational mode interval. 
 If we assume that associated to each TO mode there is a LO mode, we conclude that the p-spectra ought 
to be fitted by six gaussians (three gaussians for the TO modes and the other three to the LO modes). However, 
three problems arise. The first one is related with the fact that we do not know if all the vibrational modes show a 
TO-LO splitting. We only know that at least one mode shows this splitting, due to the presence of the fourth 
gaussian. The second problem is related with the fact that if there are really five or six vibrating modes they must 
be very close to each other which implies that a clear distinction of the five or six gaussians may be complicated. 
The third and last problem is related with the experimental procedure. The reflectance spectra were obtained with 
the sample positioned over a metallic mirror, which reduces the TO peaks intensities (see Chapter 1). Now, how 
drastic this reduction was, we do not know. We only know that it was not complete, otherwise the p-spectra would 
only show three modes (the LO modes) and not the four already seen. 
 So, due to these three problems we will try first to fit the spectra with five gaussians. Depending on the 
results obtained in these fits we will decide whether to proceed to the six gaussians or not. 
 The fits are plotted in figure G.8 (Appendix G). The fits for 0 = 15 and 0 = 75 were rejected. The first 
by the reasons already mentioned and the second because one of the gaussians had always an intensity lower than 
zero, which means that we may only see four modes vibrating at this angle of incidence. This is not at all 
unexpected if we remember, once again, that increasing the angle of incidence reduces the TO components. 
 From the results plotted in the graphics of figures 7.21 to 7.23 and from the obtained SCF’s we accept the 
presence of five vibrational modes. Some of the gaussians have very small intensities, so I think that adding one 
more gaussian will not permits us to take any conclusion about its physical meaning. Furthermore, the best-fit 
parameters obtained with six gaussians are very dependent on the initial guess. 
 From the graphics of figures 7.10, 7.19 and 7.22, we verify that the mean values of the three gaussians 
obtained for the s-spectra match reasonably well some of the mean values obtained for the p-spectra when fitted by 
four or five gaussians. This confirms our supposition. Furthermore, based on these mean values and on their 
comparison we may try to distinguish the TO from the LO modes in the p-spectra, as may be seen in table 7.1. 
This mean values assignment is not easy, and in some cases it is very doubtfull. Nevertheless, it clearly shows that 
for big angles of incidence the lowest wavelength TO mode disappears which is not unexpected, since for this film 
thickness it is the TO mode with lowest intensity. Also plotted in this table are the gaussian mean values obtained 
for the normal incidence transmittance spectrum of the film 527.5 nm thick. We see that they match reasonably 
well the reflectance spectra values. 
 These results confirm Kirk’s model which assigned a TO mode to the high wavenumber shoulder 
observed in normal incidence transmittance spectra 3 (see Chapter 1). This author predicted only two TO modes 
(AS1 and AS2) instead of the three observed by us. Some care must be taken when making this comparison since 
Kirk’s results were obtained by dispersion analysis, and not by gaussian decomposition. However, the two 
methods are expected to produce similar results, at least in the number of vibrational modes. 
 Almeida 4 proposed that the high wavenumber shoulder was due to a mixed LO/TO mode of dominant 
LO character because, amongst other reasons, he did not see any evidence of a transversal mode responsible for 
the shoulder in reflectance spectra. However, it was shown by gaussian decomposition that the TO modes may 
also be present. 
 

Table 7.1- Mean values in cm-1  for  the TO and LO modes predicted by gaussian decomposition 
0 gaussians polarization TO1 TO2 TO3 LO1 LO2 LO3 

0 3 unpolarized 1039 1088 1194    

15 3 s 1054 1106 1209    
 3 s 1050 1103 1208    

50 4 p 1062 1115   1256 1181 
 5 p 1072 1115  1147 1263 1232 

 3 s 1047 1104 1215    
65 4 p  1117 1200 1134 1261  

 5 p  1117 1216 1127 1268 1232 

 3 s 1043 1101 1227    
75 4 p  1117 1208  1262 1161 

 5 p       
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Figure 7.15 - Evolution of the gaussian profiles intensities with angle of incidence. s-polarization. Number  of gaussians = 4. 
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Figure 7.16 - Evolution of the gaussian profiles mean values with angle of incidence. s-polarization. Number  of gaussians = 4. 
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Figure 7.17 - Evolution of the gaussian profiles widths with angle of incidence. s-polarization. Number  of gaussians = 4. 
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Figure 7.18 - Evolution of the gaussian profiles intensities with angle of incidence. p-polarization. Number  of gaussians = 4. 
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Figure 7.19 - Evolution of the gaussian profiles mean values with angle of incidence. p-polarization. Number  of gaussians = 4. 
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Figure 7.20 - Evolution of the gaussian profiles widths with angle of incidence. p-polarization. Number  of gaussians = 4. 
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Figure 7.21 - Evolution of the gaussian profiles intensities with angle of incidence. p-polarization. Number  of gaussians = 5. 
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Figure 7.22 - Evolution of the gaussian profiles mean values with angle of incidence. p-polarization. Number  of gaussians = 5. 
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Figure 7.23 - Evolution of the gaussian profiles widths with angle of incidence. p-polarization. Number  of gaussians = 5. 
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 7.3- Dispersion analysis 
 
 
 The results obtained by gaussian decomposition strongly suggests that only TO modes are observed in 
normal incidence spectra, which means that the model for the dielectric dispersion, explained in Chapter 3, seems 
to be reasonably correct. 
 

 7.3.1- Transmittance spectra 
 
 Dispersion analysis was tried on these spectra using the dielectric function model for crystalline materials 
and for amorphous materials (see Chapter 3). As expected, the first model is not able to fit the spectral region we 
are interested in, so it was rejected. For the second model, good fits were accomplished for films thicker than  
250 nm using three lorentzian oscillators. Some examples of these fits are plotted in figure G.9 (Appendix G). Fits 
with only two oscillators were also tried, but the results were not good. It confirms the results obtained by gaussian 
decomposition concerning the number of TO vibrational modes. 
 The fact that dispersion analysis does not converge for the thinner films is not at all unexpected. In 
Chapter 6, an explanation was given for the unusual high values of transmittance in our samples. The only 
procedure taken to correct this situation was to divide all the transmittance values in a spectrum by its maximum 
value, which was considered to be the highest value transmittance could take for that particular film. However, we 
know that is not true because, since the oxide film “works” like a Fabry-Perot interferometer, its transmittance 
maximum is, for the thinner films, far beyond the 4000 cm-1 limit (see Chapter 6), and this distance increases with 
the decrease of film thickness. Therefore, the implemented correction procedure becomes less efficient as the film 
thickness decreases, because the higher is the difference between the maximum value in the interval 400,4000 
cm-1, and the first maximum value of the interferometer. This means that the dispersion parameters are “biased”, so 
some care must be taken when analysing them. 
 A transmittance value superior to the real value is equivalent to consider that the film has an effective 
thickness lower than its actual value (lower thickness  lower absorption  higher transmittance). Since the 
transmittance Fresnel equations are film thickness dependent (see Chapter 2), it is to be expected that dispersion 
analysis does not converge. It would have converged if we had introduced in Fresnel equations, not the actual 
thickness value, but a smaller one. 
 Analysing the graphics of figures 7.24, 7.25, 7.26, 7.30 and 7.31 (and respective tables in Appendix H) 
that show the evolution of the dispersion parameters with film thickness, as well as their estimated standard 
deviations, we verify that: 
 (1) the dielectric constant for optical frequencies, ∞ , depends on the film thickness. Its behaviour is not 
very steady, changing between  1.3 (dox = 276.5 nm) and   4.5 (dox = 325.0 nm). However, its value seems to 
stabilize at  2.4 for the thicker films. This value agrees with the value in found in literature (e.g., Kirk 3,  Grosse 
et al. 5). 
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Figure 7.24 - Evolution of the dielectric constant for optical frequencies with film thickness. Number of 
lorentzian oscillators with gaussian distribution of frequencies = 3. 
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 (2) The oscillators strengths, p, show a similar behaviour to the gaussian intensities (see section 7.2.1). 
The major difference lies in the behaviour of the high-wavenumber shoulder (“third” oscillator): while the 
gaussian intensity shows steady increase with film thickness, the oscillator strength increases, decreases and 
stabilizes for the thicker films. 
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Figure 7.25 - Evolution of the strengths with film thickness, for the three lorentzian oscillators with gaussian 
distribution of frequencies. 

 
 

 (3) The oscillators resonance frequencies, o, also show a similar behaviour to the gaussias mean values, 
even though their values do not exactly match. The differences are plotted in the graphics of figures 7.27, 7.28, 
and 7.29 (values in Appendix H), for the lowest, middle, and highest wavenumber peaks, respectively. From these 
graphics we see that for the first peak the resonance frequency, obtained by dispersion analysis, has always a 
higher value than the mean value obtained by gaussian decomposition. The maximum difference is  17 cm-1 (dox 
= 276.5 nm) and the lowest   4 cm-1  (dox = 527.5 nm). For the second peak, and contrary to the first, the 
resonance frequency, obtained by dispersion analysis, has always a lower value than the mean value obtained by 
gaussian decomposition. The maximum difference is  11 cm-1 (dox = 527.5 nm) and the lowest   2 cm-1  (dox = 
311.0 nm). The peak that shows closer agreement between the resonance frequency, obtained by dispersion 
analysis, and the mean value, obtained by gaussian decomposition, is the third. Except for the thinner films (dox = 
254.0, 276.5 and 293.0 nm) the resonance frequency has a lower value than the gaussian mean value. The 
maximum difference is  11 cm-1 (dox = 527.5 nm) and the lowest   4 cm-1  (dox = 311.0 nm). 
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Figure 7.26 - Evolution of the resonance frequencies with film thickness, for the three lorentzian oscillators 
with gaussian distribution of frequencies. 
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 So we have that the gaussians are more separated from each other than the lorentzian oscillators. We have 
tried to use the gaussian mean values in dispersion analysis and the other way around, that is, use resonance 
frequencies in gaussian decomposition (the resonance frequencies and mean values were inhibited from changing 
by making the fit with code MRQMIN  it permits to select the parameters that will remain unchanged during the 
fit). In both cases the fits did not converge. 
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Figure 7.27 - Resonance frequencies (obtained by dispersion analysis) and mean values (obtained by gaussian 
decomposition) for the lowest wavenumber peak. 
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Figure 7.28 - Resonance frequencies (obtained by dispersion analysis) and mean values (obtained by gaussian 
decomposition) for the middle wavenumber peak. 
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Figure 7.29 - Resonance frequencies (obtained by dispersion analysis) and mean values (obtained by gaussian 
decomposition) for the highest wavenumber peak. 
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 (4) The parameter lorentzian width, l, remains essentially unchanged with film thickness. The “first” 
and “second” oscillators lorentzian widths are about the same, 5 cm-1. The “third” oscillator shows a more erratic 
behaviour. Even though some values have a high estimated standard deviation, we may consider that it oscillates 
between  11 cm-1 (dox = 376.5 nm) and  17 cm-1  (dox = 484.0 nm). 
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Figure 7.30 - Evolution of the lorentzian widths with film thickness, for the three lorentzian oscillators with 
gaussian distribution of frequencies. 

 
 

 (5) The “first” oscillator gaussian width, g1, shows a small decrease with thickness, from  23 cm-1 to 
14 cm-1. For the “second” oscillator this parameter is almost constant,  16 cm-1. For the “third” oscillator, 
despite the big oscillations in this parameter ( between  47 cm-1 and  118 cm-1 ), it seems to stabilize at              
80 cm-1 for the thicker films. 
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Figure 7.31 - Evolution of the gaussian widths with film thickness, for the three lorentzian oscillators with 
gaussian distribution of frequencies. 

 
 

 The results obtained by dispersion analysis are in reasonable agreement with Kirk´s results 3 except for 
the absence of the lower wavenumber oscillator in Kirk’s fits. The TO resonance frequencies obtained by this 
author for films  100 nm, are 1076 cm-1 and 1200 cm-1.  
 With the dispersion parameters found, it is possible to determine some intrinsic properties of the 
amorphous silicon dioxide vibrational modes, namely (see Chapter 3): 
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where Nj is the number of dipoles per unit volume that oscillate with a resonance frequency 0 j ; e j
  is the 

effective dipolar charge;  j  is the reduced mass of each of the Nj dipoles; and  j  is the Nj dipoles damping 

coefficient. 0 = 8.85410-14 F/m is the permittivity of vacuum. 

 The values of  N ej j j
* 2

 and  j are plotted in the graphics of figures 7.32 and 7.33. The error bars 

were computed by the familiar error propagation formula. 
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Figure 7.32 - Evolution of the ratios  N ej j j
* 2

 , (j=1,2,3) with film thickness. 
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Figure 7.33 - Evolution of the damping coefficients j , (j=1,2,3) with film thickness. 

 
 
 Implicit in dispersion analysis is the determination of the a-SiO2 complex dielectric function and complex 
refractive index defined, respectively, by ~  r i 1 2 , and ~n =n+ik (see Chapters 2 and 3). Figures 7.34 and 

7.35 show plots of the real and imaginary components of ~ r  and ~n  for two different film thicknesses, 254 nm and 

527.5 nm, respectively. 
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 Comparing these plots we verify, as expected, that both ~ r  and ~n  show small changes with film 

thickness: the magnitudes of 1, 2 , n and k increase with film thickness. From the values of n and k we conclude, 
respectively, that the group velocity of light in the film changes with its thickness (see Chapter 2), and absorption 
increases with film thickness. 

 We know that peaks in 2 identify transverse modes, while peaks in    Im ~  1 2 1
2

2
2   r , which is 

the dielectric energy-loss function, identify longitudinal modes. Figures 7.34 and 7.35 show plots of 2 , where the 
three TO modes may be identified:  1057 cm-1,  1085 cm-1,  1182 cm-1 for the film 254 nm thick; 1044 cm-1, 
 1076 cm-1,  1182 cm-1 for the film 527.5 nm thick (in both cases, the influence of the higher wavenumber mode 

is rather weak). Figure 7.36 shows a plot of   2 1
2

2
2/ ( )  for a film 527.5 nm thick. The three LO modes 

resonance frequencies are at  1070 cm-1,  1220 cm-1, and   1300 cm-1. 
 Comparing the values obtained for the film 527.5 nm thick with the values in table 7.1, we verify that 
there is some agreement between them, namely for the  1044 cm-1  TO mode, and the  1220 cm-1, and   1300 
cm-1  LO modes. 
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Figure 7.34 - Real and imaginary components of the dielectric function and refractive index for a film 254 nm thick. 
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Figure 7.35 - Real and imaginary components of the dielectric function and refractive index for a film 527.5 nm thick. 
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Figure 7.36 - Dielectric energy-loss function for a film 527.5 nm thick. 
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 7.3.2- Reflectance spectra 
 
 Dispersion analysis was tried on these spectra using the dielectric function model for crystalline materials 
lorentzian oscillators without Gaussian Distribution of Frequencies (GDF) and for amorphous materials 
(lorentzian oscillators with GDF)  see Chapter 3. However, and opposite to what happened with transmittance 
spectra, some reflectance spectra were successfully fitted by the model for crystalline materials. This result, even 
though surprising, is not new since Grosse et al. 5 also claimed good fits for reflectance spectra using this model. 
However, they fitted the whole 400,4000 cm-1  spectral region, so its is hard to know if the AS-mode spectral 
region, 1000,1300 cm-1, was really well fitted. Two modes with resonances frequencies of 1075 cm-1 and 1090 
cm-1 were assigned to this region, by these authors. The thickness of the film was 840 nm. 
 Our results may be summarized as follows: 
 
 polarization s; angle of incidence 15  we are not able to distinguish, in terms of SCF’s (standard error of the 

curve fit) and parameters estimated standard deviations, between two and three oscillators either with GDF or 
not. The fits obtained with two and three oscillators with GDF are plotted in figure G.10 (Appendix G). 

 polarization s; angle of incidence 50  successful fits either with two oscillators with GDF or three 
oscillators without GDF. They are plotted in figure G.11 (Appendix G). The fit using three oscillators with 
GDF was rejected since both the SCF and the parameters estimated standard deviations increased with the 
addition of a third oscillator. 

 polarization s; angle of incidence 65  successful fits either with two oscillators with GDF or three 
oscillators without GDF. They are plotted in figure G.12 (Appendix G). The fit using three oscillators with 
GDF was rejected since the parameters estimated standard deviations were too high. 

 polarization s; angle of incidence 75  successful fit using three oscillators without GDF (plotted in figure 
G.13 of Appendix G). Fits using oscillators with GDF were rejected, since one or more of the final parameters 
were negative, thus without any physical meaning. 

 polarization p; angle of incidence 15  no fit achieved reasonable results, so they were all rejected. 
 polarization p; angle of incidence 50  successful fit using three oscillators without GDF (plotted in figure 

G.14 of Appendix G). The fit using three oscillators with GDF was rejected since the estimated standard 
deviation for the gaussian widths, g, were overwhelming high. 

 polarization p; angle of incidence 65  successful fit using three oscillators with GDF (plotted in figure G.15 
of Appendix G). Reasonable fits are not achievable using oscillators without GDF. 

 polarization p; angle of incidence 75  no fit achieved reasonable results, so they were all rejected. 
 
 The results in terms of accepted and rejected fits may be visualized in table 7.2. 
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Table 7.2- Accepted () and rejected () fits of reflectance spectra 

 

  number of lorentzian oscillators 

  no GDF GDF 
polarization 0 2 3 2 3 

s 15    
s 50    
s 65    
s 75    
p 15    
p 50    
p 65    
p 75    

 
 
 These results are not easy to interpret because they are very inconsistent. Only the spectrum s-15 shows 
good agreement with the results obtained in the previous sections. But even in this case, this agreement is not 
guaranteed since good fits were also accomplished using three oscillators without GDF and two oscillators (with 
and without GDF). 
 In most spectra, we are only able to keep the number of TO modes to three by fitting with the model for 
crystalline materials. If we wish to mantain our model for amorphous materials we, in general, either get no fit at 
all or get only two TO modes, which is in complete disagreement with the results obtained in the previous 
sections. 
 The model for the dielectric function of amorphous materials, which reproduced quite well the normal 
incidence transmittance spectra, seems to fail for oblique incidence polarized reflectance spectra. However, this 
apparent failure may be due to reasons other than the model itself. For instance, reflectance values above the 
expected (see Chapter 6) and the large amount of noise especially evident below  1000 cm-1 may have somewhat 
“biased” the spectra. This “bias” would affect more deeply dispersion analysis than gaussian decomposition 
because the first method is quite more “sensitive” than the second. 
 In order to solve this problem, new reflectance spectra should be taken, and dispersion analysis repeated. 
Depending on the results, we would take the appropriate conclusions. 
 
 

 7.4- Mathematical software performance 
 
 The most robust of the eight codes implemented by the program FITIR were DN2G and DN2F. Due to 
the complexity of their algorithm  augmented Gauss-Newton method (see Chapter 4)   it is also one of the 
heaviest (that is, with more lines of code), along with codes DN2GB and DN2FB. These last two codes, despite 
using the same minimization method, converged some times to odd values due, undoubtedly, to the limits imposed 
on the parameters. 
 The less reliable code was FRPRMN, based on the Conjugate Gradient method, which, in order to 
converge, required an initial guess very close to the solution.  
 The codes based on the Levenberg-Marquardt method, namelly LMDER, LMDIF and MRQMIN, have 
also proven to be robust, even though not as robust as DN2G and DN2F. 
 The only difference between the codes that used an exact (analytical) Jacobian and the codes that used an 
approximate (finite difference approximation) Jacobian is that the first codes are quite faster (1.5 to 3 times faster) 
than the second codes, with the exception of FRPRMN which was the slowest of them all. However, the results 
obtained in the curve fit are equal, which is somewhat surprising since we are comparing codes that use 
approximate calculations with codes that use exact calculations. 
 
 
 
 
 
 



80  7- Spectra analysis 

 References 
 
1 BOYD, I. W., Appl. Phys. Lett. 51, 418 (1987) 
 
2 GOULLET, A. , CHARLES, C. , GARCIA, P. , and TURBAN, G. , J. Appl. Phys. 74, 6876 (1993) 
 
3 KIRK, C.T., Phys. Rev. B 38, 1255 (1988) 
 
4 ALMEIDA, R. M., Phys. Rev. B 45, 161 (1992) 
 
5 GROSSE, P., HARBECKE, B., HEINZ, and MEYER R.; OFFENBERG, M., Appl. Phys. A 39, 257-268 (1986) 
 



81 

 
 
 

 8- Conclusions 
 
 
 In this work we made a quantitative infrared analysis of the asymmetric stretching peak of SiO2 films 
thermally grown, by two different methods: gaussian decomposition and dispersion analysis. They are both 
accomplished by a nonlinear least-squares curve fitting of infrared spectra. Due to the calculations complexity and 
extent, a specific software was developed (FITIR), which has proven to work very well, in the sense that it has 
permitted us to obtain some interesting results. 
 Gaussian decomposition strongly suggests that, for films with thicknesses ranging from 16 nm to 527.5 
nm, the asymmetric stretching peak is composed by three vibrational modes, instead of the one or two modes 
suggested in literature, and that at least two of these modes show a longitudinal-optic  transverse-optic (LOTO) 
frequency splitting. This implies that LO modes are only observed in oblique incidence spectra of radiation 
polarized with the electric field vector parallel to the plane of incidence, refuting the theories that assigned a LO 
mode to the asymmetric stretching peak high wavenumber shoulder. 
 The shift of the asymmetric stretching peak with film thickness, observed in normal incidence 
transmittance spectra, is understood in terms of the variation of the gaussian parameters with film thickness, 
namely their intensities and mean values. 
 When the dielectric function is modelled by a set of lorentzian oscillators with a gaussian distribution of 
frequencies (model for amorphous materials), dispersion analysis of transmittance spectra corroborates quite 
reasonably the results obtained in gaussian decomposition, namely in the number of vibrational modes and their 
respective relative intensities. However, this model for amorphous materials seems to fail for reflectance spectra. 
In fact, the model for crystalline materials seems to fit better these spectra than the model for amorphous materials. 
This failure may be due to reasons other than the model itself. So, new reflectance spectra should be taken, and 
dispersion analysis repeated. 
 The dispersion parameters, following the example of the gaussian parameters, also show a high 
dependence on film thickness. 
 There is some temptation to justify these parameters changes by assuming the existence of bond strains in 
the oxide, which in turn would also change with film thickness. However, if this is true, its effect is rather irregular 
since there are parameters that change, with film thickness, but not for all peaks. 
 With dispersion analysis, some properties of the dipoles responsible for the vibrational peaks were 
determined, as well as the SiO2 films complex dielectric function and complex refractive index. 
 The attempt to assign a resonance frequency to each TO and LO mode was rather difficult and 
incomplete, therefore further studies should be made in order to get a more clear picture about their distribution. 
For instance, Raman spectroscopy is widely used to study the vibrational modes of a molecule. So, a comparison 
of results obtained by this method and by IR spectroscopy should be very enlightening. 
 Another interesting continuation of this work would be to apply the models here developed to the study 
of the infrared spectra of deposited silicon dioxide films, which are being increasingly used in the microelectronic 
industry. 
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A 
Gauss-Legendre quadrature 

 
 
 Gaussian quadrature or Gaussian numerical integration is a very powerful tool for integrals that may not 
be performed, or which are very difficult to perform, analitically. It works very well when the integrand is smooth, 
in the sense of being “well-approximated by a polynomial” 1. In this case, it is superior to other quadrature 
methods1. With Gaussian quadratures we have the freedom to choose not only the location of the abscissas at 
which the function is to be evaluated (they may not be equally spaced), but also the weighting coefficients that 
affect that function. Even more, we may arrange the choice of weights and abscissas to make the integral exact for 
a class of integrands “polynomials times some known function W(x)”, where W(x) is the weighting function, 
which may be chosen as to remove integrable singularities from the desired integral. In other words, given W(x), 
and given an integer n, we may find a set of weights, wj, and abscissas (or nodes), xj, such that the approximation 

  W x f x dx w f x
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b

j j
j

n

( ) ( ) ( ) 
1

        (A-1) 

is exact if f(x) is a polynomial.  
 In our specific case, the integrands are not polynomials but are smooth, though.  
 The nodes, xj, and the weights, wj, may be determined using orthogonal polynomials. To introduce these 
orthogonal polynomials, we fix the interval of interest to be (a,b). We may define the “scalar product of two 
functions f and g over a weight function W” as 
 

  f g W x f x g x dx

a

b

  ( ) ( ) ( )         (A-2) 

The scalar product is a number, not a function of x. Two functions are said to be orthogonal if their scalar product 
is zero. A function is said to be normalized if its scalar product with itself is unity. A set of functions that are 
mutually orthogonal and also all individually normalized is called an orthonormal set. 
 We may find a set o polynomials (i) that includes exactly one polynomial of order j, called pj(x), for each 
j = 0,1,2,..., and (ii) all of which are mutually orthogonal over the specified weight function W(x). This set of 
polynomials may be found using the following recurrence relation 
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The coefficient b0 is arbitrary; we may take it to be zero. 
 The polynomials defined by equation (A-3) are monic, i.e., the coefficient of their leading term 

 x xj for p j ( ) is unity. If we divide each pj(x) by the constant  p p  j j

1 2/
 we may render the set of polynomials 

orthonormal 1. The orthogonal polynomial pj(x) may be shown to have exactly j distinct roots in the interval 
(a,b). These roots are very important because the abscissas of the n - point Gaussian quadrature formula (A-1) with 

                                                           
1 e.g. Trapezoidal rule or Simpson’s rule. 



A-2  Appendix A - Gauss-Legendre quadrature 

weighting function W(x) in the interval (a,b) are precisely the roots of the orthogonal polynomial pn(x) for the 
same interval and weighting function. This is the fundamental theorem of Gaussian quadratures. 
 Once the abscissas x1,..., xn are known, the weights wj , j =1,...,n, may be evaluated by the equation 
 

  
   

w
p p

p x p x
j

n n

n j n j




 



1 1

1

         (A-5) 

 

where  p xn j is the derivative of the orthogonal polynomial at its zero xj. 

 The computation of Gaussian quadrature rules thus involves two distinct phases: (I) the generation of the 
orthogonal polynomials p0,..., pn , i.e., the computation of the coefficients aj and bj in equation (A-3); the 
determination of the zeros of pn(x) and the computation of the associated weights. 
 We are only interested in the Gauss-Legendre quadrature, which has the following weight function, 
interval and recurrence relation 
 
  W(x) = 1 -1 < x < 1 
 
     j P j xP jPj j j    1 2 11 1        (A-6) 

 
where Pj is the Legendre polynomial of degree j2. So the nodes are equal to the zeros of the degree n Legendre 
polynomial Pn(x) on   1 1, , and the weights are given by 
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 Equation (A-1) may now be rewritten as 
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 For integrals on other finite intervals with weight function W(x) = 1, we use the following linear change 
of variables, 
 

  f t dt
b a

f
a b x b a

dx
a

b

( )
( )

 
   









2 2
1

1

      (A-9) 

 
 Using this equation on equation (A-8) we get 
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B 
Integrand functions of 1 and 2 

 
 
 
 The integrand functions of 1 and 2 are given, respectively, in equations (5-11) and (5-12)  Chapter 5: 
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and, 
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 These two functions are plotted below, where it is possoble to visualize, for certain values of  , their 
evolution with the integration variable,  i , and the ratio g/l. The parameters p, o and l remain unchanged. 

 
 These plots show an evolution of the integrand functions which “evolve” from o to   as the ratio g/l  
increases. 
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C 
Determination of 1, 2, 1, 2, 1 and 2  

for normal incidence 
 

 
 
 
 
 From equation (5-15a) we have: 
 

  
 

 
 
 

t e
n ik

n ik

n k

n i k

n k
i

1 1 2 2 2 2
1

2

1

2 1

1

2 1 2

1
 

 


 

 


 

 
 

( )
 

 

  
 

    
 

 

 


 
1

2
2 2

2 2
2 2 2

4 1 4

1

4

1

n k

n k n k
     (C-1) 

 
 From equation (5-15b) we have: 
 

  t e
n ik

n ik n
i

s
2 2

2
2

 


 
  ( )

( )

  
 


  

 


2
2 2

( )n ik n n ik

n n k

s

s

 

 

  
  
 

  
  


  

 
 

  

 


2 2 4 42

2 2 2
2

2 2 2 2

2 2
2

n n n k i n k

n n k

n n n k n k

n n k

s s

s

s s

s

  

 

  
  


     

 
4

2 24 4 2 2 2 2 2 2 2

2 2
2

n k n k n n k nn n k

n n k

s s

s

( ) ( )
 

 

  
  


    

 
4

22 2 2 2 2 2 2 2

2 2
2

( ) ( ) ( )n k n n k nn n k

n n k

s s

s

 

 

  
  

 
  

 
  

 
 

 

 
4

2
42 2

2 2 2

2 2
2

2 2
2 2

2 2
2( ) ( )n k

n k n nn

n n k
n k

n n k

n n k

s s

s

s

s

 

 

  
 

 


 
2

2
2 2

2 2

4( )n k

n n ks

       (C-2) 

 
 
 
 
 From equation (5-15c) we have: 
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 Since 1  gives a magnitude, it is always positive: 
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where r n k1
2 21    and i k1 2  . Since 0  a cos   (first and second quadrants, 

i.e., i1 0 ) we have to make the following transformation to ensure that when i1 0 , 

1  is between   and 2  (third and fourth quadrants): i1 1 10 2      . 

 
 From equation (5-15d) we have: 
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 Since 2  gives a magnitude, it is always positive: 
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where r n n ks2
2 2 2    and i n ks2 2 . Since     2 2a sin  (first and fourth 

quadrants, i.e., r2 0 ) we have to make the following transformation to ensure that when 

r2 0 , 2  is between  2  and 3 2  (second and third quadrants): 

r2 2 20      . There is still another transformation which must be carried out 

when the angle lies in the fourth quadrant (convert the negative angle into a positive 
one): r i2 2 2 20 0 2        . 
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D 
Determination of the Fresnel coefficients 

 

 
 
 Prior to calculating the Fresnel coefficients we will make some remarks about Snell’s law. For that 
consider the following figure: 
 

Interface 1

Interface 2

 0

 1

 2

Air n n  ~
0 0 1

a SiO n n ik   2
~

Si n ns s ~

 
 

Figure D-1: Ray path through the system air/a-SiO2 film/Si substrate. 

 
 
 From Snell’s law for Interface 1 we may get the angle 1 : 
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 From this set of equations we get: 
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 From Snell’s law for Interface 2 we may get the angle 2 : 
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 Both cosines, cos(1 ) and cos( 2 ), will be required to determine the Fresnel coefficients. These 

coefficients are polarisation dependent, so we will have to treat the two types of polarisation separately:  
 
 -Electric field vector parallel to the plane of incidence (j = //)  polarisation p: 
 
 In this case the Fresnel coefficient, r//, is given by the equation: 
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 Applying equation (D-3) to interface 1 we get: 
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 Applying equation (D-3) to interface 2 we get: 
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 - Electric field vector perpendicular to the plane of incidence (j = )  polarisation s: 
 
 In this case the Fresnel coefficient, r, is given by the equation: 
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 Applying equation (D-8) to interface 1 we get: 
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 Applying equation (D-8) to interface 2 we get: 
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 Defining the dummy variables, v3 and v4 as: 
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       2 0 22 2 2n n ks      cos sin cos        

           n ksin cos    0 22 2      (D-12) 
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Models derivatives 

 

 
 
 In this Appendix we are going to compute the models derivatives in order to the parameters we want to 
adjust, for the equations developed in Chapter 5. These derivatives will be used by the minimization codes DN2G, 
DN2GB, LMDER, MRQMIN, and FRPRMN. 
 In this Appendix we are going to adopt a structure similar to the one followed in Chapter 5. So, we are 
going to start by computing the derivatives of the dielectric function, then the transmittance derivatives, the 
reflectance derivatives, and at last the gaussian derivatives. 
 
 

 E.1- Derivatives for the dispersion analysis model 
 

 E.1.1- Derivatives of the dielectric function 
 

 E.1.1.1- Crystalline materials 
 
 For a crystalline material, the real and imaginary components of the complex dielectric function are given 
by equations (5-4) and (5-5) see Chapter 5, respectively: 
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and, 
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 In this case, the parameters to adjust are: 
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 In first place, we are going to calculate the derivatives of 1. The derivative  1  is: 
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 The derivative  1 pj is: 
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 The derivative  1 0 j is: 
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 The derivative  1 lj is: 
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 With the derivatives of 1 computed, we turn now to 2. The derivative  2  is: 
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 The derivative  2 pj is: 
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 The derivative  2 0 j is: 
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 The derivative  2 lj is: 
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 E.1.1.2- Amorphous materials 
 
 The equations for the real and imaginary components of the dielectric function for an amorphous material 
are given by equations (5-11) and (5-12) see Chapter 5, respectively: 
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and, 
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where, 
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 In this case, the parameters to adjust are: 
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  ,   j lorentzian oscillators (=  nosc),

 

 
 All the derivatives of 1 and 2 in order to the parameters   pj j lj,  ,  0 , and gj are calculated by 

considering the following reasoning: from equation (5-8), of Chapter 5, we have 
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 So, the derivative in order to one of the above mentioned parameters is 
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 Following the same procedure of the previous section, we are going to calculate, in first place, the 
derivatives 1, the real component of the dielectric function. 
 The derivative  1  is straightforward: 
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 The derivative  1 pj is: 
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 By equation (E-14) we get 
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 First we are going to compute the derivatives 
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                      0 0j mid j mid mid     (E-17b) 

 
 
 
and, mid  is given by, 

 
   mid gjslope     (slope = 2.75)    (E-18a) 
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  if  mid v cm  min 2 1 then 

   mid =vmin        (E-18b) 

  else if  mid v cm  max 100 1 then 

   mid =vmax        (E-18c) 

  endif 
 
 
 From equations (E-17) and (E-18) we conclude that the derivatives of mid and mid in order to  pj , 

which shall be called de1mdp1 and de1ddp1, respectively, are zero, so, 
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 The derivative   f1 1 1var var , which shall be called df1dvar1, is calculated as follows: 
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 So, the derivative  1 pj is, by equation (E-16), equal to 
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 The derivative  1 0j is: 
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 By equation (E-14) we get 
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 From equations (E-18) we conclude that the derivative of mid in order to0j , which shall be called 

de1ddp2, is zero, so, 
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 The derivative,  
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, which shall be called de1mdp2, is different from zero. From equations (E-17) we get that 
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0  when                 0 0j mid j mid . In this case, 
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 The derivative   f j const1 0 1
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 The derivative   f1 1 1var var is given by equation (E-19). 

 
 So, the derivative  1 0j is, by equation (E-21), equal to 
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 The derivative  1 lj is: 
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 By equation (E-14) we get 
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 From equation (E-18) we conclude that the derivative of mid in order to lj , which shall be called 

de1ddp3, is zero, so, 
 

  




lj

mid

lj

ul ll
de ddp

1 1

2
1 3 0






    

 

 The derivative,  
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from zero when 
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mid

lj

, which shall be called de1mdp3, is different from zero. From equations (E-17) we get that 


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mid
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 0  when                 0 0j mid j mid . In this case, 
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 The derivative   f lj const1 1
1var

var 
is given by 
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 The derivative   f1 1 1var var is given by equation (E-19). 

 
 So, the derivative  1 lj is, by equation (E-23), equal to 
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 The derivative  1 gj is: 
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 By equation (E-14) we get 
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 From equation (E-18) we conclude that the derivative of mid in order to gj , which shall be called 

de1ddp4, is different from zero when  v vmidmin max  . In this case, 
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 Now, the derivative,  
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In this case, 
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 The derivative   f gj const1 1
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 The derivative   f1 1 1var var is given by equation (E-19). 

 So, the derivative  1 gj is, by equation (E-25), equal to 
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  (E-26) 

 
 With the derivatives of 1 computed, we proceed to the derivatives of 2 , the imaginary part of the 
dielectric function. 
 The derivative  2  is zero, 
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 Since ll2=ll1 and ul2=ul1, the following equalities hold: 
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 These equalities imply the following results: 
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 The derivatives of 2 in order to the oscillators parameters are now easily calculated. 
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 The derivative  2 pj is: 
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 The derivative   f pj const2 2
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var 
is given by 
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 The derivative   f2 2 2var var , which shall be called df2dvar2, is calculated as follows: 
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 So, the derivative  2 pj is, by equation (E-29), equal to 
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 The derivative  2 0 j is: 
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 By equation (E-14) we get 
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 The derivative   f j const2 0 2
2var

var 
is given by 
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 The derivative   f2 2 2var var is given by equation (E-30). 

 So, the derivative  2 0 j is, by equation (E-32), equal to 
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 The derivative  2 lj is: 
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 The derivative   f lj const2 2
2var

var 
is given by 
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 The derivative   f2 2 2var var is given by equation (E-30). 

 So, the derivative  2 lj is, by equation (E-34), equal to 
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 The derivative  2 gj is: 
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 The derivative   f gj const2 2
2var

var 
is given by 
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 The derivative   f2 2 2var var is given by equation (E-30). 

 So, the derivative  2 gj is, by equation (E-36), equal to 
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 E.1.2- Transmittance equation 
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 The transmittance equation derivatives may be easily calculated if we consider the following scheme: 
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 In this scheme tsio2 gives the transmitted beam intensity into the Si substrate; arg  4 4   d dox ox , 

where dox gives the a-SiO2 film thickness and   1  gives the infrared beam wavenumber; p(i)  represents 

the set of parameters to be fitted. 

 The derivatives to be calculated are: 


tsio

p(i

2

)
 for all the parameters. From the scheme we have 

{c=  cos arg 1 2  n }: 
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 E.1.3- Reflectance equation 
 
 The reflection equation derivatives may be easily calculated if we consider the scheme below. 
 In this scheme rsio2 gives the reflected beam intensity by the a-SiO2 film. All the variables here presented 
were derived in Appendix D. The index j means that the affected variable is polarisation dependent. 
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where n and k are, as usual, functions of p(i)  ,the parameters to be fitted: 
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j j j j

1
1 2 11 2 1 2   exp var sin var  

 

   


  

dene
ddedp

j

j
j j j j

1
1 2 11 2 1 2   exp var sin var  

 




















rsio
drdv

rsio

nume

nume rsio

dene

denej

j

j

j

j

j

j

j

j

j

2

2
2

2

2

2

2var var var
    

 

   


  

nume
dnudv

j

j
j j j jvar

exp var sin var
2

2 2 1 21 2 1    

 

   


  

dene
ddedv

j

j
j j j jvar

exp var sin var
2

2 2 1 21 2 1     

 
 We are going to determine the derivatives of var1   var sin1 2     with respect to n and k. For that 

we must know the derivatives of   and   with respect to n and k, which are calculated as follows: 

 
































p(i sqjrl

sqjrl

n

n

p(i

sqjrl

k

k

p(i sqjim

sqjim

n

n

p(i

sqjim

k

k

p(i) ) ) ) )
 







  







   

 

 






  





















 
















 


sqjrl

sqjrl

n sqjim

sqjim

n

n

n

p(i sqjrl

sqjrl

k sqjim

sqjim

k

k

k

p(i     ) )
 

with: 

    sqjrl sqjim2 2 1 4/
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 ( sqjrl n k sqjim nk    2 2 2
0 2sin  ) 

 


 




sqjrl

dbedrl
sqjrl sqjrl

n
drldn n

sqjrl

k
drldk k      

2
2 23 ; ;                   


 





sqjim

dbe
sqjim sqjim

n
dn k

sqjim

k
dk n     dim ; dim ; dim

2
2 2

3
              

 

n

dbedn   dbedrl drldn + dbedim dimdn  

 

k

dbedk   dbedrl drldk + dbedim dimdk  

 
































p(i sqjrl

sqjrl

n

n

p(i

sqjrl

k

k

p(i sqjim

sqjim

n

n

p(i

sqjim

k

k

p(i) ) ) ) )
 







  







   

 

 






  





















 
















 


sqjrl

sqjrl

n sqjim

sqjim

n

n

n

p(i sqjrl

sqjrl

k sqjim

sqjim

k

k

k

p(i     ) )
 

with, 

 
 

 


















1

2 2 2 1 2a
sqjrl

sqjrl sqjim
cos /  

 ( sqjrl n k sqjim nk    2 2 2
0 2sin  ) 

 
 Making the following variable substitution, we get: 
 

  
 

  


1

2 2 2 1 2a u
sqjrl

sqjrl sqjim
cos ; /    u  








sqjrl

daldrl
u

u

sqjrl
   

 

 



 



 u u sqjim

sqjrl sqjim

sqjim

u

sqjrl

sqjrl sqjim





 













  



1

2

1

1

1

2

1 1

22 2

2 2

1 2

2 4 2

6

2

6/ ;     





 sqjrl

daldrl
sqjim

sqjim sqjim
    

1

2 2

2 2

6 4
 

 







sqjim

dal
u

u

sqjim
 dim  

 

  


 
u

sqjim

sqjim sqjrl
 


6  

 





 sqjim

dal
sqjim

sqjim sqjrl sqjim sqjrl

sqjim
   









 


dim

1

2 2

2

6 4  

 

n

daldn   daldrl drldn + daldim dimdn  
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
k

daldk   daldrl drldk + daldim dimdk  

 
 Having determined the derivatives of   and   with respect to n and k, we may proceed to the 

derivatives of var1: 
 















var var var1 1 1
1 1

n n n
dvrldn dvr dbe dbedn dvr dal daldn        
















var var var1 1 1
1 1

k k k
dvrldk dvr dbe dbedk dvr dal daldk        

 

   


 



 
var

sin ;
var

cos
1

1 2
1

1 2     dvr dbe dvr dal           

 
 
 We now proceed to the derivatives of 1j  and 2 j  with respect to n and k. 

 



















1 1

1

1 1

2

2j j

j

j j

j

j

p(i v

v

p(i v

v

p(i) ) )
    

 

 








  









 

































1

1

1 1 1

2

2 2j

j

j j j

j

j j

v

v

n

n

p(i

v

k

k

p(i v

v

n

n

p(i

v

k

k

p(i) ) ) )
 

 

 








  



























 




















 




1

1

1 1

2

2

1

1

1

1 1

2

2

1

j

j

j j

j

j

j

j

j

j j

j

j

j

v

v

n v

v

n

n

n

p(i v

v

k v

v

k

k

k

p(i
     

) )
 

 
 



















2 2

3

3 2

4

4j j

j

j j

j

j

p(i v

v

p(i v

v

p(i) ) )
    

 

 








  









 

































2

3

3 3 2

4

4 4j

j

j j j

j

j j

v

v

n

n

p(i

v

k

k

p(i v

v

n

n

p(i

v

k

k

p(i) ) ) )
 

 

 








  



























 




















 




2

3

3 2

4

4

2

2

3

3 2

4

4

2

j

j

j j

j

j

j

j

j

j j

j

j

j

v

v

n v

v

n

n

n

p(i v

v

k v

v

k

k

k

p(i
     

) )
 

 
 Since, 

  1
1 2

1 2
j

j j

j j

v v

v v





  2

3 4

3 4
j

j j

j j

v v

v v





 

 
we have that: 
 

 


 

1

1

2

1 1 2

2
1 1

j

j

j

j j j
v

dro dv
v

v v
 


;   

 


 

1

2

1

1 1 2

2
1 2

j

j

j

j j j
v

dro dv
v

v v
  


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 


 

2

3

4

2 3 4

2
2

j

j

j

j j j
v

dro dv3
v

v v
 


;  

 


 

2

4

3

2 3 4

2
2 4

j

j

j

j j j
v

dro dv
v

v v
  


 

 

 Now we have to calculate the derivatives: 
















v

n

v

k

v

n

v

k
j j j j1 1 2 2

, , , ,  
















v

n

v

k

v

n

v

k
j j j j3 3 4 4

, , , : 

 




























v

n

v

n

v

n

v

k

v

k

v

k
j j j j j j1 1 1 1 1 1   

 

;                        

 








































v

n

v

n

v

n

v

n

v

k

v

k

v

k

v

k
j j j j j j j j2 2 2 2 2 2 2 2     

 

;       

 




























v

n

v

n

v

n

v

k

v

k

v

k
j j j j j j3 3 3 3 3 3   

 

;                        

 








































v

n

v

n

v

n

v

n

v

k

v

k

v

k

v

k
j j j j j j j j4 4 4 4 4 4 4 4     

 

;       

 
 The asterisk means that all the variables are constant except the one we are deriving in order to. 
 From the two following equations we get: 
 

         





r s s r2 2 2 2 2
1 4

2 1
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 





 













1

2

1 2 2
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   

r
n

n k

k
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






sin
;

sin 0
2 2

0
2 2         s  

 








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






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



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r
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s
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r
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
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



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



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











n r

r

n s

s

n k r

r
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s
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 r

dzedr
r r s
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 2 2

3

1
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 s

dzeds
s r s
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 2 2

3

1
 

 

 
 








 
r
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r
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r s

 
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1

1
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






 
s
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s

s
r s

r s

  
  

  





1

1

2 2
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   
 

 
 




 


r

n
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r

k
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




 



2 2
0

2 2 2
0

2 2 2
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;
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 
 

   
 




 





 


s

n
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r

k

s

k
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r

n
 


 




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0
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;
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 Now we have to consider both types of polarisation: 
 - If the electric field vector is parallel to the plane of incidence (j = //) then: 
 

    v1
2

0
2

/ / cos  n k2 2    ;        v n k2 02/ / cos cos sin      

 

    v n n ks3
2 2 2 2 2

2/ / cos    ;        v n n ks4 22/ / cos cos sin      

 

 













v
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 - If the electric field vector is perpendicular to the plane of incidence (j = ) then: 
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 Now that we have calculated the derivatives: 
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write down the derivatives of 1j  and 2 j  in order to n and k: 

 








































1 1

1

1 1

2

2

1 1

1

1 1

2

2

1 1 1 1 1 2 2

1 1 1 1 1 2 2

j j

j

j j

j

j
j j

j j

j

j j

j

j
j j

n v

v

n v

v

n
dro dn dro dv dv dn dro dv dv dn

k v

v

k v

v

k
dro dk dro dv dv dk dro dv dv dk

      

      

 

 








































2 2

3

3 2

4

4

2 2

3

3 2

4

4

2 2 2 4 4

2 2 2 4 4

j j

j

j j

j

j
j j

j j

j

j j

j

j
j j

n v

v

n v

v

n
dro dn dro dv3 dv3dn dro dv dv dn

k v

v

k v

v

k
dro dk dro dv3 dv3dk dro dv dv dk

      

      

 

 
 The derivatives of the angle 1j , with respect to n and k, will be calculated as follows. 
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 Using this change of variable we will determine the following derivatives: 
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 Once again we must consider both types of polarisation: 
 
 - If the electric field vector is parallel to the plane of incidence (j = //) then: 
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 - If the electric field vector is perpendicular to the plane of incidence (j = ) then: 
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 The derivatives of 1j  are therefore equal to: 
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 The derivatives of the angle 2 j  , with respect to n and k, will be calculated in the same manner as the 

1j derivatives. 
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 Using this change of variable we will determine the following derivatives: 
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 Once again we must consider both types of polarisation: 
 
 
 - If the electric field vector is parallel to the plane of incidence (j = //) then: 
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 - If the electric field vector is perpendicular to the plane of incidence (j = ) then: 
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In this case: 
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 The derivatives of 2 j  are therefore equal to: 
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 Now the only derivatives missing are:
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 E.2- Derivatives for the gaussian decomposition model 
 
 The model equations for gaussian decomposition of transmittance and reflectance spectra are given, 
respectively, by equations (5-25) and (5-26) see Chapter 5: 
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 In this case, the parameters to adjust are: 
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 In first place, we are going to calculate the derivatives of yT ( ) . The derivative   y AT j( ) is: 
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 The derivative   y BT j( ) is: 
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 The derivative   y CT j( ) is: 
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 With the derivatives of yT ( ) computed, we proceed to y R ( ) . The derivative   y AR j( ) is: 

 

  
 


y

A

B

C
R

j

j

j

( )
exp 

























1

2

2

 

 
 The derivative   y BR j( ) is: 
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 The derivative   y CR j( ) is: 
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F 
Fourier transform infrared spectroscopy 

 
 
 
 Fourier transform infrared spectroscopy is based on the generation of an interferogram with a Michelson 
interferometer, which will yield by Fourier transform the infrared spectrum. 
 
 In this spectrometer, the entire frequency range of interest is passe simultaneously through the 
interferometer, which produces an output signal containing all these frequencies. The quantitative way in which 
this signal varies as the condition for interference within the interferometer is varied is called an interferogram. 
This interferogram can be made to yield the spectrum as a function of frequency through its Fourier transform. 
This procedure requires a computer. 
 A block diagram of this type of spectrometers is shown in figure F-1. The source Q sends a beam 
containing a complete range of infrared frequencies into the Michelson interferometer. The beam is first divided  
at the semitransparent beam splitter BS, which transmits half to the variable plane mirror MV and reflects half to 
the fixed plane mirror MF. The separate beams are returnd by MV and MF to the beam splitter, where they are 
reunited after having traveled distances differing by some amount L which is continuously variable. The reunited 
beams interfere at BS, where they are partially reflected and sent out of the interferometer to the sample S. After 
passing through S, the radiation is converted to an electrical signal at the detector det. The output of det as L 
changes is processed electronically at A, stored in the computer memory, and then transformed to the spectrum. 
The spectrum is read out in suitable form, for example, as a plot on the chart recorder CR of percent transmission 
versus frequency. Appropriate instructions to the computer are provided from the command post. 
 
 

L

drive

BSMF

MV

Q

S det storage

command

CR

A

computer

 
 

 
Figure F-1: Block diagram of a Fourier transform spectrometer. 

 
 
 The mathematics involved may be summarized as follows: 
 We shall start by considering a monochromatic source. The two interfering waves are given by, 
 

  E L
E

e i L
1

0 2

2
( )

( )
      (wave reflected by mirror MF)  (F-1) 

 

  E L
E

e i x L
2

0 2

2
( )

( ) ( )      (wave reflected by mirror MV)  (F-2) 

 
 



F-2  Appendix F - Fourier transform infrared spectroscopy 

 The resulting field, Er = E1 + E2, is given by, 
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 The light intensity received by the detector is proportional to E Er r.  : 
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 For a polychromatic source, the energy received by the detector is given by: 
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 The first term of this sum does not depend on L. It represents the interferogram mean value, and is equal 
to half the maximum value I(0) obtained for L = 0. So, 
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 The function, F(L), which gives the interferogram is equal to, 
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 F(L) is therefore the Fourier cosine transform of I( ) . Applying the inversion theorem, we get for I( )  
the following equation: 
 

   I F L L dL( ) ( ) cos 


2 2
0

       (F-8) 

 
 Since the mirror can not be moved until + ∞, and considering that its maximum excursion is Lmax, 
equation (F-8) will be written as, 
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 This limitation implies a deterioration of the spectrometer resolution, which is equal to, or somewhat 
larger than, 1/(2Lmax). 
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G 
Curve fitting results 

 
 
 In this Appendix some of the fits obtained by gaussian decomposition and dispersion analysis are plotted. 
 The dark blue line gives the experimental curve. The red line gives the model curve obtained with the 
best-fit parameters. The light blue line gives the residuals, that is, the difference between the dark blue line and the 
red line. The green lines give the individual gaussians. 
 

G.1 - Gaussian Decomposition 
 

G.1.1 - Transmittance spectra 
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Figure G.1- Curve fit of transmittance spectra with 2 gaussian profiles. (a) Film thickness = 16 nm; (b) Film thickness = 527.5 nm. 
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Three Gaussian profiles 
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Minimization code = DN2G  
Time spent fitting = 2 
s 

Nb. of iterations = 20 

2  = 1.110-4 NDF = 162 SCF=8.210-4 
A1  =  0.07     0.00 
B1  =  1058.8     1.5 
C1  =  26.00     0.79 
A2  =  0.04     0.01 
B2  =  1089.6     0.5 
C2  =  15.71     0.64 
A3  =  0.01     0.00 
B3  =  1193.3     2.4 
C3  =  104.17     3.39 

 
Minimization code = DN2G  
Time spent fitting = 3 
s 

Nb. of iterations = 13 

2  = 1.310-2 NDF = 162 SCF=9.010-3 
A1  =  0.28     0.02 
B1  =  1039.4     0.6 
C1  =  19.71     0.69 
A2  =  0.50     0.02 
B2  =  1087.7     1.4 
C2  =  35.65     1.33 
A3  =  0.36     0.00 
B3  =  1193.8     2.4 
C3  =  82.44     1.97 

 
(a)       (b) 

 
Figure G.2- Curve fit of transmittance spectra with 3 gaussian profiles. (a) Film thickness = 16 nm; (b) Film thickness = 527.5 nm. 
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Four Gaussian profiles 
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Minimization code = DN2G  
Time spent fitting = 3 
s 

Nb. of iterations = 24 

2  = 6.810-5 NDF = 159 SCF=6.510-4 
A1  =  0.08     0.00 
B1  =  1061.3     1.0 
C1  =  28.32     0.46 
A2  =  0.03     0.00 
B2  =  1090.4     0.3 
C2  =  15.63     0.58 
A3  =  0.01     0.00 
B3  =  1156.1    1.6 
C3  =  26.31     3.37 
A4  =  0.01     0.00 
B4  =  1235.5     6.8 
C4  =  69.27     8.64 

 

Minimization code = DN2G  
Time spent fitting = 2 
s 

Nb. of iterations = 15 

2  = 4.510-3 NDF = 159 SCF=5.310-3 
A1  =  0.36     0.05 
B1  =  1040.3     1.0 
C1  =  21.82     0.75 
A2  =  0.59     0.03 
B2  =  1092.5     0.8 
C2  =  33.08     2.98 
A3  =  0.13     0.08 
B3  =  1163.1    9.3 
C3  =  32.12     7.30 
A4  =  0.31     0.02 
B4  =  1222.2     12.5 
C4  =  69.79     7.72 

 
(a)       (b) 

 
Figure G.3- Curve fit of transmittance spectra with 4 gaussian profiles. (a) Film thickness = 16 nm; (b) Film thickness = 527.5 nm. 
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G.1.2 - Reflectance spectra 
 
 

Three Gaussian profiles 
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Minimization code = DN2G  
Time spent fitting = 2 
s 

Nb. of iterations = 17 

2  = 7.310-3 NDF = 166 SCF=6.610-3 
A1  =  0.05     0.01 
B1  =  1054.4     1.1 
C1  =  13.84     1.19 
A2  =  0.24     0.00 
B2  =  1105.8     0.5 
C2  =  29.86     0.63 
A3  =  0.12     0.00 
B3  =  1209.0     2.4 
C3  =  95.69     2.19 

 
Minimization code = DN2G  
Time spent fitting = 1 
s 

Nb. of iterations = 13 

2  = 5.310-4 NDF = 166 SCF=1.810-3 
A1  =  0.02     0.00 
B1  =  1043.3     1.2 
C1  =  16.61     1.34 
A2  =  0.06     0.00 
B2  =  1101.4     0.9 
C2  =  37.63     1.25 
A3  =  0.06     0.00 
B3  =  1227.2     2.3 
C3  =  96.74     2.54 

 
 

(a)       (b) 
 

Figure G.4- Curve fit of s-polarized reflectance spectra with 3 gaussian profiles. (a) Angle of incidence = 15; (b) Angle of incidence = 75. 
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Minimization code = DN2G  
Time spent fitting = 1 
s 

Nb. of iterations = 15 

2  = 1.110-2 NDF = 141 SCF=8.810-3 
A1  =  0.34     0.00 
B1  =  1118.5     0.9 
C1  =  34.64     0.60 
A2  =  0.11     0.00 
B2  =  1208.4     2.6 
C2  =  31.75     4.58 
A3  =  0.10     0.02 
B3  =  1258.8     1.1 
C3  =  16.24     1.31 

 
Minimization code = DN2G  
Time spent fitting = 1 
s 

Nb. of iterations = 15 

2  = 8.110-3 NDF = 166 SCF=7.010-3 
A1  =  0.40     0.04 
B1  =  1121.8     1.2 
C1  =  25.89     0.71 
A2  =  0.50     0.02 
B2  =  1182.8     1.3 
C2  =  34.46     3.69 
A3  =  0.57     0.02 
B3  =  1264.5     1.8 
C3  =  36.17     0.68 

 
(a)       (b) 

 
Figure G.5- Curve fit of p-polarized reflectance spectra with 3 gaussian profiles. (a) Angle of incidence = 50; (b) Angle of incidence = 75. 
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Four Gaussian profiles 
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Minimization code = DN2G  
Time spent fitting = 3 
s 

Nb. of iterations = 24 

2  = 1.510-3 NDF = 163 SCF=3.010-3 
A1  =  0.09     0.01 
B1  =  1057.1     0.8 
C1  =  18.21     0.74 
A2  =  0.23     0.03 
B2  =  1106.2     0.5 
C2  =  25.43     0.85 
A3  =  0.09     0.12 
B3  =  1159.0    3.5 
C3  =  56.01     27.37 
A4  =  0.08     0.04 
B4  =  1271.6     103.0 
C4  =  89.85     68.21 

 

Minimization code = DN2G  
Time spent fitting = 3 
s 

Nb. of iterations = 20 

2  = 5.610-3 NDF = 116 SCF=6.910-3 
A1  =  0.03     0.04 
B1  =  1047.0     19.7 
C1  =  20.73    12.07 
A2  =  0.06     0.10 
B2  =  1104.7     2.5 
C2  =  31.82    3.04 
A3  =  0.01     0.08 
B3  =  1170.4    4.6 
C3  =  19.59     5.51 
A4  =  0.06     0.04 
B4  =  1232.9     2.2 
C4  =  93.38     2.18 

 
(a)       (b) 

 
Figure G.6- Curve fit of s-polarized reflectance spectra with 4 gaussian profiles. (a) Angle of incidence = 15; (b) Angle of incidence = 75. 
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Minimization code = DN2G  
Time spent fitting = 3 
s 

Nb. of iterations = 27 

2  = 4.510-3 NDF = 135 SCF=5.810-3 
A1  =  0.06     0.01 
B1  =  1061.9     1.9 
C1  =  17.19     1.29 
A2  =  0.30     0.03 
B2  =  1114.9     0.7 
C2  =  26.28     1.15 
A3  =  0.14     0.01 
B3  =  1181.5    6.2 
C3  =  44.21     7.80 
A4  =  0.10     0.01 
B4  =  1256.1     0.5 
C4  =  17.96     1.14 

 

Minimization code = DN2G  
Time spent fitting = 3 
s 

Nb. of iterations = 21 

2  = 6.110-3 NDF = 163 SCF=6.110-3 
A1  =  0.21     0.04 
B1  =  1116.6     1.3 
C1  =  20.25     1.25 
A2  =  0.53     0.01 
B2  =  1160.8     7.2 
C2  =  41.08     2.38 
A3  =  0.09     0.06 
B3  =  1208.3    2.6 
C3  =  20.06     3.76 
A4  =  0.60     0.02 
B4  =  1262.0     1.1 
C4  = 34.94     0.42 

 
(a)       (b) 

 
Figure G.7- Curve fit of p-polarized reflectance spectra with 4 gaussian profiles. (a) Angle of incidence = 50; (b) Angle of incidence = 75. 
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Five Gaussian profiles 
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Minimization code = DN2G  
Time spent fitting = 7 
s 

Nb. of iterations = 47 

2  = 6.110-4 NDF = 126 SCF=2.210-3 
A1  =  0.07     0.02 
B1  =  1071.9     2.0 
C1  =  19.53     1.90 
A2  =  0.20     0.01 
B2  =  1114.5     0.5 
C2  =  19.45     0.49 
A3  =  0.19     0.01 
B3  =  1147.2   3.6 
C3  =  44.14     3.45 
A4  =  0.08     0.01 
B4  =  1235.5     2.1 
C4  =  22.71     1.99 
A5  =  0.08     0.01 
B5  =  1263.5     0.3 
C5  =  12.53     0.68 

 
 

Minimization code = DN2G  
Time spent fitting = 4 
s 

Nb. of iterations = 23 

2  = 1.110-3 NDF = 151 SCF=2.710-3 
A1  =  0.07     0.01 
B1  =  1117.6     0.3 
C1  =  11.54     0.52 
A2  =  0.33     0.01 
B2  =  1127.1     0.8 
C2  =  31.76     0.70 
A3  =  0.42     0.00 
B3  =  1216.5     2.4 
C3  =  55.29     1.17 
A4  =  0.03     0.00 
B4  =  1232.4     1.0 
C4  = 10.81     1.14 
A5  =  0.26     0.01 
B5  =  1268.0     0.2 
C5  =  19.64     0.27 

 

(a)       (b) 

 
Figure G.8- Curve fit of p-polarized reflectance spectra with 5 gaussian profiles. (a) Angle of incidence = 50; (b) Angle of incidence = 65. 

 
 
 
 



Appendix G - Curve fitting results  G-9 

 

G.2 - Dispersion Analysis 
 

G.2.1 - Transmittance spectra 
 

Dielectric function modelled by three lorentzian oscillators with 
gaussian distribution of frequencies (model for amorphous materials) 
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Minimization code = DN2G  
Time spent 
fitting=102s 

Nb. of iterations = 67 

2  = 1.910-2 NDF = 159 SCF=1.110-2 
∞  =  1.82     0.28 
p1  =  761.51     9.87 
o1  =  1057.0     0.3 
l1   =  5.62     0.33 
g1  =  4.09     0.18 
p2  =  746.95     11.86 
o2  =  1085.4     0.2 
l2  =  4.35    0.36 
g2  =  16.55     0.29 
p3  =  297.44     26.71 
o3  =  1181.6     1.8 
l3  =  12.11     3.01 
g3  =  47.36     5.63 

 

Minimization code = DN2G  
Time spent fitting 
=42s 

Nb. of iterations = 28 

2  = 7.510-3 NDF = 158 SCF=6.910-3 
∞  =  2.46     0.17 
p1  =  539.52     15.08 
o1  =  1043.9     0.4 
l1   =  3.32     0.33 
g1  =  13.69     0.30 
p2  =  1065.13     12.78 
o2  =  1076.2     0.5 
l2  =  5.92    1.15 
g2  =  19.49     0.58 
p3  =  575.41     40.93 
o3  =  1181.9     2.3 
l3  =  16.49     11.12 
g3  =  76.34     8.65 

 
(a)       (b) 
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Figure G.9- Curve fit of transmittance spectra with 3 lorentzian oscillators with gaussian distribution of 
frequencies. (a) Film thickness = 254 nm; (b) Film thickness = 527.5 nm. 

G.2.2 - Reflectance spectra 
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Minimization code = DN2G  
Time spent fitting= 
20s 

Nb. of iterations = 15 

2  = 2.110-3 NDF = 166 SCF=3.610-3 
∞  =  3.38     0.05 
p1  =  912.81    10.20 
o1  =  1088.6     0.4 
l1   =  11.46     1.44 
g1  =  17.34     0.61 
p2  =  1083.64     11.39 
o2  =  1140.4     2.9 
l2  =  13.67    0.22 
g2  =  136.61     3.41 

 
 
 
 
 

Minimization code = DN2G  
Time spent fitting 
=20s 

Nb. of iterations = 13 

2  = 1.510-3 NDF = 162 SCF=3.010-3 
∞  =  3.43     0.11 
p1  =  910.19     40.53 
o1  =  1023.1     7.3 
l1   =  7.89     0.88 
g1  =  144.59     15.81 
p2  =  951.41     15.92 
o2  =  1090.5     0.4 
l2   =  20.84    1.46 
g2  =  13.63     0.77 
p3  =  850.26     16.61 
o3  =  1189.7     1.4 
l3  =  17.00     0.64 
g3  =  112.71     2.48 

 
(a)       (b) 

 
Figure G.10- Curve fit of s-polarized reflectance spectra. Angle of incidence = 15. Dielectric function modelled by (a) 
two lorentzian oscillators with gaussian distribution of frequencies; and (b) three lorentzian oscillators with gaussian 
distribution of frequencies. 
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Minimization code = DN2G  
Time spent fitting= 
20s 

Nb. of iterations = 15 

2  = 2.510-3 NDF = 166 SCF=3.910-3 
∞  =  2.97     0.06 
p1  =  980.07    11.84 
o1  =  1084.2     0.4 
l1   =  10.92     1.72 
g1  =  18.67     0.69 
p2  =  1012.94     20.76 
o2  =  1135.0     2.2 
l2  =  11.44    0.20 
g2  =  115.66     2.43 

 
 

Minimization code = DN2G  
Time spent fitting = 8 
s 

Nb. of iterations = 35 

2  = 1.510-3 NDF = 165 SCF=3.010-3 
∞  =  3.02     0.08 
p1  =  931.60     54.45 
o1  =  1078.6     0.5 
l1   =  32.21     2.56 
p2  =   657.76     65.81 
o2  =  1097.4     0.6 
l2  =  25.22     1.68 
p3  =  935.91     35.88 
o3  =  1172.0     1.7 
l3  =  179.81     4.60 

 
(a)       (b) 

 
Figure G.11- Curve fit of s-polarized reflectance spectra. Angle of incidence = 50. Dielectric function modelled by (a) 
two lorentzian oscillators with gaussian distribution of frequencies; and (b) three lorentzian oscillators without 
gaussian distribution of frequencies. 
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Minimization code = DN2G  
Time spent fitting= 
26s 

Nb. of iterations = 22 

2  = 1.410-3 NDF = 166 SCF=2.910-3 
∞  =  2.30     0.08 
p1  =  1083.08    7.71 
o1  =  1078.2     0.4 
l1   =  6.69     0.93 
g1  =  21.78     0.47 
p2  =  1178.82     24.62 
o2  =  1117.3     1.5 
l2  =  10.69    0.23 
g2  =  116.77     2.85 

 
 

Minimization code = DN2G  
Time spent fitting = 3 
s 

Nb. of iterations = 15 

2  = 1.110-3 NDF = 165 SCF=2.610-3 
∞  =  2.65     0.09 
p1  =  886.91     71.45 
o1  =  1069.8     0.6 
l1   =  26.05     3.31 
p2  =   1003.98     66.62 
o2  =  1090.8     0.8 
l2  =  34.61     1.28 
p3  =  887.64     30.02 
o3  =  1172.6     1.4 
l3  =  144.37     3.82 

 
(a)       (b) 

 
Figure G.12- Curve fit of s-polarized reflectance spectra. Angle of incidence = 65. Dielectric function modelled by (a) 
two lorentzian oscillators with gaussian distribution of frequencies; and (b) three lorentzian oscillators without 
gaussian distribution of frequencies. 
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Minimization code = DN2G  
Time spent fitting= 5 s Nb. of iterations = 24 
2  = 7.710-4 NDF = 165 SCF=2.210-3 
∞  =  0.72     0.12 
p1  =  1471.90    115.11 
o1  =  1042.4     1.2 
l1   =  51.30    6.75 
p2  =  920.22     157.78 
o2  =  1075.5     2.1 
l2  =  45.24     4.82 
p3  =  481.79    39.94 
o3  =  1180.1     2.0 
l3   =  93.22     7.79 

 
 

Minimization code = DN2G  
Time spent fitting = 7 
s 

Nb. of iterations = 37 

2  = 7.410-3 NDF = 140 SCF=7.310-3 
∞  =  3.30     0.07 
p1  =  924.10     7.94 
o1  =  1104.8     0.5 
l1   =  31.81     0.84 
p2  =   727.15     21.69 
o2  =  1175.7     4.1 
l2  =  156.07     5.33 
p3  =  249.40     23.09 
o3  =  1235.3     1.1 
l3  =  42.78     5.18 

 

 
Figure G.13- Curve fit of s-polarized reflectance spectrum. 
Angle of incidence = 75. Dielectric function modelled by three 
lorentzian oscillators without gaussian distribution of 
frequencies. 

Figure G.14- Curve fit of p-polarized reflectance spectrum. Angle 
of incidence = 50. Dielectric function modelled by three 
lorentzian oscillators without gaussian distribution of frequencies. 
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Minimization code = DN2G  
Time spent fitting=79 
s 

Nb. of iterations = 77 

2  = 1.610-3 NDF = 157 SCF=3.110-3 
∞  =  1.64     0.03 
p1  =  707.45     5.27 
o1  =  1084.2     0.3 
l1  =  11.27     0.24 
g1  =  30.86     0.37 
p2  =   631.53     8.47 
o2  =  1097.4     0.1 
l2  =  4.92     0.19 
g2  =  12.55     0.12 
p3  =  155.63     1.72 
o3  =  1329.1     0.8 
l3  =  18.62     1.99 
g3  =  41.79     0.79 

 
 

Figure G.15- Curve fit of p-polarized reflectance spectra. Angle of incidence = 65. Dielectric function 
modelled by three lorentzian oscillators with gaussian distribution of frequencies. 
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H 
Tables with best-fit parameters 

 
 

H.1 - Gaussian Decomposition 
 

H.1.1 - Transmittance spectra 
 
 

Gaussian profiles intensities - figure 7.1 

dox (nm) A1 A2 A3 

16.0 0.07  0.00 0.04  0.01 0.01  0.00 
43.0 0.20  0.01 0.11  0.01 0.03  0.00 
53.0 0.24  0.01 0.12  0.01 0.03  0.00 
71.0 0.32  0.01 0.17  0.02 0.05  0.00 
107.5 0.36  0.01 0.25  0.02 0.08  0.00 
136.0 0.39  0.01 0.29  0.01 0.09  0.00 
150.5 0.39  0.01 0.33  0.01 0.10  0.00 
165.0 0.39  0.01 0.35  0.01 0.11  0.00 
197.0 0.39  0.01 0.41  0.01 0.14  0.00 
218.5 0.39  0.01 0.42  0.01 0.15  0.00 
238.0 0.40  0.01 0.46  0.01 0.17  0.00 
254.0 0.37  0.01 0.43  0.01 0.17  0.00 
276.5 0.37  0.01 0.48  0.01 0.20  0.00 
293.0 0.34  0.01 0.45  0.01 0.20  0.00 
311.0 0.32  0.01 0.44  0.01 0.20  0.00 
325.0 0.30  0.01 0.44  0.01 0.21  0.00 
342.0 0.29  0.01 0.45  0.01 0.22  0.00 
376.5 0.28  0.01 0.45  0.01 0.24  0.00 
422.0 0.28  0.02 0.50  0.01 0.30  0.00 
484.0 0.27  0.02 0.49  0.01 0.32  0.00 
527.5 0.28  0.02 0.50  0.02 0.36  0.00 

 
 

Gaussian profiles mean values - figure 7.2 

dox (nm) B1 (cm-1) B2 (cm-1) B3 (cm-1) 

16.0 1058.8  1.5 1089.6  0.5 1193.3  2.4 
43.0 1060.6  1.2 1091.7  0.4 1138.6  3.4 
53.0 1060.9  1.0 1092.4  0.3 1157.3  4.0 
71.0 1061.1  1.1 1093.8  0.4 1160.7  3.3 
107.5 1058.7  1.1 1094.3  0.5 1159.1  2.4 
136.0 1057.6  0.9 1094.9  0.5 1157.9  2.3 
150.5 1055.7  0.9 1094.4  0.6 1160.8  2.2 
165.0 1054.6  1.0 1094.1  0.7 1163.5  2.1 
197.0 1052.1  1.1 1093.5  0.8 1166.5  2.0 
218.5 1051.3  1.0 1093.6  0.8 1165.8  2.0 
238.0 1049.4  1.1 1092.7  0.9 1170.5  1.9 
254.0 1048.6  1.0 1092.7  0.9 1169.8  1.9 
276.5 1046.4  1.0 1091.5  1.0 1174.7  1.9 
293.0 1045.7  1.0 1091.3  0.9 1174.4  1.8 
311.0 1044.4  0.9 1090.6  0.9 1177.2  1.8 
325.0 1043.5  0.9 1090.0  0.9 1178.3  1.8 
342.0 1042.7  0.8 1089.5  0.9 1180.1  1.7 
376.5 1041.3  0.8 1088.7  1.0 1182.7  1.7 
422.0 1040.2  0.7 1087.7  1.1 1188.0  1.8 
484.0 1039.7  0.6 1087.6  1.2 1191.0  2.1 
527.5 1039.4  0.6 1087.7  1.4 1193.8  2.4 



H-2  Appendix H - Tables with best-fit parameters 

Gaussian profiles widths - figure 7.3 

dox (nm) C1 (cm-1) C2 (cm-1) C3 (cm-1) 

16.0 26.00  0.79 15.71  0.64 104.17  3.39 
43.0 25.70  0.68 15.27  0.52 81.33  1.98 
53.0 26.34  0.57 15.39  0.47 67.89  2.97 
71.0 26.11  0.65 15.71  0.48 79.28  2.58 
107.5 25.28  0.57 17.00  0.35 77.19  1.94 
136.0 24.80  0.51 17.57  0.31 73.11  1.80 
150.5 24.05  0.53 18.34  0.32 76.11  1.75 
165.0 23.78  0.55 18.77  0.33 79.26  1.73 
197.0 22.71  0.57 20.13  0.40 79.29  1.71 
218.5 22.64  0.55 20.57  0.41 77.52  1.64 
238.0 22.03  0.57 21.64  0.47 81.63  1.66 
254.0 21.92  0.54 22.21  0.48 79.32  1.58 
276.5 21.16  0.95 23.84  0.55 81.79  1.62 
293.0 21.05  0.50 24.49  0.55 80.30  1.55 
311.0 20.70  0.49 25.67  0.58 81.75  1.54 
325.0 20.44  0.49 26.54  0.60 81.51  1.53 
342.0 20.24  0.47 27.54  0.62 81.96  1.51 
376.5 20.01  0.48 29.38  0.68 81.70  1.50 
422.0 19.58  0.55 31.90  0.84 82.63  1.58 
484.0 19.56  0.62 34.17  1.08 82.15  1.72 
527.5 19.71  0.69 35.65  1.33 82.44  1.97 

 

Gaussian profiles intensities - figure 7.4 

dox (nm) A1 A2 A3 A4 

16.0 0.08  0.00 0.03  0.00 0.01  0.00 0.01  0.00 
43.0 0.23  0.00 0.08  0.01 0.02  0.00 0.02  0.00 
53.0 0.25  0.00 0.12  0.01 0.03  0.00 0.01  0.00 
71.0 0.34  0.00 0.16  0.01 0.05  0.00 0.02  0.00 
107.5 0.40  0.01 0.22  0.01 0.08  0.00 0.04  0.01 
136.0 0.43  0.01 0.26  0.01 0.10  0.00 0.04  0.01 
150.5 0.44  0.01 0.29  0.02 0.10  0.01 0.05  0.01 
165.0 0.46  0.01 0.30  0.02 0.11  0.01 0.07  0.01 
197.0 0.48  0.01 0.37  0.02 0.11  0.02 0.10  0.01 
218.5 0.47  0.01 0.40  0.02 0.11  0.02 0.10  0.01 
238.0 0.50  0.01 0.44  0.02 0.10  0.02 0.13  0.01 
254.0 0.45  0.01 0.44  0.01 0.08  0.02 0.14  0.01 
276.5 0.47  0.02 0.49  0.02 0.09  0.02 0.16  0.01 
293.0 0.43  0.02 0.47  0.01 0.07  0.02 0.16  0.01 
311.0 0.41  0.02 0.46  0.01 0.07  0.02 0.17  0.01 
325.0 0.40  0.02 0.47  0.01 0.07  0.02 0.18  0.01 
342.0 0.40  0.02 0.48  0.01 0.07  0.02 0.19  0.01 
376.5 0.38  0.02 0.50  0.01 0.07  0.02 0.21  0.01 
422.0 0.39  0.03 0.57  0.02 0.09  0.02 0.26  0.01 
484.0 0.35  0.03 0.56  0.02 0.09  0.03 0.28  0.01 
527.5 0.36  0.05 0.59  0.03 0.13  0.08 0.31  0.02 

 

Gaussian profiles mean values - figure 7.5 

dox (nm) B1 (cm-1) B2 (cm-1) B3 (cm-1) B4 (cm-1) 

16.0 1061.3  1.0 1090.4  0.3 1156.1  1.6 1235.5  6.8 
43.0 1064.4  0.9 1093.1  0.2 1155.3  1.7 1211.7  9.5 
53.0 1062.2  0.8 1093.2  0.3 1159.9  2.1 1237.5  5.3 
71.0 1062.3  0.7 1094.2  0.2 1161.3  1.4 1255.6  2.9 
107.5 1061.1  0.7 1095.3  0.3 1153.9  2.9 1243.9  8.5 
136.0 1059.8  0.6 1096.0  0.3 1154.6  1.8 1246.5  6.0 
150.5 1058.9  0.6 1096.2  0.3 1151.9  3.0 1240.9  9.9 
165.0 1058.6  0.6 1096.5  0.3 1148.7  3.4 1235.6  11.3 
197.0 1056.7  0.7 1096.8  0.4 1146.8  2.3 1222.6  10.0 
218.5 1055.5  0.8 1096.8  0.4 1148.0  2.3 1218.5  8.8 
238.0 1054.6  0.8 1097.1  0.4 1149.1  2.8 1215.3  8.1 
254.0 1052.8  0.9 1097.0  0.5 1152.5  2.5 1204.6  6.3 
276.5 1051.4  1.0 1096.8  0.6 1153.7  2.8 1208.1  6.6 
293.0 1050.0  1.1 1096.5  0.8 1155.9  2.3 1203.4  5.6 
311.0 1049.3  1.1 1096.4  0.8 1156.5  2.7 1205.3  6.0 
325.0 1048.1  1.2 1095.9  0.9 1157.7  2.6 1205.5  5.7 
342.0 1047.2  1.1 1095.8  0.9 1158.7  2.6 1205.9  5.5 
376.5 1045.1  1.1 1095.0  1.0 1161.3  2.6 1207.2  5.5 
422.0 1043.1  1.0 1094.1  1.1 1164.2  2.9 1212.0  5.8 
484.0 1041.4  0.9 1093.4  1.3 1166.9  3.9 1214.2  6.7 
527.5 1040.3  1.0 1092.5  0.8 1163.1  9.3 1222.2  12.5 
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Gaussian profiles widths - figure 7.6 

dox (nm) C1 (cm-1) C2 (cm-1) C3 (cm-1) C4 (cm-1) 

16.0 28.32  0.46 15.63  0.58 26.31  3.37 69.27  8.64 
43.0 28.70  0.42 14.83  0.57 23.04  2.64 43.46  5.74 
53.0 27.28  0.35 15.53  0.39 33.15  2.99 30.29  3.26 
71.0 27.31  0.32 15.51  0.34 44.84  3.70 29.02  2.35 
107.5 27.18  0.33 16.31  0.36 41.34  5.95 37.00  4.51 
136.0 26.52  0.32 16.86  0.35 46.48  6.93 31.82  3.38 
150.5 26.32  0.32 17.39  0.38 41.39  7.06 38.12  4.76 
165.0 26.56  0.31 17.53  0.39 38.66  5.99 44.38  6.03 
197.0 25.72  0.35 18.76  0.45 32.94  4.66 52.38  5.85 
218.5 25.40  0.37 19.43  0.48 30.84  4.16 52.28  5.07 
238.0 25.40  0.39 19.97  0.50 28.85  3.91 60.00  5.23 
254.0 24.75  0.43 21.07  0.56 23.64  2.91 63.26  4.05 
276.5 24.34  0.46 21.92  0.66 24.55  3.17 66.16  4.46 
293.0 23.86  0.48 22.94  0.71 22.14  2.58 66.84  3.74 
311.0 23.75  0.51 23.48  0.80 23.17  2.89 68.94  4.03 
325.0 23.39  0.49 24.34  0.86 22.81  2.72 68.88  3.84 
342.0 23.20  0.49 25.08  0.91 22.77  2.68 69.94  3.74 
376.5 22.77  0.47 27.03  1.02 22.76  2.66 70.07  3.73 
422.0 22.26  0.47 29.48  1.24 24.09  2.93 71.13  4.08 
484.0 21.87  0.59 32.27  1.73 25.68  3.56 71.43  4.55 
527.5 21.82  0.75 33.08  2.98 32.12  7.30 69.79  7.72 

 
 
 

H.1.2 - Reflectance spectra 
 
 
 

Gaussian profiles intensities (s-polarization) - figure 7.9 

0 A1 A2 A3 

15.0 0.05  0.01 0.24  0.00 0.12  0.00 
50.0 0.06  0.00 0.19  0.00 0.14  0.00 
65.0 0.04  0.00 0.13  0.00 0.11  0.00 
75.0 0.02  0.00 0.06  0.00 0.06  0.00 

 

Gaussian profiles mean values (s-polarization) - figure 7.10 

0 B1 (cm-1) B2 (cm-1) B3 (cm-1) 

15.0 1054.4  1.1 1105.8  0.5 1209.0  2.4 
50.0 1049.7 1.1 1103.6  0.7 1208.0  2.3 
65.0 1047.3  0.9 1103.6  0.7 1215.3  1.8 
75.0 1043.3  1.2 1101.4  0.9 1227.2  2.3 

 
 
 
 

Gaussian profiles widths (s-polarization)  - figure 7.11 

0 C1 (cm-1) C2 (cm-1) C3 (cm-1) 

15.0 13.84  1.19 29.86  0.63 95.69  2.19 
50.0 15.81  1.06 31.32  0.79 93.51  2.07 
65.0 16.80  0.83 32.95  0.78 93.48  1.79 
75.0 16.61  1.34 37.63  1.25 96.74  2.54 

 

Gaussian profiles intensities (p-polarization) - figure 7.12 

0 A1 A2 A3 

50.0 0.34  0.00 0.11  0.00 0.10  0.02 
65.0 0.31  0.01 0.43  0.00 0.29  0.01 
75.0 0.40  0.04 0.50  0.02 0.57  0.02 

 

 
 
 

Gaussian profiles mean values (p-polarization) - figure 7.13 

0 B1 (cm-1) B2 (cm-1) B3 (cm-1) 

50.0 1118.5  0.9 1208.4  2.6 1258.8  1.1 
65.0 1122.7  0.3 1205.3  1.6 1266.4  0.3 
75.0 1121.8  1.2 1182.8  1.3 1264.5  1.8 

 

Gaussian profiles widths (p-polarization)  - figure 7.14 

0 C1 (cm-1) C2 (cm-1) C3 (cm-1) 

50.0 34.64  0.60 31.75  4.58 16.24  1.31 
65.0 26.19  0.48 59.12  0.71 22.06  0.35 
75.0 25.89  0.71 38.46  3.69 36.17  0.68 

 
 
 
 

Gaussian profiles intensities (s-polarization) - figure 7.15 

0 A1  A2 A3 A4 

15.0 0.09  0.01 0.23  0.03 0.09  0.12 0.08  0.04 
50.0 0.09  0.01 0.20  0.04 0.10  0.33 0.08  0.16 
65.0 0.07  0.01 0.12  0.07 0.05  0.07 0.10  0.01 
75.0 0.03  0.04 0.06  0.10 0.01  0.08 0.06  0.04 
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Gaussian profiles mean values (s-polarization) - figure 7.16 

0 B1 (cm-1) B2 (cm-1) B3 (cm-1) B4 (cm-1) 

15.0 1057.1  0.8 1106.2  0.5 1159.0  3.5 1271.6  103.0 
50.0 1051.3  1.0 1104.0  0.7 1167.7  27.5 1268.4  134.5 
65.0 1051.7  1.3 1103.7  1.6 1141.2  54.2 1234.6  11.5 
75.0 1047.0  19.7 1104.7  2.5 1170.4  4.6 1232.9  2.2 

 
 
 
 

Gaussian profiles widths (s-polarization) - figure 7.17 

0 C1 (cm-1) C2 (cm-1) C3 (cm-1) C4 (cm-1) 

15.0 18.21  0.74 25.43  0.85 56.01  27.37 89.85  68.21 
50.0 19.33  0.81 27.98  1.56 59.05  55.78 85.16  134.53 
65.0 21.05  0.84 25.95  3.88 44.69  34.61 84.52  11.52 
75.0 20.73  12.07 31.82  3.04 19.59  5.51 92.38  2.18 

 
 
 
 

Gaussian profiles intensities (p-polarization) - figure 7.18 

0 A1 A2 A3 A4 

50.0 0.06  0.01 0.30  0.03 0.14  0.01 0.10  0.01 
65.0 0.06  0.01 0.45  0.01 0.30  0.03 0.52  0.01 
75.0 0.21  0.04 0.53  0.01 0.09  0.06 0.60  0.02 

 
 
 
 

Gaussian profiles mean values (p-polarization) - figure 7.19 

0 B1 (cm-1) B2 (cm-1) B3 (cm-1) B4 (cm-1) 

50.0 1061.9  1.9 1114.9  0.7 1181.5  6.2 1256.1  0.5 
65.0 1116.7  1.0 1134.0  2.6 1199.9  1.9 1261.0  1.3 
75.0 1116.6  1.3 1160.8  7.2 1208.3  2.6 1262.0  1.1 

 
 
 
 

Gaussian profiles widths (p-polarization) - figure 7.20 

0 C1 (cm-1) C2 (cm-1) C3 (cm-1) C4  (cm-1) 

50.0 17.19  1.29 26.28  1.15 44.21  7.80 17.96  1.14 
65.0 10.86  1.62 34.17  1.46 27.16  2.17 29.71  0.61 
75.0 20.25  1.25 41.08  2.38 20.06  3.76 34.94  0.42 

 
 
 
 

Gaussian profiles intensities (p-polarization) - figure 7.21 

0 A1 A2 A3 A4 A5 

50.0 0.07  0.02 0.20  0.01 0.19  0.01 0.08  0.01 0.08  0.01 
65.0 0.07  0.01 0.33  0.01 0.42  0.00 0.03  0.00 0.26  0.01 

 
 

Gaussian profiles mean values (p-polarization) - figure 7.22 

0 B1 (cm-1) B2 (cm-1) B3 (cm-1) B4  (cm-1) B5  (cm-1) 

50.0 1071.9  2.0 1114.5  0.5 1147.2  3.6 1235.5  2.1 1263.5  0.3 
65.0 1117.6  0.3 1127.1  0.8 1216.5  2.4 1232.4  1.0 1268.0  0.2 

 
 
 

Gaussian profiles widths (p-polarization) - figure 7.23 

0 C1  (cm-1) C2  (cm-1) C3  (cm-1) C4  (cm-1) C5  (cm-1) 

50.0 19.53  1.90 19.45  0.49 44.14  3.45 22.710  1.99 12.53  0.68 
65.0 11.54  0.52 31.76  0.70 55.29  1.17 10.813  1.14 19.64  0.27 
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H.2 - Dispersion Analysis 
 

H.2.1 - Transmittance spectra 
 
 

figure 7.24 

dox  (nm) 
254.0 1.82  0.28 
276.5 1.30  0.36 
293.0 2.95  0.10 
311.0 4.12  0.09 
325.0 4.48  0.10 
342.0 4.23  0.10 
376.5 3.22  0.13 
422.0 2.43  0.15 
484.0 3.04  0.14 
527.5 2.46  0.17 

 
 
 

Oscillators strength - figure 7.25 

dox  (nm) p1  (cm-1) p2  (cm-1) p3  (cm-1) 

254.0 761.51  9.87 746.95  11.86 297.44  26.71 
276.5 913.06  11.56 558.38  21.06 326.68  35.49 
293.0 903.02  7.98 663.53  9.06 570.38  12.03 
311.0 885.30  13.50 715.20  13.44 749.70  18.42 
325.0 842.50  16.99 784.11  16.18 803.06  23.68 
342.0 844.40  14.94 807.90  13.19 781.00  14.78 
376.5 788.98  8.30 847.16  9.62 806.62  9.48 
422.0 851.40  12.51 795.20  14.44 562.60  31.45 
484.0 563.86  14.03 1052.08  12.38 665.36  35.25 
527.5 539.52  15.08 1065.13  12.78 575.41  40.93 

 
 
 
 

Oscillators resonance frequency - figure 7.26 

dox (nm) o1 (cm-1) o2 (cm-1) o3 (cm-1) 

254.0 1057.0  0.3 1085.4  0.2 1181.6  1.8 
276.5 1064.7  0.3 1086.3  0.2 1188.8  1.7 
293.0 1062.0  0.3 1088.3  0.1 1178.8  0.9 
311.0 1061.7  0.4 1088.5  0.3 1173.0  1.8 
325.0 1059.9  0.5 1087.3  0.4 1172.2  2.5 
342.0 1058.9  0.4 1086.8  0.4 1173.5  1.4 
376.5 1055.7  0.3 1084.7  0.3 1174.3  0.9 
422.0 1057.1  0.4 1085.8  0.4 1181.8  1.4 
484.0 1045.9  0.3 1077.6  0.4 1180.5  2.3 
527.5 1043.9  0.4 1076.2  0.5 1181.9  2.3 

 
 
 
 

Oscillators lorentzian width - figure 7.30 

dox (nm) l1 (cm-1) l2 (cm-1) l3 (cm-1) 

254.0 5.62  0.33 4.35  0.36 12.11  3.01 
276.5 4.09  0.18 1.61  0.12 8.80  1.78 
293.0 6.26  0.34 3.44  0.15 11.70  0.53 
311.0 5.96  0.55 4.44  0.60 16.10  1.77 
325.0 5.56  0.65 5.13  0.86 17.24  2.25 
342.0 6.70  0.64 5.58  0.55 16.80  1.24 
376.5 4.35  0.27 3.96  0.36 10.25  0.26 
422.0 5.39  0.52 4.55  0.80 16.89  8.70 
484.0 3.27  0.32 5.52  0.98 17.04  8.16 
527.5 3.32  0.33 5.92  1.15 16.49  11.12 

 



H-6  Appendix H - Tables with best-fit parameters 

 
 
 
 

Oscillators gaussian width - figure 7.31 

dox (nm) g1 (cm-1) g2 (cm-1) g3 (cm-1) 

254.0 19.96  0.32 16.55  0.29 47.36  5.63 
276.5 23.94  0.32 16.30  0.63 49.19  6.71 
293.0 21.46  0.23 15.46  0.14 86.59  2.13 
311.0 19.99  0.40 15.36  0.29 105.19  3.71 
325.0 18.82  0.46 15.69  0.36 108.75  4.76 
342.0 17.98  0.38 15.46  0.30 104.39  2.73 
376.5 17.54  0.25 16.09  0.27 117.94  2.66 
422.0 18.47  0.29 15.33  0.37 78.97  7.22 
484.0 13.94  0.29 19.16  0.47 87.66  6.79 
527.5 13.69  0.30 19.49  0.58 76.34  8.65 

 

 

H.3 - Differences between mean values (obtained by 
gaussian decomposition) and resonance frequencies 
(obtained by dispersion analysis) 
 
 
 

Lowest wavenumber peak - figure 7.27 

dox (nm) B1 (cm-1) o1 (cm-1) 

254.0 1048.6  1.0 1057.0  0.3 
276.5 1046.4  1.0 1064.7  0.3 
293.0 1045.7  1.0 1062.0  0.3 
311.0 1044.4  0.9 1061.7  0.4 
325.0 1043.5  0.9 1059.9  0.5 
342.0 1042.7  0.8 1058.9  0.4 
376.5 1041.3  0.8 1055.7  0.3 
422.0 1040.2  0.7 1057.1  0.4 
484.0 1039.7  0.6 1045.9  0.3 
527.5 1039.4  0.6 1043.9  0.4 

 
 
 

Middle wavenumber peak - figure 7.28 

dox (nm) B2 (cm-1) o2 (cm-1) 

254.0 1092.7  0.9 1085.4  0.2 
276.5 1091.5  1.0 1086.3  0.2 
293.0 1091.3  0.9 1088.3  0.1 
311.0 1090.6  0.9 1088.5  0.3 
325.0 1090.0  0.9 1087.3  0.4 
342.0 1089.5  0.9 1086.8  0.4 
376.5 1088.7  1.0 1084.7  0.3 
422.0 1087.7  1.1 1085.8  0.4 
484.0 1087.6  1.2 1077.6  0.4 
527.5 1087.7  1.4 1076.2  0.5 

 
 
 

Highest wavenumber peak - figure 7.29 

dox (nm) B3 (cm-1) o3 (cm-1) 

254.0 1169.8  1.9 1181.6  1.8 
276.5 1174.7  1.9 1188.8  1.7 
293.0 1174.4  1.8 1178.8  0.9 
311.0 1177.2  1.8 1173.0  1.8 
325.0 1178.3  1.8 1172.2  2.5 
342.0 1180.1  1.7 1173.5  1.4 
376.5 1182.7  1.7 1174.3  0.9 
422.0 1188.0  1.8 1181.8  1.4 
484.0 1191.0  2.1 1180.5  2.3 
527.5 1193.8  2.4 1181.9  2.3 

 



 
 
 
 
 
 

I 
Useful FORTRAN programs 

 
 
 


