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Abstract

This work presents a set of techniques able to describe the internal morphology and spatial

distribution of petrophysical properties within a highly heterogeneous reservoir based on

data from a small number of wells. The techniques used show that it is possible to present a

coherent description of highly complex and heterogeneous reservoirs, by imposing the

spatial continuity models extractable from the experimental data. In the present work,

reservoir characterisation focuses in the following main topics:

i) Stochastic simulation of the internal morphology of the reservoir (spatial distribution
of lithoclasses) encompassing a comparative study between three simulation
algorithms for categorical variables: truncated Gaussian field with posterior
conditioning, sequential indicator simulation with correction for local probabilities, and
simulated annealing.

i) Zonal control estimation of porosity and permeability conditioned to the simulated
images of lithoclasses. Estimation of water saturation based on a coordinate
transformation to the referential of the free water level to cope with the problem of the
non-stationarity displayed by this variable.

iii) Stochastic simulation of permeability — an undersampled property presenting high
variability and heterogeneity that significantly affect all fluid flow scenarios.

iv) Screening of realisations following a ranking selection based on the volume of
geobodies of high and low permeability.

V) Upscaling of properties from the stochastic block model to the fluid flow simulator
block model based on a pressure solver technique.
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Resumo

Este trabalho tem como objectivo a caracterizacdo da morfologia interna e das propriedades

petrofisicas de um reservatorio de petrdleo heterogéneo tendo por base um conjunto de

amostras de um numero reduzido de pocos. As técnicas utilizadas mostraram que é

possivel efectuar a descricdo coerente de reservatérios deste tipo, ao impor nos cenarios

obtidos as caracteristicas de continuidade evidenciadas pelas amostras. Este estudo de

caracterizacao resume-se a seguinte sequéncia de etapas:

ii)

Simulacdo morfolégica da arquitectura interna do reservatério (distribuicdo espacial
de litoclasses). Efectuou-se um estudo comparativo de trés algoritmos de simulacéo
estocastica de variaveis categoricas: truncated Gaussian field com condicionamento
posterior, simulacdo sequencial da indicatriz com correccdo das probabilidades

locais e simulated annealing.

Estimacdo por krigagem com controlo zonal da porosidade e permeabilidade
condicionadas aos mapas de litoclasses. Estimacdo da saturacdo em agua,
recorrendo a uma transformacéo de coordenadas por forma a contornar o problema

da ndo estacionaridade desta variavel.

Simulacéo estocéastica da permeabilidade — propriedade petrofisica, regra geral sub-

amostrada, de elevada variabilidade e heterogeneidade.

Classificagéo e selec¢do das imagens simuladas, baseada em critérios de volumes

de corpos de alta e baixa permeabilidade.

Mudanca de escala — upscaling - dos blocos do modelo estocéastico para os blocos
do modelo de simulacdo de fluidos, com uma abordagem nova baseada no método

de “pressure solver”.

Palavras chave

Reservatorio petréleo, Conjunto multifasico, Simulacdo estocastica, Simulated annealing,

Estimacao com controlo zonal, Upscaling
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1 INTRODUCTION

1.1 METHODOLOGICAL ORIENTATION

The characterisation of oil reservoirs is one of the most important strategic areas in the
process of studying a reservoir. Indeed, the great challenge we face nowadays is that
production from increasingly depleted and heterogeneous reservoirs is generally a result of
previous strategies which were not always the most appropriate to ensure the maximisation
of oil recovery. The new strategies for reservoir characterisation based on geostatistical
models are the outcome of a close inter-relation between reservoir knowledge and its
complexity. The result is the need to increase knowledge based on greater intervention
during characterisation and bearing in mind the strategic guideline of maintaining a market

balance between oil recovery and required reservoir knowledge.

Stochastic characterisation of reservoirs is a relatively recent application in the history of
geostatistics (Journel and Huijbregts, 1978, Da Costa e Silva, 1984, 1992, Isaaks and
Srivastava, 1989, Pereira et al, 1990, Daly and Verly, 1994, Deutsch, 1996). Geostatistical
models were first applied in the mining industry. The oil industry’s considerable initial
reluctance to use these techniques was due to a number of different factors, the most

important of which were the following:

e Lack of available information, which made it difficult to create reliable models of spatial

continuity which are at the basis of their design and application;

o Geostatistical estimation techniques are not particularly appropriate in terms of results
when applied to large areas generally recognised as having relatively little information. In
such cases, the result consists of vague and smooth images showing the spatial

distribution of the properties, and is therefore not very realistic;

e There is little objective and methodological parallelism between a calculation of mining
reserves and applications for the oil industry. In the case of mines, what is required is a
calculation of most probable reserves using available concrete information. In the oil
industry, as the reserves are a dynamic concept, what is required is a range of possible
scenarios based on a set of descriptive models in line with a limited number of premises
imposed by the scarcity of information. Most of the uncertainly comes from poor
knowledge of the surrounding geology: the oil industry is exploiting a resource where
there is no way of making close contact with associated surrounding geological

formations.
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To cope with this situation, several techniques suitable for dealing with poorly sampled oil
fields based on stochastic simulations have been applied with success. Conceptual models
with deterministic characteristics have proved not to be the most appropriate methods to
describe the internal geometry of complex fields. The output of these models consists of just
one smooth image of spatial variability, precisely because its background does not include
any type of uncertainty model and spatial continuity structure. The history match using the
data from these deterministic models is certainly simplistic, and performing further studies
forecasts of production or injection has serious drawbacks that could led to calamitous
results. Questions answered by dynamic flow simulation studies, like the proper location of
newly developed wells, horizontal wells, injection of water and steam, flow pattern channels
and preferential location of dead areas, can not be properly answered using deterministic
models, which are also unable to provide extreme scenarios and uncertainty in forecasting

studies.

The use of geostatistical techniques in oil fields may produce an average image or a set of
equiprobable images of the spatial distribution of petrophysical variables, highlighting
lithologies or rock types, permeability, porosity and saturation. Each of these images
comprises a two or three-dimensional regular grid, usually with millions of nodes
representing the internal architecture of the field (morphology and petrophysical values)
(Journel 1989, Deutsch and Journel, 1992, Srivastava, 1994). They are used in flow

simulation studies to characterise the fluid flow between adjacent blocks.

Stochastic models act as tools in oil field characterisation, and the modelling process has a
multidisciplinary nature. The stages of characterisation involve niches of methodologies
designed to satisfy each area of the model. These working areas may develop
independently and are interrelated so as to come together to form a strategic action aimed at
the same objectives. The contribution of each of these areas is updated with the
developments taking place in the others, to update the capacity of the models in such a way
as to involve new sources of information and to ensure coherent development in interaction
with the other areas, always bearing in mind that innovation should be associated with

coherence and the validation of many different disciplines.

This study is therefore very much along the lines outlined above, a contribution showing the
current state of the application of geostatistical models to the characterisation of oil
reservoirs. Following this study, the development and explanation of each methodological
sequence always appears alongside the correspondent characterisation step, leading to the

development of a complete stochastic model of the reservoir.
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1.2 OBJECTIVES AND PRESENTATION OF THE WORK

This research work was developed with the main aim of describing the internal morphology
and properties within oil fields. The objective is accordingly to apply geostatistical techniques
to under-sampled and particularly heterogeneous reservoirs. The under-sampled reservoir
treated in this study is characterised by few wells; also few cores and no seismic data are
available. In fact, in the studied reservoir the number of wells is relatively low: 19 for a field

surface area around 160 km? and a thickness varying from 100 to 1000 feet.

In this study, the characterisation of oil fields is proposed in a step-by-step process, focused

on the following main topics:

i) Morphological simulation of the internal architecture of the reservoir using categorical

or indicator algorithms (the field is previously classified by rock types or lithoclasses);

i) Characterisation of the petrophysical properties by estimation, conditioned to the

morphological model of geological categories;

iii) Geostatistical simulation of the properties showing more spatial variability and
heterogeneity (usually permeability and in some cases porosity), followed by a spatial

uncertainty evaluation based on these output images;

iv) Data preparation for the dynamic fluid flow simulator: screening of realisations using
geobody analysis and flow sensibility tests and upscaling of the detailed stochastic
model to be a suitable input for a fluid flow simulator. The scale-up of the detailed
stochastic model in a small number of coarse grid blocks to be inputted into the
simulator of fluids is the final but not least important step of this study given the need

to preserve heterogeneities observed in the detailed pattern of the fine grid blocks.

The stochastic reservoir model developed agrees with the major features present in the
conceptual geological model, honours the known data from wells and matches the available
core and log data and continuity models. It provides an internal representation of the
reservoir heterogeneities between wells, taking into account the morphology of the defined
facies. The result is a 3D model of geology (lithoclasses) and petrophysical variables
(porosity, permeability and saturations) with several million small blocks. Each stochastic
realisation is a lithological reservoir image, which reproduces the spatial variability of, for
instance of permeable and impermeable formations. Multiple generation of such equally

probable images allows visualisation of different geometry scenarios. Although this model is
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reduced in number of blocks (scale-up) the detailed geostatistical model provides insight into

reservoir connectivity and vertical and lateral distribution of properties.

In the particular oil field studied, four main sources of heterogeneity were found (the same
sources that can be found in other similar heterogeneous oil fields) (Da Costa e Silva and
Soares, 1994, Da Costa e Silva et al, 1997): vertical heterogeneity (between layers),
lithological changes within each layer, geometric arrangements of lithoclasses and some
petrophysical variability inside lithoclasses. The modelling approach should deal with the
complexity deriving from the high degree of variability in petrophysical properties, mostly
between lithoclasses. With this in mind, a geostatistical or stochastic simulation model of the
geology is proposed first, and the sources of heterogeneity are incorporated in the final

model as follows:

e The vertical zoning effect is taken into account if the spatial continuity analysis and the
conditioning procedure and imposed statistics are done within a layer and

independently layer by layer;

e Geometrical arrangements and the corresponding transitions between rock types are
taken into account in the construction of individual or multi-phase covariances, and

simultaneously by imposing the experimental proportions within each layer;

e The spatial variability of the properties observed within geological units and the actual
variability of the geological units is taken into account following the two-step sequential
methodological approach proposed. This two-step approach comprises simulation of
the geological units and subsequent estimation or simulation of petrophysical
properties conditioned to the simulated categorical images of the internal geology of the
field.

Part of the morphological geostatistical methods described and implemented in the scope of
this research work are based on the multi-phase concept introduced by Soares, 1992. When
the number of categories is significant and the reservoir is highly heterogeneous, this
concept and the correspondent multi-phase continuity measure tool have proved to be at
present the most suitable to characterise the spatial continuity of categorical variables (for
example, lithologies or rock types) compared to the usual methods of calculating individual
covariances or more complex co-regionalization models. These methods are a priori more
complex and detailed but are more demanding in terms of the number of samples and

evidence of continuity. The usual methods in heterogeneous and under-sampled reservoirs
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are implemented using simplifications and assumptions that are generally difficult to justify,

except if the reason is simply to run the model.
In this research work, the main topics are presented in the following sequence:

Section one is an introduction explaining the main methodological orientations, guidelines
and innovations. It also includes a summary of the geology and main field characteristics of

the reservoir studied related to the construction of the stochastic model.

The second section is dedicated to an explanation of categorical simulation methods using
the indicator formalism extended to multi-phase structures for the spatial description of
lithoclasses or geological units. In the case study presented, results from three different
algorithms of spatial simulation of categorical variables are compared. These methods are
sequential indicator simulation with corrections of local probabilities, morphological
simulation based on a truncated Gaussian field plus a subsequent conditioning step, and
simulated annealing (used basically for post-processing the results provided by the two
previous methods). The output images from both methods are validated based on the
imposed premises: the global continuity model, basic statistics, and matching of
experimental data. For each individual approach, a comparative evaluation of the variability
between the resulting images is carried out, in order to rank these three methods by an

entropy quality measure.

Section three deals with the spatial characterisation of petrophysical properties (porosity,
permeability and water saturation) using estimation methods based on kriging. Estimation
was sub-divided into two sections, corresponding respectively to variables extremely
dependent on the internal morphology of the geological units and thus predominantly
dependent on deterministic phenomena. The first encompasses porosity and permeability
and the second is related to fluid saturation. For porosity and permeability, estimation follows
the zoning control estimation technique, which consists of extending multi-phase
morphological estimation to the domain of continuous variables. The objective consists of
estimating the variable spread along a set of geological units. To accomplish this, just one
multi-phase variogram is required, instead of individual variograms or covariances, in order
to perform the estimation in a single step for all geological units. The same method is used
to estimate the permeability previously classified in classes. Considering that permeability is
a non-additive variable and the main interest is to map extreme values, and knowing that
kriging is not an adequate estimator of extreme values, the multi-phase indicator formalism
is more suitable for permeability estimation. Concerning estimation of fluid saturation, this

research work proposes an approach based on a single coordinate transformation to the
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referential of the free water level (FWL). This single transformation is able to cope with the

problem of non-stationarity displayed by this variable in the oil fields.

Section four is dedicated to the characterisation of spatial uncertainty in permeability,
provided by stochastic simulation. Due to the non-additive nature of permeability and the
major importance of extreme values, the simulation follows a methodological sequence that

combines sequential indicator simulation (SIS) and probability field simulation (p-field).

Section five deals with the interface between geostatistical models and the input to the fluid
flow simulator. Two main aspects are reviewed in this section: the screening of realisations
and the upscaling of permeability. As far as the screening of the realisations is concerned,
the study proposes a single method using a ranking selection based on the volumes of
geobodies of high and low permeability. Regarding the upscaling of permeability, this work
proposes a technique derived from the traditional upscaling technique based on the pressure
solver. The objective is to quantify and minimise the differences between fluid flows at small
and corresponding large scales using a moving window that covers a set of neighbouring
blocks of the current upscaling block. The upscaling of each block in each loop takes into

account the neighbouring blocks and the values from previous iterations.

Finally, section six contains a final series of important remarks involving all methodologies
described. The global set of techniques used in the framework of this research work is
summarised in Table 1.1, which shows the main characteristics (variable name, data

structure, input and outputs).

1.3 FIELD SELECTED: SUMMARY OF GEOLOGICAL CHARACTERISATION
AND PETROPHYSICAL DATA

The studied reservoir is located in the Middle East. This reservoir is one of the most
heterogeneous in the region, and for this reason has become a reference-framework for
researchers associated with geology and reservoir engineering. The main geological
structure of the field consists of a single lengthened anticline with a NE-SW orientation,
measuring approximately 27 km along the major axis and 8 km at the perpendicular,
corresponding to a surface area of about 160 km? (Craft and Hawkins, 1959; Gatlin, 1960,
North, 1985). The geological structure of this reservoir is a carbonate rich sequence of
Maashtrichiana age (Upper Cretaceous) deposited during an actively growing paleohigh in
shallow marine subtidal to intertidal and supratidal conditions. Based on palaeontological
information, this formation is sub-divided into two sub-units, Upper R1 and Lower (R2 plus
R3), the Lower being sub-divided into two further sub-units (R2 and RS3).



Table 1.1 List of proposed methodologies and main characteristics.

Methods Sata structure Inputs Outputs Group of Section
Variables methods
Sequential indicator
simulation Samples location
Lithoclass Simulated images Simulation 2
Truncated Gaussian Categorical Marginal histograms displaying the spatial
simulation plus variability of
subsequent conditioning Multi-phase variograms lithoclasses
Simulated annealing
Samples location
Porosity Zonal control estimation Continuous Multi-phase variograms | Estimated images of
Basic statistics porosity conditioned Estimation 3
Simulated images of to the images of
lithoclasses lithoclasses
Categorical Estimated images of
Zonal control estimation (permeability Samples location permeability classes Estimation 3
Permeability classes) Multi-phase variograms conditioned to the
Basic statistics images of
Simulated images of lithoclasses
lithoclasses Simulated images of
Sequential indicator Continuous permeability Simulation 4
simulation plus p-field conditioned to the
simulation images of
lithoclasses
Samples location
Water Ordinary kriging Continuous Water saturation Estimated images of Estimation 3
saturation variograms water saturation
Depth and thickness of
each layer
Permeability Conditional upscaling Continuous Detailed images of Coarse grid images Upscaling 5

permeability

of permeability




The geological characterisation of the field involves interpretation of the intensive diagenetic
alterations of the original carbonates (North, 1985). The interaction of the diagenetic cycles
with tectonic activity led to the formation of a perceptibly layered sequence in the upper
zones of the field named unit R1. This sequence is made up of porous and permeable
carbonates alternating with clay beds. Each of these lithological units is relatively
discontinuous. During the deposition of the Lower Units (R2 and R3), the interplay comprises
dolomitization, sedimentation and tectonic activity, which led to overdolomitization and
amalgamation at the crest, with thicknesses varying from 50 to 150 feet. These dolomites
are impermeable, with a massive aspect, and the porosity occurs along cavities, particularly
vugs and percolating fractures. These tight dolomites, located along the crest of the principal

structure, are surrounded by porous dolomites (sucrosic dolomites) along the flanks.

In the Upper unit, the depositional conditions changed and, as a consequence, the beds are
more clearly defined and observed. However, it is difficult to correlate the numerous beds
identified in wells throughout the field, due to a sharp variation in thickness (between 5 and
20 feet). Thickness increases from crest to flanks along all the structure and in all directions,
although more quickly in the longitudinal direction of the anticline (NW-SE). These variations,
associated with the depositional process, justify the need for a transformation of coordinates.
This transformation was carried out on all well data before running stochastic models. The
only exception was the saturation model, where a different transformation method was
applied due to a deterministic factor (capillary pressure) that conditions the vertical

distribution of fluids.

Based on well data (logs and cores) a detailed classification of the rocks was established.
Eight layers were identified in the Upper Unit of the field (R1 Unit) and initially six in the
Lower Unit (R2 plus R3), making up the 14-layer model initially identified which forms the
basis of the initial geological study. The above six layers were further redefined and finally
17 layers were identified, in addition to the 8 layers for the Upper Unit (see Figure 0.1).

Additionally, a new unit was added to the basis, characterised by its accumulation of oil.
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Figure 0.1 Stratigraphic representation and vertical zoning of the studied field: sequence of reservoir
units: R1, R2 and R3.

From the first studies it was observed that this field is particularly complex, showing sharp
variations in petrophysical properties for both vertical and horizontal directions. These
variations are the result of the combination of a complex depositional scenario, influenced by
syndepositional structural development, with an elevation followed by erosion due to
meteoric waters and evaporites of diagenetic origin, associated with post-depositional
diagenesis. For all these reasons, strong variations in the petrophysical attributes are clear
throughout the field (porosity, permeability and, in addition, saturation) as well as the

thickness of each layer or stratum.

Due to the wide range of values displayed by the petrophysical characteristics within each

rock type and inside each layer, it was necessary to take into account an additional sub-
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division of the lithologies, based on the following parameters: rock type, capillary pressure
variations in the stratigraphic column and porosity and permeability. The concept of
lithoclass was introduced in order to represent spatial areas with high homogeneity of
porosity and permeability and represented by a typical capillary pressure curve, obtained in

laboratories through core analysis procedures.

Due to the great heterogeneity in this particular oil field, it is difficult to perform a
classification into lithoclasses that simultaneously lead to an internal small range variability
concerning these variables, which are discordant most of the time. However, the
classification into lithoclasses is considered a suitable basis for the implementation of a
stochastic model, rather than using a few and more heterogeneous lithologies. The
discordance involving these parameters and the high heterogeneity means that only around

half of the lithoclasses present significant spatial continuity within each layer.

Well data came from 19 vertical wells (see geographical representation in Figure 0.2) that
cross all identified units and allow the identification by geologists of the 20 lithoclasses.
Table 0.1 lists all identified lithoclasses and displays the corresponding rock type and
indicative values for porosity and permeability. One important point to note is that, in the
same geological unit, the entire set of lithoclasses do not appear simultaneously (maximum
observed is 17, but usually less than 10 occur), which contributes to the construction of a
model showing a remarkable vertical zonation, as described by the geology and observed in

the marginal histograms.
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Figure 0.2 Aerial view of the entire field with superposition of the stochastic simulation grid and well
locations.

Each well was sampled at intervals of 1 foot and is now represented by a categorical

sequence of geological formations - lithoclasses. Lithoclass unit (LCU) or statigraphic unit

10



Introduction

(S.U.) designates each one of these intervals. Each unit is described by a set of variables

derived from core or log analysis, among which the most important are porosity, permeability

(core permeability - horizontal and vertical - and log derived permeability by correlation with

porosity) and fluid saturation. The proportion of wells with cores varies from 20 to 80 %

approximately, depending on the layer.

Table 0.1 Lithoclasses identified in the present ail field: typical rock types and porosity and

permeability average ranges.

Lithoclass Rock type Porosity” (%) Permeability* (mD)
1 Shale 0.0 0.0
2° 3 Mudstone 4.0 0.5
456 Mudstones to 7.5 0.9
wackestones
7 Wackestones 15 1.5
8°,9,10,15 Mouldic dolomites 25.5 29.5
11,12°,13,14 Grain to 25 68
packstones
20,2122 Tight dolomites 15 4.2
23'.24 Sucrosic 25.5 1250
dolomites

* - Dominant lithoclass

The stochastic models presented in this study characterise the reservoir properties in a

discrete grid of points, covering the volume, which bounds the entire reservoir. The unitary

block in the grid selected for the stochastic model is 250 by 250 m in both X and Y directions

and 1 foot in the vertical direction. Taking into account the dimensions of the reservoir, the

total number of blocks is laterally 124 in the X direction and 42 in the Y direction. The

number of blocks in the Z direction depends from the maximum thickness of each layer.

llustrative values

11






2 STOCHASTIC MODELLING OF LITHOCLASSES

2.1 DEFINITION OF LITHOCLASSES

One of the most critical steps in the construction of a reservoir flow simulation model is the
description of the reservoir geology. To describe reservoirs characterised by high
complexity, conceptual and deterministic geological models are, in most cases unable, to
represent the internal geometry of the reservoir adequately. In fact, they ignore spatial
zoning effects derived from the irregular distribution of the heterogeneities, and as a
consequence they do not represent the actual connectivity and flow patterns. The concept of
heterogeneity is very complex, but it has commonly been associated with predominant
spatial random transitions and patterns evidenced by geological formations and/or

petrophysical properties.

The stochastic simulations of geological units in this heterogeneous reservoir were based on
an initial descriptive geological model of the reservoir. Core analysis available in a limited
number of wells provided detailed information on the geological formations. Usually with this
information it is possible to provide a first geological classification into rock types. However,
in very heterogeneous reservoirs a wide range of porosity and permeability can be found for
the same rock type, which constitutes a considerable challenge when mapping extreme
values of the petrophysical properties. To cope with the geological complexity and to assist
in understanding the internal distribution of properties, the concept of lithoclasses was
introduced in this oil field. Lithoclasses were identified from cores based on their lithology,
petrophysical properties and capillary pressure. The stochastic simulation of the geological
units performed in the present work consists in the spatial simulation of this lithoclasses as

categorical variables.

Four main sources of heterogeneity were found in the oil field studied (which are of course
the same sources that can be found in similar heterogeneous oil fields) (Da Costa e Silva
and Soares, 1994): heterogeneity between layers, lithological changes within each layer,
geometric arrangement of lithoclasses, and some petrophysical variability inside
lithoclasses. The high degree of variability in petrophysical properties, mostly between
lithoclasses, suggests that this spectrum of variation covers a wide range and that the
modelling approach should cope with this complexity. Bearing this goal in mind, the
stochastic modelling of reservoir properties followed in this case study includes two main
steps: the geometry of the lithoclasses is simulated first, and then the spatial

characterisation of the petrophysical variables is performed within each simulated lithoclass.

13
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Following this methodology, a geostatistical or stochastic simulation model for the geological

characterisation of heterogeneous fields is proposed in the present section.

Once a set of simulated images of the distribution of lithoclasses is generated, the next
critical step is to fill each one with the petrophysical properties (permeability, porosity and
water saturation). Each stochastic image or realisation must honour the experimental data,
the real proportions of each lithoclass, and the spatial continuity revealed by experimental

variograms.

2.2  SPATIAL SIMULATION OF LITHOCLASSES

2.2.1. INTRODUCTION

Stochastic simulations consist of a set of methods able to generate numerical models or
realisations of the spatial distribution of a categorical variable (for example, geological units,
lithotypes, etc) or a numerical variable (porosity, permeability, water saturation, etc.). The set
of outputs consists of equally probable images in the sense that they have the same
probability of occurrence (Matheron et al, 1987, Journel and Alabert, 1988, Journel and
Hernandez, 1989, Perez and Journel, 1990, Goovaerts, 1994, 1996).

As has been demonstrated in several case studies, these models are based on a
probabilistic formalism and have proved to be the most suitable to describe spatial
heterogeneity in oil fields. The use of stochastic models enables this intrinsic complexity to
be modelled and equally probable scenarios of the internal architecture of the reservoirs to
be predicted, mainly in inter-wells or low conditioned areas. In fact, these techniques allow a
set of different equally probable images of the spatial distribution of the main petrophysical
properties that describe the oil fields, namely lithologies, lithogroups, permeability and
porosity, to be created based on a small amount of data extracted from an experimental data

set.

All the steps involving the development of these models, mainly data preparation and
interpretation, constitute a multidisciplinary task, which entails the cooperation of several
teams, ranging from geology and seismic studies to reservoir engineering. These different
spatial output images constitute the input of the fluid flow simulators (a transfer function),
helping to develop dynamic simulation studies that can lead to a better management of fields

over their productive life.

The methodological approach for the characterisation of an oil field using geostatistics can

be sub-divided into two main sequential steps. The first step consists in simulation of the

14
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morphology of geological units using categorical simulation algorithms. The second step
consists in a subsequent estimation of petrophysical variables within each layer, using local
conditioning to the previous simulated geological units. The result of the first step consists of
a set of equally probable geological images representing the heterogeneity among

lithoclasses.

The implementation and application of a geostatistical method (sequence) must take into
account the existing heterogeneities and if possible their sources. The use of a two-step
methodology as outlined above implies that the model will cope with the main sources of
heterogeneity: heterogeneity among and within lithoclasses. The other two important
sources of heterogeneity (heterogeneity between layers and geometric arrangement
between lithoclasses) are achieved by these methods: independent simulations performed in
several layers using spatial continuity analysis give rise to a measure of uncertainty (see

section 4).

The practical application of these methodologies must comply with the Conceptual
Geological Model that describes the internal architecture of the reservoir. This association of
procedures (conceptual geological description and stochastic model) proved to be an
advantage in most case studies. First of all, geostatistical models deal with continuity
measures, which is their major advantage. The possibility of generation of multiple equally
probable images and the integration of different sources of information are equally important
advantages. On top of that there are other advantages, such as matching of experimental
data, basic statistics and continuity measures. Given the lack of data and additional
information in inter-well areas, the use of this type of model can also be justified by the need
to generate multiple images, which constitute one practical way to characterise the

uncertainty in oil fields.

2.2.2. GENERAL DESCRIPTION OF GEOSTATISTICAL SIMULATION
ALGORITHMS FOR CATEGORICAL VARIABLES

Many algorithms to perform stochastic simulations of categorical variables have been
described in the literature with different backgrounds. Examples of stochastic simulation
algorithms used to create equally probable images of the internal architecture of a
categorical set include Boolean models (object-based models) (Ripley, 1987, Haldorsen et
al, 1988, Omre et al, 1990, Deutsch and Wang, 1996, Soares and Brusco, 1997), truncated
Gaussian field plus subsequent conditioning (Deutsch and Journel, 1992, Journel and
Huijbregts, 1978, Da Costa e Silva et al, 1991), sequential indicator simulation (Journel and

Alabert, 1989) and the more recent simulated annealing (Deutsch and Journel, 1992). It is
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also possible to combine these individual technigues to solve various questions in particular

cases. Bearing in mind the diversity of methods, which is the most appropriate?

The answer to this fundamental question depends on each particular case study. Any
method has advantages and drawbacks depending on the theoretical formulation and its
suitability to the specific features of the case studied. In a general way any method can be
used so long as it can integrate all the available information and ensure that (depending on
the volume of work) (Deutsch, 1994):

e The simulation runs in a realistic period of time;

e Several aspects evidenced by the samples can be matched. These aspects are
dependent on the available amount and diversity of information (geological
information, seismic interpretations, production well data, etc.) and the major goals

defined for the study;

e It puts a wide spread of uncertainty in the final images conditioned by the experimental

data and quantifies that uncertainty.

All algorithms involved in a stochastic simulation study are designed to match a set of
measures revealed by the experimental data. The final images should reproduce the
variable statistics, the patterns revealed by the experimental samples, the geological
conceptual trends, the information from the seismic images (soft data) and even some
features of analogous fields and outcrops. The possibility of imposing some additional

constraints depends on the way they can be numerically expressed.

Usually, with a geostatistical simulation model one intends to reproduce in the final images
the spatial variability of the phenomena, by imposing the two following statistics: the
probability distribution function and the variogram or multi-phase variogram. When dealing
with a categorical set (multi-phase set), the final simulated images must honour the following

aspects: i) the proportion of each phase m; =mg , (i=1,...K phases) as evidenced in the

initial data set; ii) the spatial continuity as revealed by the individual or multi-phase

variograms y;(h) = y5 (h); iii) at each experimental data location X, the simulated images

have the same value K;(x,) =Kg (X,)-

The set of resulting images is named equally probable in such a way that all images have
the same probability of occurrence and reproduce the two main statistics - the probability

distribution function and the variogram - and finally match the experimental data.
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Basically two main groups of algorithms for stochastic simulation can be found in the
literature: simulation with independent conditioning and sequential simulation. One additional
group can be considered - simulated annealing - based on the background concept of “trial
and error”. This generic classification can be applied both to categorical (single or multi-
phase sets) and continuous variables. However, later in the present section, we assume

dealing with categorical variables.

Independent conditioning simulation groups a set of techniques, which are based on a
simulation process independent of the posterior conditioning process. Basically these
methods have two main steps: non-conditional simulation and posterior conditioning. The
non-conditional simulation can be any one since the result consists in a non-conditional
categorical simulation that reproduces the two main statistics — the probability distribution
function and the variogram. The conditioning step is based on a spatial estimation of errors,
leading to the designation of ESE: estimation plus simulated errors. One method of this
group, to deal with categorical or multi-phase sets, is hamed truncated Gaussian simulation
plus subsequent conditioning approach or morphological simulation (Journel and Isaaks,
1984, Da Costa e Silva et al, 1994, 1997).

Sequential simulation methods belong to a relatively new family of simulation algorithms
based on a sequential approach (Journel and Alabert, 1988). When dealing with categorical

variables the method is sequential indicator simulation.

The use of methods based on simulation annealing algorithms to perform the simulation
appears as an alternative way of simulation or as a post-processing in association with
conventional processes. In a more general context, one can denote as simulated annealing
a class of algorithms based on a solution of an optimisation problem (Aarts and Korst, 1989,
Farmer, 1992, Sen et al, 1992, Almeida®, 1996). This process is based on an evolution of the
system towards the minimisation of an objective function that describes the final and
appropriate state following a perturbation mechanism and evaluating the consequences in a

“trial and error” iterative sequence.

2.2.3. GEOSTATISTICAL SIMULATION METHODOLOGY USING A MULTI-PHASE
FORMALISM

The multi-phase concept represents the continuity and transitions of a set of phases using a
global continuity model. Instead of assuming the probability of two points separated by h
belonging to a particular phase A or B, the covariance assumes the probability of two points

separated by h belonging to the same phase whatever it may be. From a spatial analysis

17



Chapter 2

point of view, this average measure is conceptually weaker than individual covariances, but
in most cases it is the only tool to properly model simultaneously heterogeneous and
undersampled reservoirs, without assuming prior simplifications that may misrepresent the
field characteristics. In the present section an experimental procedure is proposed involving
a set of algorithms that can be chosen depending on the conditioning effect and computing
time. Basically, two main simulation algorithms are proposed each of them encompassing
two alternatives. A final post-processing is suggested to improve the variogram match and

the conditioning effect.

The complete simulation approach is described below and comprises three main

methodological steps (see flow chart in Figure 2.1):

e First, identification of the present phases and construction of a multi-phase variogram

as a spatial continuity tool;
e Stochastic simulation of the set of lithoclasses;

¢ Finally, checking of the imposed statistics and the data conditioning process through

visual validation of the output images.

Following the proposed flow chart in more detail, the first step involves the following sub-

tasks:

1. Identification of lithoclasses and transformation of categorical variables into indicator

multi-phase vectors;

2. Computation of individual indicator variograms for each lithoclass, along different

preferential directions (major and minor directions of the reservoir, vertical direction);

3. Identification of groups of lithoclasses with similar characteristics in terms of continuity. In
the present case study this implies the spatial simulation of the morphology of a multi-
phase heterogeneous set, being identified by two groups with very distinct continuity
measures along the horizontal direction within each layer. One clearly shows continuity

greater that 2000 metres and the other is characterised by no evidence of any continuity;

4. Computation of experimental multi-phase variograms for the two groups along the
preferential directions and fitting a theoretical model to the experimental values for both

groups;

5. Stochastic simulation of categorical variables;
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Stochastic modelling of lithoclasses
Proposed approach

Experimental data:
Identification of lithoclasses and
calculation of basic statistics

A 4
Calculation of multi-phase  |[¢——————
variograms

!

Variography analysis: identification
of continuous and erratic

lithoclasses
Morphological simulation v
l Sequential indicator
v simulation: SIS
Transformation using Transformation controlled
local and global by simulated annealing Correction for local
probabilities probabilities

l Objective=min{y;,m} l

!

v
Post-processing
simulated annealing

Objective=min{y;,m}

!

Output image analysis

Check: histogram, continuity model, match
experimental data

Uncertainty evaluation

|

Figure 2.1 A flow chart illustrating the proposed experimental steps for the generation of stochastic
images of lithoclasses.

The first method proposed, named morphological simulation, is based on the truncated
Gaussian field model with posterior and independent conditioning to the experimental data.
The output consists of maps representing the probability of each grid node belonging to each
identified category or to each lithoclass (in the context of this particular case study). These
values must be transformed into indicator values following one of the two proposed

algorithms: i) morphological classification based on local and global probabilities; ii) one

19



Chapter 2

alternative method that combines the conventional process based on local and global
probabilities with the simulated annealing technique. This method performs a transformation
controlled by one objective function that computes in each loop the bias between the

continuity models (theoretical and experimental) and the proportions of each phase.

The second method proposed is based on sequential indicator simulation (SIS) extended to
multi-phase structures. The basis of the algorithm includes the correction for local
probabilities proposed by Soares, 1998. The objective is to minimise deviations between the
objective probabilities and simulated proportions. These deviations occur at times, especially
when long range variograms in phases evidencing small proportions were used. Outputs of

this method consist of morphological multi-phase maps conditioned to the experimental data.
6. Post-processing using simulated annealing;

Any of the above categorical simulated maps could be post-processed using the simulated
annealing algorithm in order to improve initial patterns or to incorporate additional
constraints. It is possible to apply this algorithm to completely random images and the result
will be one simulated image matching the required parameters. However, bearing in mind
the particular background of this method (massive use of CPU due to intensive calculations)
it is recommended to use one initial image partially matching the required parameters and

use the simulated annealing in a post-processing step.
7. Analysis of the outputs.

This consists in checking of the parameters to be honoured: the proportions of each
lithoclass and the continuity model and verifying if the simulated points match the
experimental values. Other equally important aspects, like the shape uncertainty evidenced
when performing several realisations, some zoning effects and contacts between
lithoclasses and the extension of the continuity evidenced by each lithoclass, must also be

analysed and validated, based on geological, geophysical and reservoir knowledge.

In order to rank outputs based on an entropy measure, 30 realisations were performed using
the proposed methods: i) sequential indicator simulation with correction for local
probabilities; ii) morphological simulation plus classification based on local and global
probabilities; iii) morphological simulation plus classification using simulated annealing. All
30 images resulting from sequential indicator simulation were post-processed by simulated
annealing and the entropy of all these images was calculated. In this test it is possible to

evaluate the conditioning effect derived from simulated annealing.
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2.3 MULTI-PHASE VECTOR VARIABLES

2.3.1. DEFINITION OF AN INDICATOR VECTOR VARIABLE

The basic idea of the proposed methods is to use the framework of indicator random
functions to spatially describe the X, (k = 1, K)) lithoclasses - where K denotes the number
of categories or phases. At each spatial location x and according to the vertical sub-divisions
in layers, all lithoclasses were coded as a non-ordered indicator vector X, to all phases,
(k =1, K) (see Figure 2.2):

1 if x belongs to phase X,
(X)) = (2.1)
0 ifx belongs to phase X; withj #k and k=1K

Phase X;

Y

L()=1000

L(x)=0100

I5(X)=0010

] x=0001

Figure 2.2 Codification into an indicator vector.

In the framework of a stochastic model, the indicator vector or variable at each point x:
{12(x), (%), 13(X), ... Ik(X)} can be interpreted as the probability of a point x belonging to one

lithoclass Xy, k = 1, K, and can be used as a random variable located at x.
l,(x) = prob { x e phasek |, ¥ k=1,K (2.2)

The set of N samples in area A were coded in all possible combinations of “1” and “0” and

can be interpreted as a realisation of a random function I,(x).
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The realisation I(x;), i = 1, N of the random function I,(x) has the two following moments:

a) Mean of each phase my : measure of the proportion of each phase X in all area A:
1 N
my = _Zlk(xi) (2.3)
N i=1
b) Variance of each phase sz
2 1 . 2
Ok :WZ(Ik(Xi)_mk) =m,(1-my) (2.4)
i=1

Important remarks:

e The values of I(x) are usually dichotomous, which means that each point x belongs
only to one category or lithoclass. However, it is possible to include points with an
associated uncertainty degree of belonging to a set of phases. In these cases, the

meaning of probability is preserved and the same concepts can be applied;

e The terms of the indicator vector have no order relation between them.

2.3.2. SPATIAL CONTINUITY CHARACTERISATION

The spatial continuity of each phase in area A can be measured using bi-point statistics,

namely the covariance Cy(h) of phase k, with (k = 1, K) number of phases:
Cy(h) = E{l (x)J (x + h)} - m,? (2.5)

or the equivalent indicator variogram:
1 2
7e0) = S EILG =1 x + )] (26)

with:

Cc(h) =" = (h) or C(0)- y(h)
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When dealing with multi-phase sets the amount of data is usually insufficient to estimate all
individual covariances or variograms. In these cases or when it is not possible to calculate
spatial continuity models for each phase (which is hormal when dealing with a set of phases
in undersampled oil fields), Soares (1992) proposed using a global model which synthesises
the spatial continuity of all sets of lithoclasses - multi-phase covariance. This means the
probability of two points separated by h belonging to the same phase. The multi-phase

covariance can be calculated by:

CUO=E{ZWAXHAX+M% 2.7)

k=1

and the equivalent multi-phase variogram:
1 K 2
7(n) =SB 2100 = (x + )] (2.8)
k=1

Obviously, the application of a unique model to a mixture of different structures should be
avoided. In some case studies, depending on the number of samples and phases, it is not
possible to join all calculated individual covariances or variograms into a unique model. In
these cases (for example, when we have many lithoclasses in a heterogeneous field), the
entire set of lithoclasses must be characterised by more than one multi-phase variogram,

usually no more than two.

Denoting as N(h) the number of pairs of points separated by h, the multi-phase variogram
can be directly estimated using N experimental indicator vectors (I(x), k =1, K; i =1, N)

using the following expression:

B 1 N(h) [ K )
7(h) _W(h) il{kz;-[lk(xi)_lk(xi +h)] } (2.9)

Both covariance and variogram can be decomposed by the sum of the individual

covariances or variogram:
K K
C(h)=>.C(h) and y(h)=2 r(h) (2.10)
k=1 k=1

Once one or a set of experimental variograms have been calculated, the continuity modelling

process follows the conventional sequence of steps:
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¢ Find anisotropies between the different directions;

e Fit the experimental points with a theoretical model, usually a spherical or exponential

function type.

In fact, multi-phase continuity can be modelled by the classic variogram parameters: range,
nugget effect, main and minor directions and anisotropy relations. All these parameters have
a different but determining influence on the simulated images. For instance, range gives an
average of the lengths of the geobodies, and the relations of anisotropy reflect the variations
of these measures along different major directions. The nugget effect is a measure of the
transitions at a short scale and as a consequence reflects heterogeneity at very small
distances. When the nugget effect is high, the consequences in the output images are
remarkable and can be observed in the increasing number of transitions at a small scale and

the irregularity of the contour-shape - the image appears more irregular or random.

2.4  SIMULATION OF MULTI-PHASE STRUCTURES

In the following sections, morphological simulation, multi-phase sequential indicator
simulation and simulated annealing post-processing will be succinctly described, noting

various improvements performed in each methodology to run this particular case study.

The practical implementation was performed using both routines provided by GSLIB
software (Deutsch and Journel, 1992) with some modifications (for example SISIM and
SGSIM) and geoMS (geostatistical modelling software developed by CMRP, Rodrigues et al,
1998) with modules developed in the scope of this study.

2.4.1. MORPHOLOGICAL SIMULATION

2.4.1.1. TRUNCATED GAUSSIAN SIMULATION PLUS POSTERIOR
CONDITIONING APPROACH

Morphological simulation approach belongs to a set of methods that split the simulation in
two distinct and consecutive steps: a non-conditional indicator simulation followed by a
posterior conditioning. For a multi-phase set, it can be applied according to the following

seqguence of steps (see Figure 2.3):
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Sequential Gaussian simulation
image matching the
experimental continuity model

Fiwh
Lo -

/

/

0.5 /

L

#1  #2

Non-conditional simulation of
lithoclasses matching the
experimental continuity model and
basic statistics

Differences
estimated by kriging

[l 09 -1, (0]

Final conditional probability
maps

Figure 2.3 Sequence of steps to perform a non-conditional indicator simulation followed by a

conditional step.
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i) A non-conditional Gaussian simulation Ys(X) is performed covering the entire volume
of the layer using the theoretical model fitted to the experimental multi-phase
variogram, plus a transformation. Several algorithms provide a Gaussian simulation,
including non-conditional sequential Gaussian simulation (Deutsch and Journel,
1992) and the turning bands method (Journel, 1977, Journel and Huijbregts, 1978,
Dowd, 1979, Sousa, 1983).

During this non-conditional step, a Gaussian transformation of the experimental indicator
data is not required. Indeed, this transformation is not possible when dealing with categorical
variables (Gaussian transform of a non-continuous distribution). It is important to point out
that only transformation of the indicator multi-phase variogram is required to accomplish this

step.

Calculation of the variogram of Ys(x) can be achieved in several ways. For instance, Journel

and Posa, 1990 propose a heuristic model for indicator variogram transformation.

Journel and Isaaks, 1984, propose the use of the following relation, which can be applied to

multi-phase sets:
e (M =Ly, ymy = p(iy)] or () =1- L7y, y.(1-G) - rc(hiy)] (2.11)
where:
v (h) - variogram of Yg(x)

L - the standard bivariate normal distribution (tabulated in e.g. Abramovitz and
Stegum, 1972)

y - the cut-off value in the Gaussian set of values: y = G™ (1 - my)
G - is the distribution function of Y(x) - Gaussian distribution function
my - proportion of phase k

Another approach is based on the hermitian polynomial development proposed by Matheron,
1987:

0 2
A=) Y ) o) (2.12)
with:
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H, - hermitian polynomial of order n
g(y) - the standard Gaussian density function

p,(h) - correlogram of the indicator variable for a distance h

o (h) - correlogram of the Gaussian values for a distance h

i) Truncation of the Gaussian simulated variable Yg(x) in K classes, using (K-1)

thresholds y,, , calculated according the experimental means of the phases:

Ye, =G H(1-m;) with (2.13)
m, = > m, (2.14)
k=1

In the above expression, G(x) denotes the Gaussian probability distribution function pdf and

m; and my respectively the cumulative and the experimental mean of each phase k.

These thresholds are obtained by calculation of the G™(x) using polynomial approximations
of the Gaussian pdf (Abramowitz and Stegun, 1972). Alternatively the Ys(x) simulated values
can be ranked by decreasing order and the threshold value that correspond to the calculated

one can be picked directly, using the experimental proportions.

Applying the above cut-offs with the Ys(x) leads to a non-conditional indicator simulation:

1 If ka_l S YS (X) < ka
ls, (X) = (2.15)
0 otherwise

The simulated values Ig, (x) reproduce the global multi-phase variogram model.

iii) Conditioning step

The final conditioning process aims to condition the simulated images to the experimental
sample values and to reproduce the spatial patterns imposed by the experimental samples.
In this regard, the conditioning step should not be performed with the Gaussian values since,

as has been already, it requires the Gaussian transformation of indicator values, which in all
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rigour is not possible. In the technique proposed the conditioning phase is performed with

the indicator data.

In this critical step, the multi-phase kriging technique is applied for conditioning the simulated

values to the experimental data. The simulated values Ig (x) are conditioned to the

experimental values Iy (X,), @ = 1, N via the classical relation where the final conditional map

Isk°(x) is equal to the estimated map I, (x) plus a simulated error eg(x):

ls, °(0) =1, (X) +es(X) (2.16)
with

es(x) =1, (X) =g, (X) 2.17)

The two multi-phase kriging estimations Ik*(x) and Isk*(x) are calculated with the same

global multi-phase covariance:
L ()= A (%) (2.18)

ls, (X) =2 A-ls, (X,) (2.19)

and can be summarised to the estimation of the difference:

Il 09 15, (0] = 3 2, L (x0) ~ 1, (x,)]

The values Isk°(x) have the meaning of the probability of a point x belonging to each phase

X : for each simulated point x, the sum of Isk°(x) is equal to one, and the values are in the

range O to 1.

iv) After the simulation of Iskc(x) the probability of a point x belonging to the phase k - for

all points xo inside the area A, the final step consists in a classification of each point
Xo to the most probable phase - which means transforming each probability value

Iskc(x) into an indicator value.
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To perform this final step, two different methods based on the values of Iskc(x) were

followed and the corresponding results are further compared:

e The first classification is based on the local and global probabilities belonging to
phases X; (k = 1,K) (Soares, 1992, Almeida et al, 1993);

e The second consists of using the simulated annealing technique to obtain the shape of

each unit with spatial variability as revealed by the multi-phase variogram of I,(x).

2.4.1.2. TRANSFORMATION OF PROBABILITY MAPS INTO MORPHOLOGICAL
MAPS USING LOCAL AND GLOBAL PROBABILITIES BELONGING TO
PHASES Xk

The resulting simulated probability maps are transformed into morphological maps according
to the twofold criteria: maximisation of local probabilities until the global probabilities are

honoured. It can be summarised in the following sequence of steps:

i) For each phase, rank the total N local simulated probability values ISkC(x) in

decreasing order. Hereafter, consider ny, the number of grid nodes allocated to each

phase in order to respect the required proportions:

np=mg.N
n,=m,.N
Nnk=mg.N
i) Select and allocate to phase Xy the ny highest values of Iskc(x) until the global

proportion of phase X , (my) is reached, with m,=n,/ N. The global proportion of each
phase is expressed by the mean of the experimental indicator values. The

transformation of the probability maps into morphological maps starts row by row: the
highest value Ig °(x) of each phase: Is(x,), ls,"(Xs), ... ls “(x,) is chosen and

transformed until the absolute number of each phase ny is reached.
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ISlc(Xa) ISZC(Xﬂ) ISKC(X;/)
ls, (X,) ls,” (X,) ls,(%,)
Ny
nd e
n, 2
N
ISZC(XU)
Islc(xq)
iii) When a point is spatially located in the transition zone of these phases (not

conditioned inter-well areas) it can belong to more than one phase. The criterion to
allocate the point is still based on the simulated highest probability of belonging to the

phases. For example, the point x,, spatially located in the transition zone between

phases 1 and 2 can belong to both phases. Thus, if Is “(x,) > Is,°(x,) the point x, is

allocated to phase 1; otherwise is allocated to phase 2. Once X, is allocated to phase

1, the point is withdrawn from the ranked ordered vector of phase 2 and the next

value corresponding to the n, + 1 position of rank ordered vector Isz°(xj) is added to

the phase 2.

In this classification there is a balance between the maximisation of local probabilities and
the global criteria of reproducing the estimated proportion of each phase Xy in area A. The
main drawback of this approach is that during the transformation of probability maps into
morphological maps the variogram of the output image can show some deviations from the
theoretical model imposed, and as a consequence the final shapes of each phase X, do not
reproduce the spatial variability of the multi-phase variogram of I(x). In order to overcome
this important drawback, an additional criterion is proposed based on the definition of an

objective function designed to minimise the deviations regarding the multi-phase indicator

variograms and simultaneously to control the proportion of each phase.
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2.4.1.3. USE OF SIMULATED ANNEALING TO CONTROL CLASSIFICATION

The basic idea of this class of algorithms is the analogy with certain thermodynamic
processes, specifically how liquids or metals slowly cool and become solids. At high
temperatures, the molecules that constitute these substances move freely. When cooling,
molecules cease their free movement and begin to arrange themselves in crystals that
correspond more appropriately to external conditions. This analogy can be completely
transposed to the background of this class of algorithms. At the beginning - corresponding to
high temperatures - every perturbation is usually accepted, although the objective function
increases. With the evolution of the process - cooler temperatures - the probability of

rejecting a perturbation that increases the objective function is higher.

The application of this technique firstly requires the choice of a property or set of properties
that can be numerically expressed based on initial data or on training images derived from,
for example, conceptual geological models or processed seismic data (Sen et al, 1992). An
objective function is defined based on the weighted sum of the deviations between the set of
statistics or a training image and the current state of the simulated image. The optimisation
procedure consists in minimisation of the objective function in order that the simulated image
will tend to reproduce the features included in the objective. It is always necessary to
establish a perturbation mechanism in order to define an easier way to update the objective
function. For example, in the particular context of the simulation of categorical variables, if
one intends to impose the variogram as a statistical measure one must include this measure

in the objective function.

In order to reproduce the spatial variability of the final shapes, an alternative way is
proposed that uses the simulated annealing algorithm to perform and control the

classification of probability maps.

In this simulated annealing procedure, the perturbation process starts from the highest local
probability values of the phases X, max{lsk°(x) } and consists in transforming the simulated

probability values into binary values. One perturbation consists in transformation of a
probability value into one indicator value. In order to transform all values more quickly the
usual perturbation based on swapping values was added. This method encompasses the
following steps and matches the proportion of each phase and the multi-phase variograms
(Deutsch and Journel, 1992, Deutsch and Cockerham, 1994).
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i) definition of an objective function: in this particular case, the objective of the annealing

process is a combination of two positive functions:

a) the square of the deviation between the theoretical variogram model (target) of 1(X)

(70,,) and the experimental variogram of simulated values (7i« ) after each perturbation;

b) the modulus of the deviation between the target estimated global proportion of each

phase X and the equivalent statistic after each perturbation.

K
O0=% D4 (ix—70,)" + 2 (M —mg) (2.20)

K N¢
k=1 i=1 k=1

1

with:
O - objective function
K - number of phases
N. - number of class distances
Ai - weight of each class distance
y - variogram function model

m, and mg_ - proportions of the phases in experimental data and simulated

data

i) Establishing a perturbation mechanism: following the highest values of probability,
transition of a probability vector to a binary one (one phase equal to one and others

equal to zero). The transition is selected by generating a random number p uniformly

distributed between 0 and 1: for example, for two phases X; and X, Isic(x) is

classified in Xy if p > Ig °(x), otherwise it is classified in X,. Following the decreasing

sequence given by the probability values the process is much faster than the usual

random perturbation;

iii) Re-calculation of the objective function after the perturbation;
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The perturbation will be accepted if the objective function decreases; otherwise the
perturbation has a probability of acceptance given by the Gibbs distribution law. This
process continues until the transformation of all estimated points, i.e., the image is

completely “cooled”.

1 if O <044
P{accept.} = (2.21)
1- —‘Oold ‘Onew‘
e ¢ otherwise

c - control parameter with analogy to temperature - During the evolution of the
simulation ¢ decreases slowly in order to avoid the cases leading to an increase of the

objective function.

Important remarks:

The speed of the cooling process increases if the sequence of points follows the
decreasing order of the probability values, as a result of an initial ranking. This
sequence is designed in such a way that the shape corresponding to each phase
grows around several grid nodes (seeds), corresponding to the highest local probability

values;

In the case of a conditional simulation, the initial values of probability are naturally
transformed into an indicator value; so, in these cases, the annealing process does not
affect these points, which act as the main seeds for the growing of the shape of each

phase.

2.4.2. SEQUENTIAL INDICATOR SIMULATION FOR MULTI-PHASE

STRUCTURES

2.4.2.1. BACKGROUND DESCRIPTION

Based on the initial formulation of the sequential algorithm an extension for the sequential

simulation of multi-phase structures is now explained. The background of the extended

algorithm for multi-phase structures can be summarised as follows:
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Consider the joint distribution of N random variables and n experimental and initial
conditioning data: F(N) = (Z;, Z, Z3, ...Zy | n). The simulation of F(N) can be performed
through the Bayes relation in N consecutive steps and applying successive unitary

increments to the conditioning data:

i) following a random path in area A, simulation of a value z; using the cumulative
distribution function of Z;. Once z; is simulated, this value is considered an additional
conditioning data points and is added to the initial set of experimental data; the

number of conditioning data points increases from n to n+1: n + z;;

i) simulation of a new value z, from the univariate cumulative distribution Z, based on
the (n+1) conditioning values. This new simulated value z, is added to the

conditioning data, which increases from n+1 to n+2: (n+1) + z, ;

iii) repetition of this sequential process until the simulation of all N variables is

performed.

If it is intended to simulate the same variable, the set of N dependent random variables Z;,
Z,, Z3, ... Zy can represent the same variable, spatially referenced in N regular grid nodes,
over an area A. Considering the n initial and conditioning experimental data, the joint

distribution of N random variables becomes:

F(N) = (Z(X1), Z(X2), Z(X3),.-- Z(Xn) | (N) ) (2.22)

To perform the sequential simulation, it is necessary to know the N random cumulative and

conditional functions:

Prob {Z(x1) <z1 | (n) }
Prob {Z(x;) <z, | (n+1) }

Prob {Z(x3) < z3 | (n+2) }

Prob {Z(xn) < zn | (n+N-1) }
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Lack of knowledge of these functions in practical cases is the main disadvantage in the
implementation of this family of methods. Journel and Alabert, 1989, proposed the use of
geostatistics to estimate these functions in spatial processes, particularly multi-Gaussian
kriging for sequential Gaussian simulation and indicator kriging for sequential indicator

simulation.

Initially, this method in the indicator form was developed for the simulation of binary
structures. Let us examine in more detail the extension of the sequential indicator simulation
algorithm for multi-phase structures. The practical implementation of this method can be

performed using the following sequence of steps:
i) Select a random path that covers all non-simulated grid nodes;

ii) In any spatial location, the local probability of a point x belong to a different phase

can be estimated by:

prob {x, € X, | n}=>"2,1,(x,) (2.23)

using a set of neighbouring samples of point x.

The weights are calculated according to the solution of the the multi-phase kriging system
using the multi-phase variogram model or using individual models grouping, or not grouping,

sets of phases.

iii) Select randomly a spatial grid node X, in area A. Using the previous estimator,

calculate the probability of Xo belonging to the different phases (X, k=1,K):

[prob {x, € X, ] =1, (x0)]" (2.24)

The use of just one structural model - for example a global multi-phase model - ensures that
the sum of [Ik(Xo)]* is one. In other cases, when using more than one continuity model, a
renormalisation or other type of correction must be performed to ensure that the probability

definitions are preserved:

K
Z[prob xoe X, J] =1 (2.25)
k=1
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So, the effective estimator of probability in point X, is given by:

el

[l (x0)] "= < (2.26)
> o))
k=1
iv)  Create one auxiliary variable Ji(xo) that is a cumulative sum of [I, (x,)]"
Ji(%) = Z':[li(xo)]* with i = 1,K (2.27)

Use the Monte Carlo method to draw a random number between 0 and 1 with uniform

distribution. The simulated value s (X,) is equal to (see Figure 2.4):

1if Jia(Xe) <p<Ji(Xo)
Is, (X) = (2.28)
0 otherwise

Y

0.0 v
J1(Xo) Ja(Xo) Ja(Xo) Ji(Xa)

Figure 2.4 Simulation of categorical variables: draw a random number between 0 and 1 and
transform it into a categorical value.

V) The simulated value |Si (Xo) becomes a conditioning data for the next grid node
simulation. The number of conditioning data increases by one: (n+1)=(n)+{ls(Xo)}.

This process loops until all the grid nodes have been simulated.

In the literature several advantages and drawbacks of this method are reported. One of the
most often mentioned advantages is its easy practical implementation. Advantages of this
method in comparison with morphological simulation are the ability to incorporate or include

in the same simulation phases with different continuity models and preferential orientations,
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as occur in some case studies, notably of fluvio-deltaic reservoirs. Furthermore, this method
proves to be the most appropriate stochastic simulation procedure to deal with these
situations (Soares, 1990, Luis et al, 1997).

However, some important disadvantages have been pointed out, basically related to the
increase of conditioning data, which influences the estimation of [Ik(xo)] ". When the number

of conditioning data increases (near the end of the simulation process), the estimation
becomes difficult and the result is less precise. The result of a simulation can be an image
with shapes similar to that obtained by a kriging estimation but different from the
corresponding theoretical model of continuity. During the simulation it is thus important to
control the selection of the set of neighbouring conditioning samples. For example, Journel
(1989) proposes a random selection of n neighbouring samples of the simulated point Xo, in
order to cover a wide range of distances in the neighbouring samples selected. Another
drawback pointed out regards the difficulty of reproducing the proportions of each phase,

which is one of the major objectives of the simulation.

2.4.2.2. SEQUENTIAL INDICATOR SIMULATION WITH CORRECTION FOR
LOCAL PROBABILITIES

To minimise deviations between the experimental proportions of each phase and the final
proportions of the simulated indicator values, Soares, 1998, proposed a correction for local
probabilities. This effect is more significant in phases with smaller proportions and
represented by variograms with relatively high ranges. During the simulation process, the
random path can impose a dominant spatial pattern to the first simulated points that can
seriously bias the experimental proportions of each phase. In this regard, a simple correction
can be performed as described below, in order to minimise deviations between the simulated

proportions and the corresponding objective.

After estimation of [prob {x, € X, }] "= [I.(x,)]" i=L..N, at each grid node x,, the basic idea
is to correct these local probabilities according to the global proportions (marginal
probabilities) of each phase. Considering the global proportions my of phase k, it is possible
to calculate one deviation e’ between this and the corresponding proportions at a given

iteration step s of the simulation procedure:
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S

e’ =m —-p° (2.29)
where p,® denotes the marginal probability of lithoclass k in iteration s.

This calculated deviation e° is added to the estimated local probabilities, even when

normalised:

P (%) = [ (Xo)] +e,° (2.30)

Considering the sum of the deviations to be null, the sum of the probabilities for all

categorical variables is equal to one.

After this correction, the sequential simulation proceeds as usual, building a cumulative
function of local probabilities and drawing a random number to simulate a value at point Xo.
The simulated value is added to the conditioning data and the process loops until all grid

nodes have been visited.

2.4.3. USE OF SIMULATED ANNEALING AS A POST-PROCESSING OR
SIMULATION TECHNIQUE

The basis for the implementation of the numerical method of simulated annealing for
categorical simulations is the definition of an objective function (key parameter). This
objective function can combine any numerically quantified constraints, usually two-point
statistics (individual or multi-phase variograms), marginal probabilities (histograms) or multi-
point statistics. In the present case study, simulated annealing was used to match the multi-
phase variograms and the histograms, the objective function being similar to the one
described above. If the initial image matches the marginal proportions, the objective function

includes only the deviations of the variograms.

The perturbation mechanism consists in swapping values from pairs of grid nodes selected
randomly, excluding the experimental grid nodes (nearest grid nodes matching experimental
data) if the prior image is simulated conditionally. Another possible perturbation mechanisms
consists in randomly selecting a grid node and changing its value. This perturbation has the
disadvantage of changing the marginal proportions, which must, in this particular case, be
part of the objective function. It is important to emphasise that grid nodes corresponding to

experimental data values never swap, which guarantees their match.
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During the process of simulated annealing, recalculation of the objective function is the
critical step in terms of CPU time. For this reason, it is a good idea to optimise the software
in this sensitive section of the processing. For example, during recalculation of the deviations
of the variograms, it is only necessary to use pairs of points that include at least one of the
swapping grid nodes. The temperature is a parameter that controls the acceptance of
perturbations that raise the objective function. When applied for post-processing steps,
simulated annealing can not be started at a high temperature. If it were, the image would be
randomised before the beginning of the convergence process. In these cases, the proper
procedure begins with a relative low temperature and decreases quickly, imposing a

reduction factor for cycles of loops.

This technique is extremely CPU time-consuming, unless the initial image partially matches
the desired spatial features. Basically, the use of this method is limited to the final work on
prior simulated images or small grid nodes. Just to give an idea of the CPU time required, for
a grid with 124 x 42 x 21 (109368) nodes and 4 lithoclasses, it take about 2 hours on a
Digital Alpha 600 to perform a complete simulation (transforming a random image of 4
lithoclasses, respecting the global proportions). This involves about 2.2 million loops (around
20 times the total number of grid nodes), which is enough to simulate and reproduce the

required spatial features.

2.5 CASE STUDY OF LITHOCLASS SIMULATION

2.5.1. DATA PREPARATION

The data set used in this field study involves cores and logs from 19 wells drilled into the
formation. As described in section 1.3, 20 different lithoclasses were identified,
corresponding to different petrophysical characteristics. Despite the large number of

lithoclasses, in these 25 layers no sets had more than 11 lithoclasses in each layer.

According to the methodologies outlined above, summarised in the flow chart displayed in
Figure 2.1, all different simulation procedures for lithoclasses start with classification of the
geological information (K lithoclasses) into indicator vectors, layer by layer. Final results
consist of simulated images showing lithoclass distribution by layer. An extract from an
indicator data file prepared for calculation of basic statistics and multi-phase variograms is

displayed in Figure 2.5.
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34291.328 80067 .164 1.000 000O0O0O01
34291.328 80067.172 2.000 00O0OO0O0OO01
34291.332 80067.180 3.000 000O0OO0CO1
34291.332 80067 .188 4.000 0000O0OO01
34291.336 80067.188 5.000 0010000
34291.336 80067 .195 6.000 0010000O0
34291.336 80067 .203 7.000 01000O00O0
34291.340 80067 .211 8.000 0100000O0
34291.340 80067 .219 9.000 0000O0O01

Figure 2.5 Extract from a indicator data file (X, Y, Z, Iy, l,,... l).

In order to compute spatial variograms and perform stochastic simulations in the
stratigraphical depositional referential, it was necessary to execute a geometrical
transformation of the vertical component in the initial coordinates. This single transformation
consists of recalculating the vertical component (Z) based on the top coordinate and the

maximum thickness of the layer observed in the wells using the expression:

. TOP(X,Y)-Z
~ MAX{THICK(X,Y)}

(2.31)

As a consequence of this transformation, the origin of the vertical component and the
thickness became the same for all wells. Figure 2.6 shows a graphical sketch of the
transformation applied to the entire set of wells in one intermediate layer. Regarding this

transformation, it is important to emphasise the following points:

i) The goal of this transformation was to calculate horizontal variograms with
homologous or stratigraphically correlated samples, assuming that the entire layer
was regularly formed by deposition and the different thicknesses observed in the

wells derive from secondary geological processes;

i) All wells preserve the sequence of lithoclasses as observed and inside each well the

proportions of lithoclasses were preserved;

iii) An inverse transformation is performed at the simulated image to restore the initial
referential. Usually this inverse transformation is calculated directly in the flow
simulation grid when the top and thickness of each grid node within each layer is
defined.
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Figure 2.6 Location of lithoclasses in wells: a) initial coordinates; b) transformed coordinates.

2.5.2. SPATIAL ANALYSIS BY MULTI-PHASE VARIOGRAMS

In order to identify similar groups of lithoclasses (for the sake of continuity), individual
variograms were calculated within each layer. Due to the similar continuity in the vertical
direction observed in most of the lithoclasses in each layer, similarity of characteristics was
taken into account in the selection of groups only for experimental variograms in the
horizontal direction. Regarding this evidence, spatial analysis began with computation of

individual variograms of lithoclasses only in the horizontal direction.

In the entire field, two distinct groups of lithoclasses were found within each layer: one
exhibiting a clear continuity with ranges varying from 2000 metres to 8000 meters and a
complementary group displaying very small ranges. The only exceptions are the first and last
layer of the field, which exhibit a low spatial continuity in all lithoclasses, even the most
representative ones. To illustrate the application of these simulation techniques to this
particular field, an intermediate layer in the Upper Unit of the field (Unit R1, layer 150) was
selected to detail results. In the selected layer, 124 by 42 by 21 points (total 109368)
constitute the 3D grid. The spacing between grid nodes in the horizontal direction is 250

metres and 1 stratigraphical unit (S.U.)* in the vertical direction.

In the present layer R1-150, 9 distinct lithoclasses were found: 2, 3, 4, 5, 6, 7, 8, 9 and 15.
The proportions of each lithoclass in this layer are shown in Table 2.1. Lithoclasses 2 and 9

are predominant and represent approximately 50% of the geological set.

! One stratigraphical unit is equivalent to 1.0 foot in the larger well.
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Table 2.1..Proportions of each lithoclass in layer R1-150.

Lithoclass Before coordinate transformation After coordinate transformation
Samples (#) Mean Samples (#) Mean
2 54 0.132 155 0.193
3 14 0.034 32 0.041
4 20 0.049 54 0.068
5 24 0.058 36 0.045
6 36 0.088 64 0.080
7 34 0.083 57 0.070
8 52 0.126 92 0.115
9 114 0.278 237 0.300
15 62 0.152 71 0.088

Figure 2.7 and Figure 2.8 display a typical representation of individual variograms for
continuous lithoclasses (2, 4, 8 and 15) and erratic lithoclasses (3, 5, 6, 7 and 9)
corresponding to this selected layer. Obviously “erratic” should be understood in a spatial

distribution sense, for a given scale.

a) ™ .

0 I Gt00, 0000, 12000, 15000,
h)

Figure 2.7 Experimental variograms corresponding to continuous lithoclasses within the selected
layer: a) lithoclass 2; b) lithoclass 4; c) lithoclass 8; d) lithoclass 15; e) set of erratic lithoclasses.
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Figure 2.8 Experimental variograms corresponding to erratic lithoclasses within the selected layer: a)
lithoclass 3; b) lithoclass 5; ¢) lithoclass 6; d) lithoclass 7; e) lithoclass 9.

Grouping the set of erratic lithoclasses into one new category (complementary to the
continuous phases) and calculating the corresponding individual variogram, the results show
that this “new” category exhibits a continuous variogram like the continuous lithoclasses 2, 4,
8 and 15 (see figure 2.7). Based on this evidence, a methodological sequence was
established, starting with the calculation of individual variograms for all lithoclasses, followed
by the selection of continuous and erratic lithoclasses, and finally grouping the set of erratic

lithoclasses into one category worked out as a continuous category.

For each categorical group, multi-phase variograms in both horizontal and vertical directions
were calculated within each layer. In the horizontal direction only one omni-horizontal
variogram was inferred due to the small number of wells and of corresponding samples,
which are not enough to infer directional variograms. The experimental multi-phase
variograms of the continuous group was fitted using one exponential theoretical model with a
range of 4000 metres in the horizontal direction and 45 S.U. in the vertical direction. For the
experimental multi-phase variograms of the erratic group an exponential model was used
with a range of 500 meters (length of each block in the final flow simulator model) in the
horizontal direction and 45 S.U. in the vertical direction. In Figure 2.9 and Figure 2.10, the
models fitting the experimental multi-phase variograms for both the continuous and the

erratic group along horizontal and vertical directions are shown.
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Model: 0.652 Exp (a = 4000 m) Model: 0.652 Exp (a=45 S.U.)
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Figure 2.9 Experimental multi-phase variograms for the selected layer (continuous lithoclasses and
set of erratic lithoclasses): left: horizontal direction; right: vertical direction.
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Figure 2.10 Experimental multi-phase variograms for the selected layer (erratic lithoclasses): left:
horizontal direction; right: vertical direction.

2.5.3. SIMULATION OF LITHOCLASSES

According to the methodology described in the previous sections, a geological model of
lithoclasses was built for the entire field, based on the theoretical continuity models fitted to
each individual layer. Since we are dealing with two groups of lithoclasses, the simulations
must be performed in two steps. The first step consists of simulation of the continuous group
including one additional category corresponding to the set of erratic lithoclasses for the
entire layer. The second step consists of simulation of the erratic lithoclasses for the entire
layer. Finally the two images were merged according to the location of erratic lithoclasses

simulated in the set of continuous lithoclasses (Figure 2.11).
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Continuous Erratic

Final i1mage

Figure 2.11 Joint simulated images corresponding to continuous and erratic lithoclasses.

In order to compare the different approaches described above, an entropy test was
performed on a single layer for the continuous group. The main objective of this test is to
evaluate the lateral conditioning effect in these methods. Thus, for the selected layer 30

realisations were performed using the following methods:

i) multi-phase sequential indicator simulation with correction for local probabilities;

i) multi-phase morphological simulation: truncated Gaussian simulation with posterior
conditioning and using the algorithm of classification based on local and global

probabilities;

iii) multi-phase morphological simulation: truncated Gaussian simulation with posterior
conditioning and using the simulated annealing algorithm to transform the probability

values into indicator values;

iv) post-processing of an image created using the sequential indicator simulation

algorithm with simulated annealing.

Lastly a set of simulated images of the lithoclasses with the validation checks corresponding

to the different methods is displayed.
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2.5.4. TRANSFORMATION OF SIMULATED PROBABILITY MAPS INTO
MORPHOLOGICAL MAPS USING SIMULATED ANNEALING

Since the transformation method based on simulated annealing to classify the probability
maps into morphological maps is a newly proposed method, a sequence of images showing
partial results (5%, 10%, 25%, 50%, 75% and 100% of classification of the entire image) for
one intermediate layer is presented below. In this sequence it is possible to compare
intermediate variograms with the growth of geobodies. For this specific layer of the Upper
Unit, the growth of the geobodies was followed during the sequence of transformation
controlled by simulated annealing. During this process, probability values are transformed
into indicator values following a decreasing order of probability as described in 2.4.1.3. The
perturbation mechanism consists of both transformation of a probability value into one
indicator value and a conventional swap of two position values. These two perturbation
mechanisms, when associated, ensure a more accurate match of the variograms. In Figure

2.12 through Figure 2.17, one can see the growth of geobodies.

The corresponding multi-phase variograms and proportions are displayed for a single level
of one layer. It is important to note that as the process starts, the grid nodes corresponding
to data locations have probability values of one of belonging to a specific category and zero
of belonging to the others. Since the beginning of the transformation process these points

have already been transformed into indicator values, which guarantees the conditioning.

Not transformed (prob. values)
Lith. 2

Lith. 4

Lith. 8

Lith. 15

Erratic group

Semivariogram (0 ; 0) Semivariogram (90 ; 0) Semivariogram (0 ; 90)

Yibl ¥ih)

L] 3000, 00w, 9000, 17000, 15080, h(m) L] e, RLLLE (1018 008, 10000, h[m)

Figure 2.12 Use of simulated annealing as a classifier of simulated probability values into categorical
values: after transformation of 5% of values.
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Figure 2.13 Use of simulated annealing as a classifier of simulated probability values into categorical
values: after transformation of 10% of values.
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Figure 2.14 Use of simulated annealing as a classifier of simulated probability values into categorical
values: after transformation of 10% of values.
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Figure 2.15 Use of simulated annealing as a classifier of simulated probability values into categorical
values: after transformation of 50% of values.
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Figure 2.16 Use of simulated annealing as a classifier of simulated probability values into categorical
values: after transformation of 75% of values.
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Figure 2.17 Use of simulated annealing as a classifier of simulated probability values into categorical
values: final image.

The proportion of each lithoclass during the transformation process is presented in the
following table (Table 2.2):

Table 2.2 Proportion of the transformed values using simulated annealing as a classifier of simulated

probability values into categorical values.

Categories 5% 10% 25% 50% 75% All values Objective
2 0.161 0.162 0.162 0.162 0.164 0.193 0.193
4 0.087 0.086 0.084 0.076 0.067 0.069 0.068
8 0.211 0.210 0.207 0.192 0.175 0.121 0.115
15 0.065 0.064 0.064 0.060 0.064 0.088 0.088
Setof erratic  0.476  0.478 0.483 0510 0.530 0.529 0.536

lithoclasses
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During the transformation, a reduction of the difference between the theoretical model and
all experimental multi-phase variograms along different directions is observed. Again during
the transformation, all proportions of all phases are very well matched, and the reported
differences are very small. It is important to note that all geobodies tend to grow from
isolated points of high probability (most of them data points) which leads to better

conditioned images and generally homogeneous patterns.

In the present example, the transformation follows a decreasing order of probability and
because the perturbation includes swapping of values, processing time is not a critical issue,
compared with the traditional simulated annealing applied to post-processing images. In fact,
to perform a complete transformation which includes about 10 x (total number of grid nodes)
= 1093680 loops, takes around one hour on an Alpha Station 600 (Digital). In order to
decrease the processing time only three directions (X, Y and Z) are included in the objective
function, instead of including diagonal directions. The number of lag distances included in
the objective functions was reduced to just five in all three directions (the number of grid
nodes are 124, 42 and 21 in X, Y and Z directions respectively) and this small humber of
lags proved to be enough. Identical weights for all three directions and a decreasing weight
based on the lag distance (equal to (1/lag)®) within each direction were used. The
temperature was low at first, decreasing very slowly during the process (it is reduced at each
set of 109368 loops — total number of grid nodes). Just to give an idea of the initial value of
the temperature, only around 5% of the perturbations that increase the objective function
were accepted. This procedure proves to be effective and ensures that all probability points

were transformed.

2.5.5. ENTROPY ANALYSIS OF THE DIFFERENT OUTPUT IMAGES.

To characterise the uncertainty reflected by the outputs of each simulation, a set of 30
realisations was performed using the methods described above: multi-phase sequential
indicator simulation (using correction for local probabilities) and morphological simulation
using the two transformed proposed approaches. Also, the images resulting from sequential
indicator simulation were post-processed using simulated annealing. In this case, the
objective is to illustrate the conditioning effect introduced by the annealing algorithm
associated with the improvement in matching the variograms. During the application of the
annealing algorithm, the temperature begins rise slightly in order to disturb the images while

maintaining the main patterns. In the following loops the temperature decreases and the
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system again tends to match the required parameters. During the whole process, 10 x (total

number of grid nodes) = 1093680 loops were performed.

The uncertainty measure used is the entropy of the local probability distribution
(Goovaerts,1997), which can be defined for a set of K phases (whereas pi(x) is the average
of the 30 indicator simulated values in each grid node x):

H) == Inp(0lpe 00 (2.32)
k=1

The entropy is measured between 0 at the sample location (where there is no uncertainty)
and In K associated with the uniform distribution p,(x) = 1/k . A standardised measure
valued within interval [O; 1] for this local entropy is given by:

H(x)
InK

Hg (X) = (2.33)

For the four sets of 30 images, this standardised entropy measure was calculated. In Figure
2.18 through Figure 2.21 the distribution of entropy is illustrated for some levels associated
with the location of wells.
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Figure 2.18 Entropy distribution on level 11 - multi-phase sequential indicator simulation with
correction for local probabilities.
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Figure 2.19 Entropy distribution on level 11 - morphological simulation plus classification using local
and global probabilities to transform probability values into categorical values.
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Figure 2.20 Entropy distribution on level 11 - morphological simulation plus classification using
annealing algorithm to transform probability values into categorical values.
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Figure 2.21 Entropy distribution on level 11 - post-processing images using annealing algorithm to a
sequential indicator simulation set of images.

Based on these images it is possible to rank the four geostatistical simulation methods in

decreasing order using the entropy as follows:

1) Morphological simulation using the morphological method to transformation probability

values into morphological categories;

2) Multi-phase sequential indicator simulation with correction for local probabilities plus

post-processing by simulated annealing;
3) Multi-phase sequential indicator simulation with correction for local probabilities;
4) Morphological simulation using annealing algorithm as transformation method.

Following this sequence, it is observed that the use of simulated annealing as a post-
processing simulation method reduces the entropy, as observed by comparing the entropy
Figure 2.18 and the corresponding post-processed image, Figure 2.21. To express these
differences numerically, the sum of the entropy for the whole area (and the entire depth) and
for a highly conditioned sub-area (nearby 11 wells) was calculated for each method; see
Table 2.3.
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Table 2.3 Sum of the entropy values for the entire layer and for a central area.

Method Entire layer Central area
Sequential indicator simulation with correction for local 61613 5021
probabilities
Morphological simulation plus morphological 72507 6132

classification

Morphological simulation plus annealing classification 47665 1785

Sequential indicator simulation with correction for local 72050 4058

probabilities plus post-processing by simulated annealing

Results in this table confirm the rank. It is important to note the following points:

e Post-processing using simulated annealing has a strong conditioning effect comparing
the sum of entropy in the highly conditioned sub-area. Considering the entire area,

results were almost identical;

e Morphological simulation plus annealing transformation proved a highly conditioned

method especially in conditioned areas, where this conditioning effect is noticeable;

e By contrast, morphological simulation plus transformation using local and global
probabilities produces the most variable set of images. However, all realisations
produced using these methods matched the required parameters (basic statistics and

variograms) and the experimental data.

Figure 2.22 shows a set of 3 horizontal views from different layers comparing the four

different simulations methods for categorical variables.

2.5.6. VALIDATION OF THE RESULTS

The validation of stochastic images was ensured through different levels of control, involving
basically coherence analysis of the simulated images against the experimental data points

and the conceptual model.
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To illustrate the coherence of the simulated images using the above methods, a set of
figures (horizontal views and cross sections) is presented. The figures were obtained using
the three methods: sequential indicator simulation with correction for local probabilities, and
morphological simulation using the two proposed transformation methods. In Figure 2.23
through Figure 2.25 a set of vertical cross-sections of the entire field and using the three

different methods is illustrated.
The final check consists of the following:
e comparison between experimental and simulated proportions of each lithoclass;

e comparison of the continuity of the lithoclasses in the simulated images and in the

experimental data;
¢ checking whether the simulations honoured the experimental values.

The comparison of proportions for each lithoclass is presented for one layer. Post-
processing by annealing when using the iterative swap of values does not alter the initial

proportions.

In Table 2.4, the final proportions for each lithoclass for the final simulated images are

represented and compared with the initial values.

Table 2.4 Comparison of the lithoclass proportions in the simulated images for the selected layer.

Lithoclass Experimental SIS Morphological simulation Morphological simulation
data with transformation with annealing
using local and global transformation
probabilities

2 0.193 0.196 0.193 0.193
4 0.068 0.068 0.068 0.070
8 0.115 0.127 0.115 0.121
15 0.088 0.090 0.088 0.069
3 0.041 0.039 0.040 0.041
5 0.045 0.040 0.045 0.046
6 0.080 0.074 0.083 0.086
7 0.070 0.071 0.071 0.072
9 0.300 0.295 0.297 0.302
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Proportions from images resulting from morphological simulation using morphological
transformation are matched exactly due to the background of the method. In the present
case study, this exact match is observed in the continuous phases: 2, 4, 8 and 15. The
resulting simulated image of the erratic set of lithoclasses also exactly matches the
experimental proportions. After merging these images with those resulting from the
continuous set simulation (and the additional phase that reproduces the entire set of erratic
lithoclasses) the proportions may show some bias. However, due to the erratic nature of
these images, which imposes local averages in small moving windows equal to the global
proportions, the bias is reduced, as shown in Table 2.4. The proportions of the simulated
images coming from sequential indicator simulation using correction for local probabilities
are generally close to the experimental values, even in the small proportion phases. The
major difference is observed in lithoclass 5, about 10%, but all the others are very small. The
morphological simulation method with annealing transformation shows that these proportions
are well matched. It is important to note that in this method the bias of the proportions is one

term of the objective function.
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Realization #1

Sequential indicator simulation with correction for
local probabilities

Stochastic Modelling of Lithoclasses

Sequential indicator simulation with correction for local
probabilities plus post-processing by simulated annealing

Morphological simulation plus classification using local and
global probabilities

Realization #2

Sequential indicator simulation with correction for
local probabilities

Morphological simulation plus classification using local and
global probabilities

Realization #3

Sequential indicator simulation with correction for
local probabilities

Morphological simulation plus classification using local and
global probabilities

Morphological simulation plus classification using
simulated annealing
. -

Sequential indicator simulation with correction for local
probabilities plus post-processing by simulated annealing
- " " BEELTE 1

L : i
et

Morphological simulation plus classification using
simulated annealing
=

Morphological simulation plus classification using
simulated annealing

Figure 2.22 lllustration of 3 horizontal views from the generated stochastic images comparing the
different methods.
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Figure 2.23 Cross-sections showing reservoir geological model - multi-phase sequential indicator
simulation with correction for local probabilities.
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Figure 2.24 Cross-sections showing reservoir geological model - morphological simulation plus
classification using local and global probabilities.
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Y =10000m
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Lithoclasses:
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Figure 2.25 Cross-sections showing reservoir geological model - morphological simulation plus
classification using simulated annealing algorithm.
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Variograms of the simulated images are now presented to illustrate the reproduction of the
continuity models. For the same layer, in Figure 2.26 through Figure 2.29, the experimental
variograms and theoretical functions of the continuous simulation images are illustrated for
the three methods plus post-processing by annealing in the three main orthogonal directions
(X, Y and Z). In Figure 2.30 through Figure 2.32 the corresponding experimental variograms
for the erratic group are illustrated, for the three methods described above. For the erratic
group, post-processing by annealing was not applied because this group is already well
characterised. From these variograms it is possible to conclude that all methods reproduce
the theoretical models imposed well. However it is possible to observe more accurate
reproduction in the annealing methods.

All these methods include in their backgrounds the assumption that the experimental data
must be matched at sampled locations. The final check for the confirmation that the
simulations honoured the experimental values is simply a test to verify that the experimental
procedure was properly conducted. If the samples are translated to the near grid nodes, the
final images exactly match data values in data locations. Otherwise, and particularly in
oversampled areas, the nearest grid node could have a different simulated value from the

corresponding experimental data.

Semivariogram (0 ; 0) Semivariogram (0 ; 90)

0 4000 gooo. 120000 16000 20000. h [m) 0 2000 4000 6000 G000. 10000 h (m)

Figure 2.26 Variograms of the continuous group using multi-phase sequential indicator simulation
with correction for local probabilities.

Semivariogram (0 ; 0) Semivariogram (90 ; 0) Semivariogram (0 ; 90)

1] 4000. G000, 12000.  16000.  20000. h (m) 0 2000. 4000, 6000. 4000.  10000. h {m)

Figure 2.27 Variograms of the continuous group using morphological simulation plus classification
using local and global probabilities.
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Semivariogram (0 ; 0) Semivariogram (90 ; 0) Semivariogram (0 ; 90)
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Figure 2.28 Variograms of the continuous group using morphological simulation plus classification
with annealing algorithm.
Semivariogram (0 ; 0) Semivariogram (90 ; () Semivariogram (0 ; 90)
Yih)
1. o 1 Mouliiphase
8 K 3 T A S N 11 .
6 | T Dt
L
4 B e R et ’; Varimnee
2 R LT e e L 1: P
1 Tedd
[} 4000, 8000.  12000.  16000. 20000, h (m) 0 2000. 4000. 6000, 8000.  10000. h (m) v Ed 4« L 0. 0. h [SU)
Figure 2.29 Variograms of the continuous group using post-processing by simulated annealing to a
sequential indicator simulation image.
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Figure 2.30 Variograms of the erratic group using multi-phase sequential indicator simulation with
correction for local probabilities.
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Figure 2.31 Variograms of the erratic group using morphological simulation plus classification using
local and global probabilities.
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Figure 2.32 Variograms of the erratic group using morphological simulation plus classification with
annealing algorithm.

60



Stochastic Modelling of Lithoclasses

2.6 FINAL REMARKS

The aim of this chapter is to compare 3 algorithms for the simulation of categorical variables
and an algorithm for post-processing of images, which may be used together or separately
to characterise the internal morphology of formations, based on a prior classification into
lithoclasses or rock types. The main goal of stochastic simulation methods is to quantify
uncertainties as expressed in the analysis of different realisations. The set of equally
probable images of the geology can be conditioned to the available information for a
posterior estimation or simulation of petrophysical properties, which are the input of a flow
simulator (a transfer function). This transfer function produces a spread of production results
based on extreme and most likely scenarios of flow patterns. Although all realisations have
the same statistics they may yield different probable predictions in reservoir production and
performance, which may affect selection of the optimal strategy for field development,

although all the realisations are equally probable.

In the formation of this particular study, each layer has a set of lithoclasses, which for the
sake of continuity are subdivided into continuous and erratic. In this study it was found that a
lithoclass which is identified as being continuous in one layer is frequently identified as being
erratic in another, and there appears to be no relation in the way in which the continuity of a
given lithoclass varies in depth (from layer to layer). Similarly, no link was observed between
the proportion of each lithoclass in a given layer and its continuity in that layer: there are
lithoclasses with high proportions and which display erratic behaviour (when greater
continuity might be expected) as well as other less frequent ones which are concentrated in

particular areas, which leads them to display continuity.

After the results of lithoclass simulation involving three algorithms for simulation of
categorical variables and a post-processing algorithm, some conclusions can be drawn

about the methods used and the results obtained.

Any one of the algorithms imposes the following characteristics on the final images:
experimental proportion of lithoclasses, model of continuity, and values at known points. This

derives from the theoretical conception of the methods themselves.

Sequential indicator simulation with correction for local probabilities is an algorithm for the
simulation of categorical variables, which generates images reproducing the averages of
each of the phases and the variogram model. For the layer used in the comparative study,
the total variability of the images obtained is high, the second highest of all the methods

tested. The images have a fairly regular pattern of distribution of lithoclasses around the
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wells, its influence being dependent on the continuity models used and the proportions of the
lithoclasses. Use of this method at the outset makes it possible to use different variogram
models for each lithoclass, which would suggest a single execution of this algorithm for the
whole set of phases; continuous and erratic. However, it was seen that simulations involving
lithoclasses with such different variograms (500 metres < to < 4000 metres) lead to images

with intermediate variograms for all lithoclasses, which definitively rules out this possibility.

Morphological simulation (truncated Gaussian simulation plus posterior conditioning) is an
algorithm which was developed in two versions. After the conditioning phase the result is a
map of the probability of each point belonging to each simulated lithoclass. The final stage of
this method is the transformation of probability maps into multi-phase lithoclass maps. This
stage was implemented in accordance with two classification criteria (a classification based
on local and global probability values and a classification process based on simulated
annealing). These two methods of classification produce final results which are completely
different in terms both of the standards of images and of the conditioning effect. Thus the
images resulting from classification using the conventional transformation method have a
weak conditioning effect compared with the results obtained by the other methods under
study. As a conseguence, in circumstances which are the same in terms of variogram model
and disposition of samples, this is the method which generates simulated images with the
greatest variability. This is not to be expected, bearing in mind that the conditioning factor is
the last and should therefore prevail. When conditioning is carried out based on a non-
conditional simulation, one of two things may happen with each sample: either by
coincidence the non-conditional simulation obtained the correct value for the sample and
there is no conditioning (no difference between real and simulated data), or it did not obtain
the correct value and there is a contribution from this sample with a positive difference.
These differences are estimated for the remaining areas, which means that their values
gradually disappear as one moves away from the well. A consequence of this fact is the co-
existence of a conditioning effect, which is strong in some cases (illustrated by circles
around the wells) and very weak in others (different lithoclasses were simulated at a small
distance from the samples). These two conditioning standards are evident in Figure 2.22.
The predominance of a number of occurrences of the second conditioning standard means
that, overall, the images show a high degree of variability. It should also be stressed that in
non-conditioned areas there is a clear sequential zoning of lithoclasses resulting from the
process of truncating Gaussian distribution values which, in examples like this in which

categories have no order relation, introduces an artificial pattern.
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The influence of the wells in classification using simulated annealing can be observed in the
patterns of the images around the samples. In fact, simulated annealing, which
simultaneously includes two types of perturbation - the transformation of probability values
into categorical values and the spatial permutation of pairs of values - makes the
conditioning effect the highest of all algorithms tested. The images obtained are fairly similar
to each other, as can be seen in the measurement of the weak variability between the
images for different realisations. The images present a standard of marked continuity around

all wells, with practically no exceptions, with a few pixels showing erratic distribution.

Simulated annealing as a post-processing of simulated images (in this case, SIS) improves
approximation to theoretical variogram models, which are reproduced with practically total
faithfulness. The perturbation used (permutation of values) does not introduce any alteration
in the proportions of each lithoclass, in the same way that the fact that the blocks containing
wells are not used in these permutations means that the simulation remains conditional.
These images also feature some pixels (rather more than in the algorithm referred to above)
displaying erratic distribution. These pixels represent the visible face of local minima in which
the objective function falls in its path towards minimisation. In any case, these local minima
are already in a somewhat low value domain of the objective function. This image obtained
by post-processing has an angular pattern, due to the fact that the objective function has
contributions only from orthogonal directions of the variograms. This may be minimised by
introducing new directions in the objective function. Finally, it was observed that it is
sufficient to include in the objective function the difference in values of variograms for small
distances (in the examples described, the objective function was optimised with 5 grid nodes

in each orthogonal direction).

Finally, it should be remembered that the simulation took place in a new frame of reference,
and that it has to be transformed once again to the frame of reference of the formation. One
of the major disadvantages that may be pointed out in this transformation of coordinates is
the fact that inverse transformation does not necessarily mean that the proportions of the
lithoclasses will be respected in the original frame of reference. Indeed, when inverse
transformation is carried out, the final proportions are variable and only by mere coincidence
would they turn out to be the same as the original values. In any case, application of the

transform is absolutely essential to find continuity models in the horizontal direction.
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3 DESCRIPTION OF PETROPHYSICAL PROPERTIES USING
ESTIMATION METHODS

3.1 ESTIMATION OF PROPERTIES

The basic objective of any reservoir description consists of the generation of a two- or three-
dimensional grid with nodes that spatially characterise the required properties, particularly in
inter-well areas. Specific features associated with each particular field are the key factor in

selection of the most appropriate multi-step approach.

If the main objective is to achieve the uncertainty of the main characteristics of the reservaoir,
simulation methods (see section 2 and 4) are the most appropriate techniques. Once we
have defined the lithoclasses as homogeneous geological bodies, with regard to their
internal properties, and we have characterised their spatial dispersion with simulation
methodologies, we are now able to map the average values of the internal properties inside

each lithoclass.

For this purpose, in this section a set of techniques is proposed to achieve the estimation of
the main descriptive properties in oil fields: porosity, permeability and water saturation. In
this particular oil field, based on a relationship between petrophysical properties and

lithoclasses, it is possible to identify two distinct situations:

e the porosity and permeability values are strongly dependent on the lithoclass

classification;

¢ the water saturation is mainly dependent on physical conditions (capillary pressure) but

usually shows a correlation with porosity, permeability and capillary pressure.

These two distinct situations led to the selection of two different approaches in order to

perform an appropriate spatial characterisation of these properties.

Regarding porosity and permeability estimation, the proposed method (zonal control
estimation with ordinary kriging) takes into account the generated images of lithoclasses and
follows a conditional process of zonal control. Due to the small correlation between porosity
and permeability, and since the classification into lithoclasses took into account the porosity
and permeability values, the estimation of both could be independent. Thus, each stochastic
realisation of lithoclasses produces one estimated map corresponding to each variable.
Following this methodology, the goal consists in highlighting the heterogeneity between

lithoclasses, based on the homaogeneity inside each lithoclass.
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By contrast, estimation of the water saturation must take into account the physical rules that
condition its spatial distribution and variability. Water saturation is a non-stationary variable
and the estimation methods must take into account this physical tendency. To estimate the
spatial distribution of this variable, and due to the small correlation with porosity and
permeability, a simple method is proposed based on a single geometrical transformation and
using ordinary kriging as an interpolator method. The relation between porosity and
permeability with saturation is derived by a J function, which consists of a correlation
function between water saturation, capillary pressure, porosity, and permeability (Archer and
Wall, 1986). Thus, the objective is to work on a new frame that more easily correlates the
physics of the phenomena with the selection of neighbouring samples. The main drawback
that could be associated with this method is that a unique average image of the distribution
of water saturation is produced, completely independent of lithoclasses and petrophysical
properties. However, during this study a different approach based on an external drift
provided by the J function was also tried. Nevertheless, for this particular case study, given
the small correlation that exists between the water saturation and the theoretical J function,

the use of kriging with an external drift provided by a J function do not bring any advantage.

3.2 ESTIMATION USING ZONAL CONTROL TECHNIQUE
3.2.1. CONTEXT OF THE PROBLEM

Geostatistical estimation of the internal properties of a reservoir must account for the wide
variations between geological units. Sometimes, internal properties change sharply between
geological units and smooth transitions are unlikely to occur. Therefore, when this zoning
effect occurs, as is the most common situation, estimation combining data from different
geological units will produce an artificial smoothing effect across the geological boundaries
and transitions. To cope with this, geostatistical estimators must be conditioned throughout a
zonal control, in order to avoid this false smoothing effect (Almeida et al, 1994, 1997, Soares
and Almeida, 1995).

Traditional methods of imposing this zonal control consisted in estimating a point x, which
belongs to a given phase, by using only data from this phase. The method proposed in this
work, to estimate the internal properties with zonal control, accounts for the entire spatial
sampling pattern (all phases) and for the spatial structure (variograms) of each phase. The

zonal control technique basically consists in the two following fundamental steps:
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i) Perform, over the entire area A, an estimation of the attributes of all phases based on
all available data. The estimation consists in a generalisation of the multi-phase
kriging algorithm to the estimation of attributes in a multi-phase set (Soares, 1992).

The estimation area is delimited by the boundaries of the entire set of phases;

i) Merge the estimated values with the morphology of the multi-phase set - fill these

areas with the corresponding estimated values.

3.2.2. DEFINITION OF THE MULTI-PHASE SET

Consider a set of mutually exclusive categories k (rock types, lithoclasses, geological units,
etc.) where an internal property z(x) is spatially dispersed in all categories and displays

discontinuous transitions between them, giving rise to a zoning effect.

Defining the internal attribute z(x) as a random variable located in x in the studied area A
(with a set of K phases, Xx, k = 1,... K), it is possible to construct the two following vector

variables, lk(x) and Y(x) (see Figure 3.1):

a) One indicator vector, according to the definition described above in section 2.1. Each
spatial location x is coded for all phases k = 1,... K as a non-ordered indicator vector

(Ik(x), k = 1, K), where K represents the number of phases:
1 if x belongs to phase X,

I(x) = (3.2)
0 ifxbelongs to phase X; j=k

b) The content of z(x) inside each phase Xi.: Yi(x) = I(x) . z(x)
z(x) if x belongs to phase X,

Yi(x) = (32)
0 if x belongs to phase X; j=k
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o
Phase 3 Ik(x5)=0,0,1
°® z(xs) Y Yi(x5)=0,0,2(x2)
3, 1Yy 3
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z(x) |][| : Yk(x1)=0,2(x1),0
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1260.476 4712.681 1.0 0 1 0 1269.476 4712.681 1.0 0 1.23 0
20675.859 5842.671 1.0 0 0 1 29675.859 5842.671 1.0 0 0 18.91

Figure 3.1 lllustration of the definition of the auxiliary variables in a multi-phase structure (K = 3).

For this auxiliary variable Y(x) the following two first moments are defined by:

my, = E{Y,(x)} = E{z(x).(x)} (3.3)

vary, =E{Y,(x)=m,, | = E{z(x).l (x)-my, } (3.4)

3.2.3. SPATIAL CONTINUITY MEASURES: COVARIANCE AND EXPERIMENTAL
VARIOGRAMS

For the auxiliary variable Yk(x), k = 1, ... K, the non-centred covariance (a continuity measure

of z(x) inside each phase k) is defined by:
Cy, (h) = EY, (x).Y, (x + h)} = E{z(x) 4, (x) . z(x+h)J,(x+h)} (3.5)

and the corresponding variogram can be defined as follows:

1 1
7 (1) = S EY (0 =Y+ )7 = 2 E (2000, () = (20 + ) (x + ) (3.6)
In most situations the multi-phase set of phases is characterised by an insufficient number of
experimental data to calculate or estimate individual covariances. In these situations, multi-

phase covariance (a global continuity model) for the entire set of categories is the
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appropriate tool to compute and estimate a continuity model. Thus, the multi-phase

covariance of Yj(x) is calculated by:

k=1

K
Cy(h) = E{z [V, (x).Y, (x + h)]} =

K
= E{z,(x).z,(x + h)J, (x, x + h)} 3.7)
k=1
Using the above expression, Ji (X, x + h)=l (x).lx (x+h) is equal to “1” if both extremes of the
vector h are in the same phase and “0” otherwise.

Given that Cy, (h) is the covariance of z(x) inside each phase Xj, the multi-phase covariance
Cy(h) can be assumed to be a weighted average of the individual covariances of z(x) inside

each phase X;:

Cy(h)= ZL (h).Cy(h) (3.8)
N(h

denoting by L(h) the number of pairs of points inside each phase X, and N(h) the total

number of pairs of points separated by h.

Lastly, the corresponding multi-phase variogram of Y(x) can be defined by:

K 2
7, (h)= %E{Z[Yk(x) ~Y, (x +h)] } -
k=1

2

K
Z (2 (X)1, (X)) = (z, (x + h).J, (x + D))} (3.9)
k=

and is directly estimated by:

K N(h)

7 () =TS S () - Yilx, +h)] (3.10)
2N(h) kZ; le

Calculation and modelling of the multi-phase covariances or variograms must account for the

mixture of two or more different structures. This means that in several cases the multi-phase

set can be characterised by more than one covariance, grouping a set of homologous

phases (in terms of continuity).
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3.2.4. SPATIAL INFERENCE OF ATTRIBUTES

At any spatial location x, inside area A, one can define the multi-phase kriging estimator of

Y(xo) based on a set of n neighbourhood samples z;(x,):
YVetxo)l ™ = 2020 Yalxa) = 2 A (20l )-Iu(x,)) (311)
a=1 a=1

with k=1,...K and o=1,...n

The set of weights A, are calculated by solving the corresponding ordinary kriging system

written with multi-phase variogram or covariance models:

D 2aCy (X, X 5) + 1 =Cy (X, X,)

a=1

....... with &, =1,...n (3.12)

Thus, [YK(XO)] " is the kriging estimator of the content of z(x) inside each phase X in location
Xo. The contribution of the values z(x,) of other phases Xj j = k to the estimation is revealed
only by the inclusion of the spatial location of these points in the weighting calculation when

solving the kriging system.

Briefly, the zonal control of the estimation of Yi(x,) with x, belonging to Xi in all area A must
account for the neighbouring samples of xo, z(x,), X, € Xi, and z(xy), xs ¢ Xi, and finally one
global model of continuity - the multi-phase variogram - or a set of multi-phase variograms

with similar continuity characteristics.

Since the estimator [YK(XO)] " is based on a single multi-phase covariance, the estimation is
performed just once for all phases X, due to the independence between the kriging weights
and the phases Xi. However, when dealing with different covariance models of groups of
phases, the estimation procedure of z(x) inside each multi-phase set is exactly the same as

described above, but carried out in steps, according to the number of groups.

On the other hand, for any phase X, the respective proportion in the location x,, based on

the multi-phase indicator variogram of /,(x), can be estimated as follows:
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o)) = 3 A di(x,) (3.19

It is important to emphasise that since a global model of covariance C(h) is used, all kriging
weights are independent of the phases X}, which means that:

AoV = A(2) = .= A(K) = A,

Finally, assuming the independence of variables /,(x) and Yi(x), the estimator of z(x,) in

spatial location x, for each phase is given by:

2L *
[/k (% )] - if [Ik(xO )] >0

Z,(Xo) = (3.14)
0 if [l(x)] "= 0

with k = 1,... K.

After the calculation of z(x,) for all phases, the value z(x,) can be obtained by overlapping

the morphology: if the point x, is allocated to a specific phase X then:

[2(x,)] "= [z, (x5)]” if X, €X, (3.15)

The most important advantage of estimation with zonal control is that the spatial location of
samples of all phases are taken into account whereas, in the classical procedure, only
samples from the phase which X, (the point to be estimated) belongs to are taken into

account.

The difference between these two procedures can be illustrated in the simple sampling
examples sketched in Figure 3.2 a) and b). Following these figures, sampling points x;, x»

and x3; and estimated point xo belong to phase A and x,belongs to phase B.
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a) b)
z(x1) = 60 2(xa) = 60 z(x1) = 30 Z(xa) = 30
o o o o
Phase A Phase B Phase A Phase B
Z(Xo) = ? z(Xo) = ?
[ o
Phase A Phase A
z(x>) = 30 Z(x2) = 30 Z(x>) = 60 Z(x3) = 60
o | o o
Phase A Phase A Phase A Phase A

Figure 3.2 Sketch to illustrate zonal control estimation effects in two sampling situations.

For the sake of simplicity let us consider an isotropic variogram of Z(x), Y(x) and /(x) and
equal distances between x4, X2, X3 and x4 and xo. The classical procedure gives for estimated

value of z(xg) considering that x, belongs to phase A:
[ Za(xo) 1 =0.50 z(xs) + 0.25 z(xz) + 0.25 z(x3) = 45

The estimation of x, using zonal control gives:
[ Ya(xe)] =0.25 Y(xs) + 0.25 Y(xz) + 0.25 Y(x3) + 0.25 Y(x4) = 30
[I(xe)] =0.25 I(x;) + 0.25 I(x,) + 0.25 I(x3) + 0.25 I(x4) = 0.75

Use of equation (3.14) gives:
[ Za(xg)] =30/0.75=40

Following sampling scheme b), the classical procedure for the estimation of z(x,) gives:
[ Za(xo) ] = 0.50 z(x;) + 0.25 z(x5) + 0.25 z(x3) = 45

Now, the estimation of x, using zonal control gives:
[ Ya(Xo)] =0.25 Y(xs) + 0.25 Y(x2) + 0.25 Y(x3) + 0.25 Y(x,) = 37.5

[I(X)] =0.25 I(x;) + 0.25 I(x2) + 0.25 I(x3) + 0.25 I(x4) = 0.75
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Again, use of equation (3.14) gives in this case:
[ Za(xo)] =37.5/0.75=50

In summary, estimation with zonal control does not consider Z(x,) as an isolated sample and
reduces its weight in the estimation compared with the classical procedure, which,
erroneously, does not consider the spatial location of Z(x,) (which belongs to phase B) and

consequently overestimates the influence of Z(x,).

3.3 EXAMPLE OF POROSITY ESTIMATION USING A ZONAL CONTROL
TECHNIQUE

The porosity of a rock is defined as the fraction of pore volume relative to the total volume of
rock. Depending on the rock pattern at small scale, porosity can vary from 0% up to 25-30%
or even more, in some areas of the reservoir (North, 1985). For example, shales usually

have low porosity, in contrast to sandstone, which usually has the highest values.

Proper characterisation of porosity is an essential step in the construction of a petrophysical
model: total oil reserves or oil-in-place depends on porosity (and also on permeability), and
since non-porous rocks cannot accommodate fluids, they may act as barriers to flow. Usually
a given rock type is characterised by a low range of porosity values, which justifies the use

of estimation techniques for mapping this variable.

The objective of the present case study is accordingly to estimate porosity, which is a
petrophysical variable dependent on lithoclass types. Porosity is an additive variable
recorded along the wells through log devices (some wells are cored and logged
simultaneously), and is estimated using the above-mentioned method of zonal control
conditioned to the simulated morphology of the lithoclasses. The spatial transitions of
porosity values between lithoclasses are sometimes not smooth, as can be seen in the
sequence of values observed in the three wells (Figure 3.3) and in the univariate porosity

statistics for each lithoclass (Figure 3.4).
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R1 R1 7 R1

AT

0%, Forosity 30% 0%, FParosity 30% 0%, FParosity 30%

Figure 3.3 Sequence of porosity values and corresponding lithoclasses in three wells located in one
upper layer.
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Figure 3.4 Univariate statistics for experimental values of porosity in one upper layer — layer 150, R1 -
by lithoclasses: 2, 3, 4, 5, 6, 7, 8, 9 and 15.
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Figure 3.4(cont) Univariate statistics for experimental values of porosity in one upper layer — layer
150, R1 - by lithoclasses: 2, 3, 4, 5, 6, 7, 8, 9 and 15.
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3.3.1. DEFINITIONS AND MULTI-PHASE VARIOGRAMS

The proposed methodology was applied to the entire field, and in this section detailed results
for a selected layer - layer 150 - are shown. Using the porosity values ¢(x) known in 19
wells, variables Yi(x) and I«(x) were constructed according to equations 3.1 and 3.2, using
the porosity values and the lithoclass classification. Within the selected layer, 9 different
lithoclasses were identified: 2, 3, 4, 5, 6, 7, 8, 9, and 15. Looking at the lithoclass simulation
study (see section 2.5.2), two groups, one with four lithoclasses plus complementary areas,
and the other with five lithoclasses, were identified corresponding to continuity models with
4000 metres and 500 metres of range respectively in the horizontal direction and both with

45 S.U. in the vertical direction.

In order to group the phases Y\(x) into homogeneous sets, individual multi-phase variograms
were calculated for the horizontal direction. In Figure 3.5 a) through Figure 3.5 c) three
experimental individual variograms corresponding to a continuous set (lithoclasses 4, 8 and
15) are represented. In Figure 3.6 a) through Figure 3.6 f) the erratic set (lithoclasses 2, 3, 5,

6, 7 and 9) is represented where it is not possible to identify spatial continuity evidence.
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Figure 3.5 Experimental variograms of Y(x) within lithoclasses classified as continuous: a) lithoclass
4: b) lithoclass 8; ¢) lithoclass 15.
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Figure 3.6 Experimental variograms of Y,(x) within lithoclasses classified as erratic: a) lithoclass 2; b)
lithoclass 3; ¢) lithoclass 5; d) lithoclass 6; e) lithoclass 7; f) lithoclass 9.

In this particular layer, regarding variable I (x), lithoclasses 4, 6, 8 and 15 are classified as
continuous with an average range of 4000 metres and lithoclasses 2, 3, 5, 7, and 9 are
classified as erratic. As can be observed, only the porosity from lithoclasses 4, 8 and 15 can
be considered continuous. Lithoclass 2 is continuous, but the variability of porosity within this
lithoclass is erratic. The entire set of erratic lithoclasses also displays low spatial continuity of
porosity.

Multi-phase variograms of Yj(x) were calculated for both groups in the horizontal and vertical
directions and are shown in Figure 3.7 and Figure 3.8: the horizontal multi-phase variogram
for the continuous group was fitted with a spherical model with 4000 metres range and 40
S.U. in the vertical direction, while the non-continuous group or erratic group was fitted with
a variogram displaying a range of 500 metres in the horizontal direction and 20 S.U. in the
vertical direction. The horizontal range for the erratic group was adopted based on the
reasons explained in section 2.5.2: this range corresponds to the smallest distance between

wells and dimensions of the block for dynamic simulation.
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Figure 3.7 Experimental multi-phase variograms of the continuous set and theoretical model fitted.
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Figure 3.8 Experimental multi-phase variograms of the erratic set and theoretical model fitted.

3.3.2. KRIGING ESTIMATION WITH ZONAL CONTROL TECHNIQUE

The porosity was estimated with the zonal control methodology explained above based on
two multi-phase variogram models corresponding to continuous and erratic groups of

lithoclasses.

Finally, the estimated porosity values were merged with the stochastic images of lithoclasses
(in this example, they came from sequential indicator simulation algorithm, see section 2.5)
and the result consists of an estimated image of porosity conditioned to the simulated image
of lithoclasses. In Figure 3.9 the estimated porosity values are displayed as well as the
corresponding image of lithoclasses for a set of levels and sections from one intermediate
layer. Since each grid node is previously classified as lithoclass k, the porosity distribution

conditioned to the lithoclasses is finally obtained.
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Figure 3.9 lllustration of 3 horizontal views and 2 sections from the generated stochastic images of
lithoclasses using SIS with correction for local probabilities algorithm and corresponding estimated
images of porosity using zonal control estimation.
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Table 3.1 compares basic statistics from estimated porosity values and experimental data
(after geometrical transformation) for the selected layer. In Figure 3.10, the univariate

statistics for estimated values of porosity within the same layer are displayed.

Table 3.1 Univariate statistics of experimental and estimated values of porosity.

Porosity: experimental data Porosity: estimated values
Lithoclass # Samples Mean (%) Variance # Samples Mean (%) Variance
2 154 10.36 38.27 21422 9.29 9.53
3 32 17.72 23.01 4269 19.79 29.51
4 54 5.89 10.58 7422 5.68 9.48
5 36 11.14 3.14 4313 11.68 4.49
6 65 12.87 8.10 8120 12.23 4.30
7 58 18.14 21.22 7762 21.16 36.43
8 92 18.86 2411 13897 19.77 13.40
9 236 18.27 58.38 32350 18.80 9.66
15 71 25.33 45.78 9813 26.57 26.32
All 798 15.80 61.04 109368 16.31 47.99

As can be seen in the above table, estimated values display identical statistics, which can be
considered the first validation of the proposed estimation method. In Figure 3.10, a set of
sections of porosity values for the entire field using the above-described methodology is
represented.
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Figure 3.10 Univariate statistics for estimated values of porosity in one upper layer - layer 150, R1 -
by lithoclasses: 2, 3, 4, 5, 6, 7, 8, 9 and 15.
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Figure 3.10(cont) Univariate statistics for estimated values of porosity in one upper layer - layer 150,
R1 - by lithoclasses: 2, 3, 4, 5, 6, 7, 8, 9 and 15.
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Figure 3.11 Cross sections for the entire field showing porosity estimation model using zonal control
estimation based on a stochastic realization of lithoclasses produced with SIS with correction for local
probabilities algorithm.
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It is important to emphasise that this final image is intended to reproduce two aspects
present in this particular field: the heterogeneity emerging from geological transitions, and
the major continuity features evidenced by this particular variable within each lithoclass.
Using this approach, it is clear that one estimated image of porosity (a smooth image)
corresponds to each simulated image of the geology. Considering the classification of
samples into homogeneous groups of lithoclasses, the smooth variability of the estimated
values of porosity and the role of the extreme values are not particularly significant for the
fluid flow movements. In this regard, the present approach can produce images that provide

a realistic set of output scenarios for fluid flow simulation.

3.4 EXAMPLE OF CLASSES OF PERMEABILITY ESTIMATION USING ZONAL
CONTROL TECHNIQUE

3.4.1. DEFINITION OF PERMEABILITY CLASSES

One of the most important features in flow simulation scenarios is the ability of fluids to move
through the field. Fluid movements in a porous medium are governed and quantified by
Darcy’s Law (Crichlow, 1977, Dake, 1978). According to this law, fluid flow rates are
dependent on fluid viscosity, pressure gradient and a local constant parameter named
permeability. This constant is a direct measure of the ability of a fluid to move through a
rock. Permeability is a characteristic of the rock, which depends on its small-scale internal

features.

Permeability values can change quickly over short distances due to the geological
heterogeneity of the field and to secondary geological processes like cementation or
dolomitization. In an oil field it is possible to find wide ranges in permeability associated with
layers (vertical zoning). Layers characterised by low permeability act as vertical barriers and
can create isolated or compartmentalised areas. In the same way, spatial patterns of high

and low permeability can create preferential areas for fluid flow circulation and no-flow areas.

Permeability is one of the most complex petrophysical variables involved in the
characterisation of reservoirs. In reservoir engineering, the study of the relations between
fluid flow movements and petrophysical properties is a major subject and these relations
depend strongly on the existence of extreme values of permeability. As a matter of fact,
preferential flow patterns in oil fields are highly conditioned by permeability values and

possible connections between high permeability zones.
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In this work, the spatial modelling of permeability accounted for two important

characteristics:

o Permeability is a tensorial variable, since it depends on the direction of the fluid flow;

o Preferential flow patterns or barriers are strongly conditioned by the spatial location

and connectivity of the highest and lowest permeability values within oil reservoirs.

In order to deal simultaneously with these two major properties, a formalism is proposed
consisting in the treatment of permeability with probabilistic or non-parametric models (Da
Costa e Silva et al, 1993, 1997). This kind of model ensures an appropriate representation of
extreme values (both high and low permeability values) and overcomes the problem of the

non-additive nature of permeability.

Combining zonal control methodology with an indicator formalism, the proposed
methodology basically constitutes an extension of the zonal control method to estimate the
morphology and permeability values corresponding to several classes of a histogram
partition (Almeida et al, 1997). The proposed approach produces an image of the internal
architecture of the permeability distribution within the entire field and has the following

advantages:
e |tuses all log derived permeability data recorded in the wells;

e |t treats permeability as a categorical variable split into several classes, the extreme
classes being the most significant for fluid flow models and production forecasting
purposes. The advantage over methods like direct estimation using kriging is that the
latter method attenuates the extreme values of the variable and gives a non-realistic

representation of the field;

e The zonal control method is based on the estimation of indicator vectors and direct
conditioning to experimental data via multi-phase kriging, which requires the inference

of a global model of continuity (multi-phase covariance);

¢ Estimation of the permeability classes is independent of the characterisation of
lithoclass morphology: at each grid node the probability of belonging to a specific
range of permeability is calculated given that the grid node belongs to a specific

lithoclass;

e Lastly, the 3D model of permeability is merged with the simulated images of

lithoclasses to obtain a final distribution model of permeability.
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As was stated in section 2, each lithoclass constitutes a geological entity, with specific
characteristics in terms of porosity, permeability and saturation. At this stage, the basic
assumption is that the variations of permeability within each geological unit are mainly
controlled by rock type transitions. Estimation of permeability must thus account for the

simulated morphology of lithoclasses.

3.4.2. EXTENSION OF ZONAL CONTROL TO ESTIMATE CLASSES OF
PERMEABILITY

As permeability can not be considered an additive variable, estimation is performed on
indicator variables corresponding to the classes in which it was divided. In each grid node,
what is estimated is not the most probable permeability value (an average value) but the
most probable class to which the grid node belongs based on the initial histogram and the

defined classes.

The methodology used to estimate classes of permeability can be summarised in the

following sequence of steps:

i) Definition of a set of nc contiguous permeability classes with cut-offs Z, J=21..nc+1

that can properly represent the entire spread of permeability values, giving particular
attention to extreme values and reflecting the major expected variations in the fluid
flow movement;

i) Denoting the permeability by Z(x) and based on the above division into classes, each
point x, is coded by an indicator vector P(x,);
1 if z,, <Z(x) < 2,
Pi(x,) = with j=1, ...nc (3.16)
0 otherwise

At each point, an indicator vector is created with the value “1” corresponding to the existence
of the class of the histogram of Z(x,) and (nc-1) “0” values, corresponding to the
complementary classes. Within the framework of a probability model, Pj(x,) represents the

probability of a point x, belonging to the class j of permeability.
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ii)

and

Construction of the two vectors, /,(x)and Y, ;(x):

1 if x belongs to phase X,
l,(x) = (3.17)
0 otherwise

Pi(x) if x belongs to phase X
Yy j(X) = 1k(x).P;(x) = (3.18)
0 otherwise

with k = 1, ... K (number of phases) and j=1,... nc (number of classes).

For example, if a point x, belongs to phase X; and to the second permeability class then the

indicator vector can be expressed as follows:

Y, j(x)=[0100..0000..0000 ..]

or if a point x; belongs to phase X3 and to the first permeability class then:

iv)

Vi)

86

Y, ;(x)=[0000..0000..1000 ..]

The estimation of permeability classes is performed according to the methodology

described above in 3.2, and in the same way:

. [Yk,j (Xo)]*

_ | (3.19)
[l (xo)]

[Pk,j (Xo)]

withi=1,...Kandj=1,...nc.

Transformation of the estimated probability values into indicator values, preserving the
experimental proportions of each class in each category using the ranking selection

criterion set out in section 2.4.1.2.

The last step consists in merging the estimated permeability classes for all lithoclasses
with the simulated maps of lithoclasses in order to obtain a unique map of permeability

classes for each simulated map of lithoclasses.
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3.4.3. CASE STUDY OF ESTIMATION OF PERMEABILITY CLASSES

The proposed methodology was applied to the entire field, using the permeability values Z(x)
known in 19 wells (log derived permeability), and results from one specific layer - layer 150 -
are discussed again in more detail. Variables Y (x) and /(x) were constructed according to
the above expressions (3.17 and 3.18). The permeability values were divided into 14 classes
covering the entire range of each vertical unit. For the selected layer, the permeability range

for each class and basic statistics (mean and median) are displayed in Table 3.2.

Table 3.2 Univariate statistics of the defined permeability classes for the selected layer.

Permeability Range (mD) Frequency (#) Mean (mD) Median (mD)
class
1 [0.0; 0.1] 129 0.06 0.06
2 [0.1; 0.5] 117 0.28 0.28
3 [0.5; 1.0[ 94 0.76 0.78
4 [1.0; 5.0 207 241 2.27
5 [5.0; 10.0[ 96 7.06 6.65
6 [10.0; 15.0[ 30 12.55 12.51
7 [15.0; 25.0[ 52 19.35 19.63
8 [25.0; 50.0[ 38 35.47 34.82
9 [50.0; 80.0[ 15 59.55 58.5
10 [80.0; 100.0[ 8 85.59 86.53
11 [100.0; 130.0[ 6 120.4 127.56
12 [130.0; 220.0[ 11 169.32 180.34
13 [220.0; 375.0[ 8 292.5 272.79
14 [375.0; 1168.0"] 2 467.05 467.05
All [0.0; 1168.0] 798 14.35 1.66

Individual variograms of Yj;(x) and I(x) were calculated for both horizontal and vertical
directions (variograms of /,(x) were calculated in above section). Due to the lack of samples,
it was not possible to calculate individual variograms for all combinations of Y (x), with k=1,
...Kand j =1, ....nc. For this variable a variogram for each permeability class, grouping the

entire set of lithoclasses, was calculated:

! Maximum value observed in unit R1
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K
», (h):%ZE{[Yk’ () -Y, (x+h)]? | (3.20)
k=1

with j=17, ...74 (number of permeability classes).

In Figure 3.12 and Figure 3.13 several individual variograms are displayed, reflecting two
distinct situations: experimental variograms of Yjj(x) evidencing continuity above 5000
metres, and erratic experimental variograms. Variograms of these two sets were grouped
and multi-phase variograms were calculated for each set. The horizontal multi-phase
variogram for the continuous group was fitted with an exponential model with a range of
5000 metres and 10 S.U. in the vertical direction (Figure 3.14). The erratic group was fitted
with an exponential model with a range of 500 metres (small inter-well distances) in the

horizontal direction and 4 S.U. in the vertical direction (Figure 3.15).
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Figure 3.12 Experimental variograms for permeability classes classified as continuous: a) class 1; b)
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Model: 0.295 Exp (a = 5000 m) Model: 0.295 Exp (a =10 S.U.)
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Figure 3.14 Experimental multi-phase variograms for the continuous group of classes of permeability
in both horizontal and vertical directions.
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Figure 3.15 Experimental multi-phase variograms for the erratic group of classes of permeability in
both horizontal and vertical directions.

The permeability was estimated with the zonal control methodology explained above. In this
particular case, the morphology was established from previously simulated images of
lithoclasses. Since each grid node is previously classified as lithoclass k by simulation, the
final map of permeability classes is obtained by merging these two maps: simulated
lithoclasses and permeability classes. In Figure 3.16 the estimated classes of permeability in
a set of horizontal and vertical views of one layer and the corresponding images of

lithoclasses are presented.

Table 3.3 and Table 3.4 compare basic statistics from estimated permeability classes and
experimental data. As shown, the estimated values have approximate basic statistics, which
validates the use of the proposed estimation method. The transformation of probability
classes into categorical classes of permeability, using the morphological classification
method described in section 2.4.1.2, makes the final image match exactly the original
proportions of each experimental permeability class, which constitutes one of the most

important advantages of this method.

90



Description of Petrophysical Properties Using Estimation Methods

Simulated Litoclasses Estimated Permeability classes

Lithoclasses b) Permeability class

Lithoclasses Permeahility class

15
14
13
12
"
10

e Ly T e et Crar

1 . g e o e g s B )

RO L) B O D 004D

Figure 3.16 lllustration of 3 horizontal views and 2 sections from the generated stochastic images of
lithoclasses using SIS with correction of local probabilities algorithm and corresponding estimated
images of permeability classes using zonal control estimation.
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Table 3.3 Univariate statistics of permeability classes for experimental data.

Permeability classes
Lithoclasses | 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 0.045 0.041 0.018 0.026 0.031 O 0010 O 0.005 0.005 0.005 0.006 O 0
3 0.026 0.003 0.005 0.006 O 0 0 0 0 0 0 0 0 0
4 0.046 0.015 0.004 0.004 O 0 0 0 0 0 0 0 0 0
5 0 0.010 0.013 0.024 O 0 0 0 0 0 0 0 0 0
6 0 0.021 0.033 0.026 0.001 O 0 0 0 0 0 0 0 0
7 0 0.006 0.015 0.029 0.015 0.004 0.005 O 0 0 0 0 0 0
8 0 0.005 0.001 0.073 0.036 O 0 0 0 0 0 0 0 0
9 0.026 0.045 0.032 0.070 0.028 0.026 0.030 0.010 0.007 O 0 0.007 0.010 0.002
15 0 0 0 0.002 0.008 0.008 0.020 0.038 0.006 0.005 0.002 O 0 0

All 0.143 0.146 0.121 0.260 0.119 0.038 0.065 0.048 0.018 0.010 0.007 0.013 0.010 0.002

Table 3.4 Univariate statistics of permeability classes for estimated probability values Py j(x).

Permeability classes
Lithoclasses | 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 0.027 0.042 0.007 0.028 0.049 O 0.018 O 0.008 0.007 0.003 0.003 O 0
3 0.020 0.011 0.004 0.006 O 0 0 0 0 0 0 0 0 0
4 0.052 0.013 0.001 0.003 O 0 0 0 0 0 0 0 0 0
5 0 0.008 0.011 0.026 O 0 0 0 0 0 0 0 0 0
6 0 0.021 0.029 0.030 0.000 O 0 0 0 0 0 0 0 0
7 0 0.001 0.007 0.040 0.015 0.003 0.004 O 0 0 0 0 0 0
8 0 0.001 0.001 0.079 0.033 O 0 0 0 0 0 0 0 0
9 0.038 0.016 0.038 0.134 0.001 0.013 0.013 0.002 0.002 o0 0 0.013 0.026 0.003
15 0 0 0 0.001 0.007 0.004 0.027 0.033 0.004 0.010 0.003 O 0 0

All 0.137 0.113 0.098 0.347 0.106 0.020 0.062 0.035 0.014 0.017 0.006 0.016 0.026 0.003

Finally, to illustrate the applicability of this method to the entire field and to visualise the

vertical permeability zoning, in Figure 3.17 the estimated classes of permeability in a set of

vertical views for the entire field are presented.
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Figure 3.17 Cross sections for the entire field showing permeability class estimation model using
zonal control estimation based on a stochastic realization of lithoclasses produced with SIS with

correction for local probabilities algorithm.
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3.5 WATER SATURATION MODELLING

3.5.1. POSITIONING THE PROBLEM

Unlike porosity and permeability, water saturation distribution is usually smoother even
between different rock types. Gravity and capillary pressure control fluid distribution in
porous media. Gravity acts as a density separator: low-density fluids tend to move to the
upper zones of the reservoir. Capillary forces tend to counterbalance gravitational
segregation and to move wetting fluids to areas where the non-wetting fluid is dominant, up
to an equilibrium fluid balance. Usually, water is the wetting fluid relative to oil and gas and
oil is the wetting fluid relative to gas. This process creates a natural segregation of fluids
(water, oil and gas) (Dake, 1978, Archer and Wall, 1986). A typical distribution of fluids is
sketched in Figure 3.18.

a) b)
Y Well
X o Y
Gas
Qil
! FWL
Water t

Figure 3.18 Typical distribution of fluids in an oil field: a) aerial view; b) cross-section.

In a rock formation, porous zones are conceptually similar to a tube system. Water will rise
up a thin capillary tube in response to physical properties, such as surface tension,
wettability of the tube to water and capillary pressure. Depending on the dimensions of the
tube, water will rise higher or lower. Since water saturation is the ratio of water volume to the
total fluid volume, it could range from 0 to 100%. However, in practice the lower limit is not
0% but tends asymptotically to a limit - irreducible water saturation - the residual water that is

held by interfacial tension in the pores and that can not be displaced.

Typically the relation between capillary pressure and water saturation depends strongly on
the permeability of the medium. For this reason, it is necessary to “normalise” all available

data in order to establish a relation between saturation and capillary pressure. The best-
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known correlation function applied universally in reservoir engineering is called the J-function
and was proposed by Leverett (Archer and Wall, 1986). This expression relates water
saturation and capillary pressure using the petrophysical properties of the rocks and the
fluids:

(3.21)
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where:
P, - Capillary pressure
o - Interfacial tension
K - Permeability

¢ - Porosity

Initially the J-function was designed to establish a correlation between all the data involved.
However, due to the dependence of the correlation on the formation characteristics, it is
necessary to split all the data into several groups that represent the rock types involved and

to draw a local correlation in order to reduce the scatter for each correlation.

In highly heterogeneous reservoirs, such as this one, modelling of the spatial distribution of
water saturation is not an easy task. Geological heterogeneity and the complex mixture of
rock types may introduce strong variations in capillary pressure and cause a non-continuous
vertical distribution of water above the free water level (FWL). Also, in this oil field, the FWL
surface is not flat, which reflects the impact of rock heterogeneity on capillary pressure

variations.

Due to the small uncertainty that usually characterises the distribution of this variable, it is
usual to construct water saturation models based on estimation methods. In fact, water
saturation is not a petrophysical variable but a dynamic variable, which is mainly dependent
on capillary pressure. Estimation models able to tackle this variable must take into account
that this is a non-stationary variable that tends to 100% when capillary pressure decreases
(with the depth to FWL).

To cope with this non-stationary variable, a simple estimation method by ordinary kriging is
proposed. The first step of this method consists in performing a geometrical transformation

of the vertical coordinate system in order to use the samples located at the same depth
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above the FWL for estimation of the water saturation at each grid node. The main drawback
to this estimate that may be pointed out is that porosity, permeability and rock types are not
taken into account. In fact, in this particular oil field, due to the high heterogeneity of water
saturation distribution, the correlation between J-function and water saturation is poor, even

within rock types (Figure 3.19).

a) b)

Water saturation vs J-function Water saturation vs J-function

J-function J-function

s
. l..' . l=
. ot e e e, e
To wole Npely e f iqe
e WO ° L) .
@ o o0 o o 0 o Vo

0 20 40 60 80 100

Water saturation (%) Water saturation (%)

Figure 3.19 Scattergram representing correlation between water saturation and J-function for Upper
unit R1: a) all rock types; b) mudstones.

Lastly, the main validation procedure of the water saturation model is to check it using a

cross-validation test based on several wells.

3.5.2. GEOSTATISTICAL ESTIMATION BY ORDINARY KRIGING

The proposed methodology is based on a geostatistical estimation of water saturation values
after geometrical transformation of the coordinate system. Several tests to find horizontal
correlations showed the highest spatial correlation of water saturation measures when
located at the same distance or height relative to free water level (FWL). Based on this
single piece of evidence, it is proposed to model the water saturation using a new spatial

referential in the vertical direction, with the origin in the FWL surface.
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Another unusual factor related with the characterisation of water saturation is the presence
of full water saturation in several areas at the top of this oil field. The presence of these
areas at the top of the field is very difficult to explain and may derive from the geometry of
several geological formations that act as preferential channels. The existence of these water
geobodies (volumes with Sy, = 100%) introduces a new problem in the estimation - kriging
estimators tends to attenuate extreme values and if one estimates the entire field (above

FWL) at one dash the volume of these zones is certainly underestimated.

In order to cope with the above considerations, the following procedure is proposed to create
a 3D model of water saturation:

i) Geometrical transformation of the vertical coordinates of the well samples based on
the heights to the FWL (see Figure 3.20);

Initial referential

Transformed referential
Well: 1 Well: 3 Well: 4

Well: 2 Well: 1

Well: 4

Well: 3
|]| " > Well: 2
FWL
FWL

Figure 3.20 lllustration of the transformation of vertical coordinates according to the FWL.

i) Estimation of the surface of free water level for the entire area of the field. Below this

surface, water saturation is considered equal to 100%.

iii)  Above the estimated free water level surface, estimation of the location and shape of
the water geobodies using a simple indicator kriging approach. Using this approach,
the maintenance of water geobody volumes is ensured in the same proportion as
revealed by the experimental samples in wells. This step involves the generation of an

indicator variable, the calculation of experimental indicator variograms in both
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horizontal and vertical directions in the domain of the transformed referential, fitting a
theoretical model, estimating probability maps and transforming the probability maps

into indicator maps preserving the experimental proportions of these geobodies.

iv)  For water saturation values below 100%, calculation of the experimental variograms in
the domain of the transformed referential. Estimation by ordinary kriging of water
saturation values in all the area A not fully filled by water (Sy < 100%, according to the
areas delimited in the previous point) using the samples at the same depth as the free

water level;

V) Finally, conversion of the transformed referential to the original geographic referential
of the field.

3.5.3. ESTIMATION OF THE SURFACE OF FREE WATER LEVEL (FWL)

Usually, the FWL is an approximately flat surface for the entire field area; however, local
variations in the FWL induced by geological heterogeneity and a complex mixture of rock
types must be accounted for. The depths of the FWL observed in the wells suggest a very
irregular surface that must be modelled first. This surface was estimated for the entire area
of the field by kriging using the depths of the contacts observed in the wells and a global
variogram model, which was a Gaussian model with a range of 4000 metres in the main
direction of the field and 2000 metres in the perpendicular direction. The estimated map

representing the FWL is illustrated in the Figure 3.21.
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Figure 3.21 lllustration of the estimated FWL surface in the entire field area.
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3.5.4. ESTIMATION OF THE SHAPE OF WATER GEOBODIES (Sw = 100%)
LOCATED ABOVE THE FWL

The first step of the estimation procedure consists of separate estimation of the water
geobodies (with 100% of water saturation) located above the FWL by using an indicator
approach. Separate modelling of water saturation above the FWL allows us to deal with
these local anomalies (Sw = 100%) and to treat the complementary area (Sw < 100%) in a
more appropriate way. Any linear estimation with a mixture of these populations would lead

to underestimation of the water zones.

To model these areas, the following indicator variable was defined:

1 if Sy(X,)=100%
I(x,) =
0 otherwise

This indicator variable has the following statistics:
m; = 0.084
o= 0.077

Variograms of this indicator variable give the spatial continuity (or average measure) of
these water geobodies and allows the most probable morphology of these zones to be
estimated. Estimation at any grid node x, of the field is provided by estimation of the

following probability conditioned to a set of n neighbourhood experimental samples:
Prob {I(x,) =1|I(x,),a =1...n |

This probability map is then transformed onto a binary map reproducing the shape of the
water geobodies. The major advantage of this two-step approach is that the final
classification step ensures that the percentage of water above the free water level is the

same as measured from the experimental samples.

Figure 3.22 represents the experimental variograms of /(x) calculated for the entire field
along the horizontal and vertical directions. In the horizontal direction, a spherical model with
a range of 11000 metres was fitted in the main direction of the field and with a range of 5000
metres in the perpendicular direction. In the vertical direction a two-structure model
(spherical model) was fitted with ranges of 8 and 30 feet respectively and sills of 0.035 and
0.025.
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Figure 3.22 Experimental variograms of the /(x) in the transformed referential for the horizontal and
vertical directions.

Figure 3.23 shows in cross-section the estimated water geobodies for the entire area above

the FWL.
. Sw < 100%

. Sw = 100%

FWL surface

Figure 3.23 lllustration of water geobodies (Sy = 100%) in a cross-section of the entire field.
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3.5.5. VARIOGRAM MODEL OF WATER SATURATION FOR THE REMAINING
AREAS (Sw < 100%)

The highest spatial correlation of saturation values in the horizontal direction is observed
between samples located at the same relative height above the FWL. As explained above, a
single geometrical transformation of the vertical coordinates based on the heights to the
FWL is the first step to calculate spatial continuity for the saturation, as revealed by

experimental variograms.

After the transformation of all samples, analysis of the spatial continuity of saturation was
conducted for the entire field. Experimental variograms were calculated using the sample
values of Sy < 100% for all layers in the three main directions of the field and are
represented in Figure 3.24. A high continuity structure was identified in the main horizontal
direction of the field and was fitted using a spherical model with a range of 8000 metres. The
perpendicular direction in the horizontal was fitted with a 3000 metres model and the vertical

direction with two structures, with ranges 15 and 120 feet and sills of 275 and 62

respectively.
Model: 900 Sph (a = 8000m) Model: 900 Sph (a = 3000m)
Semnivariogram (90; 0) Semivariogram (0; 0)
y(h) Var 1 ¥ Varl
Rl S ki kb R e :
1 S S L Tt N
] ) 'a [ ! Data i i i i i Data
E L R e R Ehbh ! L Y ot !
SO0, -~ e ! Variance S00F g R R ! Variance
ol b S (s S B S
: : : L et ) : : : : ! Model
3000. 6000, 9000,  12000.  15000. 600. 1200, 1800,  2400.  3000.
T (m) hom)

Model: 275 Sph (a = 15 ft)+625 Sph (120 ft)

Semivariogram (0; 90)

¥y
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1000,
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Figure 3.24 Experimental variograms of water saturation in the transformed referential and theoretical
model fitted.
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3.5.6. CROSS-VALIDATION TEST AND ESTIMATION OF WATER SATURATION
FOR THE REMAINING AREAS (Sw < 100%)

In order to evaluate and validate the proposed method, a cross-validated test was performed
that tested the ability of the model to reproduce the profile of water saturation in each well
using only the remaining wells. In other words, water saturation is estimated in the location
of each well, after removing it, based on the data of the remaining wells. Figure 3.25 a)
through Figure 3.25 d) show the results of this cross-validation for a set of wells that could
be considered very satisfactory considering the large distance between the wells used. The
best matches between real and estimated Sy, are verified in those wells located in the middle
of the field (vertically) due to the considerable amount of surrounding information on the
other wells. In general, the results of this cross-validation are very satisfactory and give us
confidence to apply this model to the whole field and to cope with the complexity of the

distribution of water saturation in this oil field and the non-stationarity shown by this variable.
a)
T T T T
0 50 100 0 a0 100 0 50 100 0 a0 100
Water saturation (%) Water saturation (%) Water saturation (%) Water saturation (%)

b) c) d)

— Real data
— Estimated values

Figure 3.25 Results of the cross-validation test for four wells located in the middle area of the field.
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In summary, two different estimates were made over the entire field: an estimate of water
geobodies and an estimate of water saturation values. These two 3D maps must be merged
and finally, back-transformed to the original geographic referential based on the estimated
surface of FWL.

Complete results of the geostatistical water saturation model are shown in Figure 3.26 and

Figure 3.27 in several levels and sections along the field.

WS
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Figure 3.26 Horizontal distribution of the water saturation in two different levels.
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Y = 10000m
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Figure 3.27 Cross-sections for the entire field showing the complete water saturation estimation
model.
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3.6 FINAL REMARKS

Each lithoclass consists of a geological entity with specific characteristics in terms of
porosity, permeability and water saturation. The basic assumption at this stage is that the
permeability and porosity variations within facies are mainly governed by rock type
transitions. As a consequence the main objective at this stage was to obtain the average
values of these petrophysical properties rather than their variability. This means that the
objective was to estimate the average behaviour of porosity and permeability within the

boundaries of each lithoclass and not to produce simulated images of these properties.

As described above, the stochastic model of porosity and permeability has accounted for the
simulated reservoir images of lithoclasses (section 2). To estimate porosity and permeability
we are taking into account the fact that our intention is to obtain images of average
distribution of these properties rather than to obtain a set of equally probable scenarios. In
the resulting images heterogeneity arises almost totally from the variability of the map of
lithoclasses. The approach designed to fill these properties within the lithoclass images was
denoted by zonal control estimation. This method should be used when petrophysical
variables change sharply between rock types and when scarcity of data rules out calculation

of cross-variograms or individual variograms for each lithoclass.

Estimating by using zonal control has certain clear advantages when the values of the
variable to be estimated are different for each lithoclass and when there are sharp variations
between lithoclasses. Thus, when a set of simulated images of lithoclasses is produced, this
is the ideal method to fill the petrophysical variables in these images: a single estimate
makes it possible to obtain images of this variable for each lithoclass. It is sufficient simply to

merge the simulated lithoclass maps and estimated variable maps.

As permeability can not be considered an additive variable, estimation was performed on
indicators corresponding to the classes into which they were divided. For this variable the
objective was to estimate not the most probable value but the most probable class to which
the grid node belongs. Permeability was estimated using prior division into classes. These
classes were then estimated using the formalism of the indicator random variables. The
approach presented here ensures that areas of high and low permeability are not under- or
over-estimated, as might be expected if the values were estimated as such. In the same
way, permeability values within the range of a class which does not exist in a lithoclass
(within a specific layer) will not appear in the final image, as might happen if interpolation
took into account the values of the variable. Also, this method is certainly more appropriate

given that permeability is a non-additive variable. The filling-in of permeability values in the
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maps of permeability classes may take different forms, such as using the median of each
class calculated in each layer. Validation of this method may be carried out by observing the
images of the models presented, which display clear vertical zoning of this reservoir in terms

of porosity and permeability, as well as the coherence of the model.

Water saturation displays abnormal behaviour in this reservoir. There is a weak correlation
with lithoclasses or rock types and with figures for porosity and permeability. Thus variations
are mainly dependent on distance from the FWL. Another type of unusual behaviour
displayed is the fact that there are areas with 100% water saturation at the top of the
reservoir. It is therefore necessary to adapt the estimation method to the modelling of this
particular behaviour variable, which is clearly not stationary and whose variation depends on
distance from the FWL. Independent estimates of the areas with saturation equal to 100%
using the indicator formalism avoids under-estimation of these areas and maintains a

proportion equivalent to that shown by experimental data.

To create a 3D model of water saturation a single estimation method based on ordinary
kriging is proposed. The basis of this proposed method is the use of a referential based on
the surface FWL that proves to be the most appropriate to find horizontal correlation and
selection of neighbourhood samples used to estimate each grid node (samples at the same
depth to the FWL). This criterion used to select the set of conditioned samples copes with
the non-stationary revealed by the water saturation. The final saturation model is
independent of lithoclasses, porosity and permeability, and is characterised as an attenuated
map of a variable which normally displays low variability, albeit with spatially anomalous
behaviour.
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4 CHARACTERISATION OF SPATIAL UNCERTAINTY OF
UNDERSAMPLED VARIABLES

4.1. INTRODUCTION

When dealing with geostatistical models one of the most important challenges is to
characterise the spatial uncertainty of petrophysical variables. Spatial uncertainty depends
on the heterogeneity of the variable and in geostatistical models it is directly related to the
number of samples, their spatial location and the continuity models of the variable. When
multi-Gaussian models are used or the indicator formalism is applied to different thresholds,
the resulting uncertainty is characterised by the cumulative distribution function obtained with
the simulated images in each grid node. In other words, characterisation of uncertainty is
merely local. However, in a large number of applications, notably in the area of reservoirs,
we need to characterise the global uncertainty in the total area where the reservoir is
defined, i.e., uncertainty associated with images is worked as a whole and not point by point.
The use of geostatistical models thus enables us to characterise spatial uncertainty, which is
modelled by generating a set of equally probable realisations or images of the studied
variables in space - stochastic simulations (Deutsch and Journel, 1992, Goovaerts, 1997).
These images can now be used to transfer functions, such as fluid flow simulators, that lead
to a set of alternative and equally probable production responses, based on uncertainty

provided by the entire set of grid nodes.

Preferential flow patterns and dynamic behaviour of the field are mostly conditioned by the
permeability spatial pattern. Regarding this, the present section presents an approach
towards creating simulated images of permeability distribution that combines all available
permeability data: core data with horizontal measures of permeability, and log derived data.
This approach combines sequential indicator simulation (SIS) and p-field simulation to

produce spatial images of permeability values using these two data sources.

At this stage, a geological model showing the internal distribution of lithoclasses was
produced using categorical simulation algorithms such as SIS. These images reproduce the
heterogeneity observed between lithoclasses. The objective of this section is now to fill these
lithoclasses by producing stochastic realisations of permeability values, conditioned to

lithoclass morphology and incorporating the two sources of permeability data.
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A more general objective of the proposed methodology is the spatial simulation of
undersampled variables (Almeida and Guerreiro, 1997, Guerreiro et al, 1998). Permeability
is usually measured in a few cores and is inferred for the remainder set using linear
regressions with porosity (Archer and Wall, 1986) or exploring the non-linear relations
between variables. Various non-linear regression models, like neural networks, may be
applied based on the following methodological sequence: i) inference of a regression law
between core permeability and log data at the few core data locations; ii) classification of
remaining log data into permeability values according to the regression obtained in i). The
results can be displayed as numerical values of permeability (soft data) or as a probability of
belonging to a specific range of permeability. For example, deriving the permeability using
probability neural networks (PNN) leads to each non-core data point being classified into a
probability vector, which represents the probability of belonging to a set of continuous ranges

of permeability (Pereira et al, 1995, L. Soares et al, 1996).

The proposed method is able to use two sources of permeability data with a different
uncertainty attached (core permeability and log derived permeability - soft data), and can be

summarised in the following main steps:

a) Definition of a set of classes to divide the entire range of permeability values. These

permeability classes should have a consistent physical meaning;

b) For each data location, calculation (inference or classification) of the probability of

belonging to each permeability class, for instance by using the PNN formalism;

c) Stochastic simulation of classes over the entire simulated area using a categorical
simulation method (for instance, SIS with correction for local probabilities) conditioned

to the simulated images of rock types;

d) Calculation of a conditional cumulative distribution function, ccdf, in each grid node,

based on the simulated lithoclass and permeability class;

e) Generate n (n — number of realisations) probability fields P(x) with uniform distribution

reproducing the covariance model for permeability indicator values;

f) Simulation of the permeability values z¢(x) on each grid node: draw a realisation from

the local ccdf using the local value of the probability field p(x).

This method was applied to characterisation of the permeability in this particular field, where

the core permeability is undersampled relative to the entire set of wells.
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The simulation of classes of permeability was performed for a single layer — layer 150 - and
was based on 30 simulated images of lithoclasses, obtained using the SIS method (see
section 2). In this case study, for each simulated image of lithoclasses three realisations of
permeability are simulated. In total, 90 simulated images of permeability classes were
produced. This large set of images certainly reproduces all of the heterogeneity that comes

from the variability between lithoclasses and within each lithoclasses.
4.2. PROPOSED METHODOLOGICAL FRAMEWORK

Let us consider the variable Z(x,),a =1...P sampled at a restricted number of points P and

the variable Y (x,),a =1...N known in all samples N >> P.

First of all, taking into account the range of values of Z(x), a definition of a set of nc

contiguous classes with thresholds Zc, j =1n, +1is required. The selection criteria for these

thresholds must take into account the number of data in each class, in particular the extreme

values.

Dividing Z(x) in nc classes, for N sampled points, the probability of Z(x,) belonging to each
class [zcl,zcl+1[, conditioned to the known variable value Y (x,) for nc classes in which the

range of Z(x) was divided (conditional probabilities for all nc classes) is calculated as follows:
P, (X,cl) = prob{Z(xa) € [chvzc|+l[|Y(Xa) } with cl =1,nc (4.1)

Usually, this probability is computed based on a regression between variables Z(x) and Y(x)
using the sub-set of samples P where the values of Z(x) and Y(x) are known, or using
classification methods based on neural networks, particularly PNN. Based on the pre-

defined permeability classes, each known point Z(Xo) is coded by an indicator vector
P, (Xo):

1 if Z., <Z(X,) < Zc.,

P, (%) = with j =1,n, (4.2)
0 otherwise

It is thus possible to classify all the samples with a probability of belonging to a specific class
cl of the Y(x):

P, (Xacl),a=1N cl=1nc (4.3)
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In a second step, the probability values P, (x,)are simulated for all grid nodes x, within

area A. The probability of each point x, belonging to each permeability class can be
interpreted as a categorical variable. Thus a stochastic simulation method like SIS or
truncated Gaussian plus conditioning could be used (see section 2). In the present case
study, SIS with correction for local probabilities was used to generate images of permeability

classes conditioned to the proportions of the samples within each rock type.

The implementation of the proposed simulation algorithm for undersampled variables can be

summarised in the following sequence of steps:

) Statistical description of P, (x,)
Mean: proportion of each class cl in all area A:
my = E{PZC,(xa)} cl=1, nc (4.4)
Variance:
var, =var{P, (x,)} = E{P,4(x,) - mg | 2 cl=1nc (4.5)
ll)  Spatial continuity model of P, ,(x,)
In the same way, individual variograms can be defined for each class:
7o () = E{Prq (X,) = Prg (X, + ) (4.6)

and the corresponding multi-phase variogram, grouping sets of similar classes of the

variable Z(x):

7PZ(h) = incI = iE{[Pch(Xa)_ P,y (X, +h) ] 2} (4.7)

cl=1 cl=1

The variogram of 7’Pz(h) represents a continuity measure of the whole set of the

undersampled variable in all classes of the variable Z(x).
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) Multi-phase simulation of permeability classes, conditioned to the simulated

images of lithoclasses

The multi-phase sequential indicator simulation algorithm with correction for local
probabilities described above in section 2 was used to produce stochastic images of
permeability classes (Soares, 1998). This simulation method was modified in estimating the
local conditional cumulative distribution function: the estimation of this local ccdf only takes
into account the samples and grid nodes belonging to the same lithoclass. Instead of
performing different simulated images of permeability classes (one for each lithoclass), and
merging all the final maps (lithoclasses and permeability classes, one for each lithoclass) the
original SIS program code was changed to perform a single simulation taking into account

the geometry of lithoclasses:

a) Select at random a grid node x, not yet simulated in area A. Identify the

corresponding simulated lithoclass k(x,);

b) Build the local probability distribution of permeability classes. This entails estimating

by kriging the probability of grid node x, belonging to each class [Pz . (X, )J*, cl=1,nc

using the continuity model (4.7):

P, (%)= 2 4P, () (4.8)

The weights 4, were calculated taking account only of the neighbouring samples that

belong to the same lithoclass k(x,).

c) Correction of local probabilities, in order to impose the experimental proportions
revealed by the samples within each lithoclass. These local deviations are
independent for each lithoclass, and the correction in each grid node x, takes into
account only the deviation corresponding to the lithoclass k(x,). Thus, the goal of this
independent correction is to minimise the differences between global probabilities

shown by the samples and those of the simulated image in each lithoclass.

d) Calculation of the cumulative distribution function:

cl

[Fa )] =Y [P, x0)]° 4.9)

i=1

111



Chapter 4

e) Draw a random number p from a uniform distribution defined in the range [0; 1]. The

grid node x, will be allocated to class cl if:
x,e classcl if  [Fy_x,)] <p<=[F,x,)]

f) Treat this simulated value as initial hard data and loop back to step a) until all grid

nodes are simulated.
IV) Calculation of the cumulative distribution function for each grid node x,

For each permeability class cl of each lithoclass, the global cumulative distribution function

was inferred using only core permeability data.

Fak(x), cl=1, nc (nc is the number of permeability classes) and k = 1, K (K is the number of

lithoclasses).

Thus, each global cumulative distribution function was allocated to the corresponding grid

node X, .

V)  Finally, permeability values Z(x) are simulated at each grid node x, using the

p-field simulation approach

The cumulative distribution function corresponding to the class cl in each grid node x, was

calculated at each grid node x:
F,(x,,C) = prob{Z(x,) < z|c =cl},cl=1,nc (4.10)

Finally the simulated values of permeability z (x,) were generated from the local probability
distribution functions P, (x,) by using the p-field simulation approach (Srivastava, 1992,

Froidevaux, 1993). A probability field P(x) is simulated for the entire area A, the simulated

value of permeability z,(x,)is equal to:

Z.(x,)=F,(x,,c,p) where p=P(x,) (4.11)

To generate a probability field P(x) over the entire area A it is assumed that the multi-phase

variogram y;, is representative of the continuity of F,(x,,c) within each class.

The use of this simulation method is particularly appropriate whenever two types of
information co-exist with different sampling densities. In the case of this study, there are two

variables with different characteristics indicating permeability. One is an indirect measure of
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permeability - soft values - which is inferred from logs by multi-variable correlation and is
available for all wells. The second variable is effective permeability, measured in a laboratory

using cores, but this is characterised by low sampling density.

The main difference between this proposed method (which combines SIS and p-field) and
running only a sequential simulation method is that the cumulative distribution function in
each grid node is estimated independently of the simulation process. Thus, this process
offers greater flexibility in combining densely sampled soft information with poor sampled
hard information (Soares, 1995, Da Costa e Silva et al, 1996). In fact, when the p-field
simulation approach is applied, each simulated image of lithoclasses and permeability
classes acts as soft information and the permeability measured in cores acts as hard
information. The cumulative distribution function at each grid node is estimated taking into

account only the cumulative histograms of experimental core data.

4.3. EXAMPLE OF SPATIAL PERMEABILITY SIMULATION

4.3.1 AVAILABLE DATA

This methodology was applied to the studied field and results for a middle layer - layer 150 -
are presented in more detail. As described above, the proposed approach for this field is a
rock type based model. It starts by creating a stochastic model of the spatial distribution of
lithoclasses (geological model) using categorical simulation algorithms and conditioning the
generation of permeability and porosity values to the previous simulated images of
lithoclasses. In the present section, the objective is to produce simulated images of
permeability values, conditioned to the simulated images of lithoclasses. These images
should incorporate all available sources of permeability data: core measures of permeability
in the horizontal direction (accurate, but scarce) and log derived measures of permeability,

available in all wells, 0.5 foot spaced (less accurate - soft variable).

Lack of accuracy in the acquisition and processing of the data can lead to a less
representative reservoir model. This is a common problem with permeability data. Core
measures are expensive and time-consuming and as a consequence the costs associated
with this sampling task are always minimised. However, it is the permeability derived from

core analysis that ensures high accuracy for reservoir characterisation.

In the selected layer, the proportion of cored wells to the entire set of samples is about 25%.

In order to apply the proposed approach, the entire range of permeability was sub-divided
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into 7 adjacent classes (uD): [0; 0.5[; [0.5; 5.0[; [5.0; 15.0[; [15.0; 50.0[; [50.0; 100.0[; [100.0;
220.0[ and > 220. All experimental samples are classified into an indicator vector based on

the limits of these classes:

1 if Zg < Z(Xa) <Zgp
Pyg(X,) = (4.12)
0 otherwise

Following the proposed methodology, cumulative histograms of permeability by lithoclass

and permeability class are computed:

Fak(X), with cl=1, 7 (number of permeability classes) and k = 1, 9 (number of lithoclasses
observed in the selected layer: 2,3,4,5,6,7,8,9, and 15)

To summarise, initial data is made up of:

e a set of 3D grids representing simulated images of lithoclasses for the whole of area A.

In this study, these images were constructed using a SIS approach, see section 2;
¢ the probability of each sample (cored or not) belonging to each permeability class;
e cumulative histograms of permeability, by lithoclass and permeability class;

e core permeability data in cored samples.

For the studied layer, Table 4.1 shows the proportions of each lithoclass in all experimental
data and in three simulated images. As is shown, all proportions calculated in the simulated
images using the SIS simulation method with correction for local probabilities give a good
match for the proportions of experimental data. In the selected layer, and based on the
experimental variograms calculated for the horizontal direction, lithoclasses 2, 4, 8 and 15
were grouped and modelled together with a long-range - 4000 metres - multi-phase
variogram (fitted by an exponential model). The complementary set of lithoclasses was
classified as erratic in terms of spatial continuity. In the vertical direction these two groups of
lithoclasses were modelled with exponential models with 25 S.U. and 15 S.U., respectively

(see section 2).
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Table 4.1 Proportion of each lithoclass in the experimental dataset and in three simulated images.

Lithoclass Experimental data Realisations
proportions

#1 #2 #3
2 0.193 0.192 0.194 0.192
3 0.040 0.041 0.041 0.040
4 0.068 0.070 0.069 0.068
5 0.045 0.047 0.043 0.045
6 0.080 0.078 0.077 0.080
7 0.070 0.066 0.067 0.067
8 0.115 0.118 0.120 0.121
9 0.301 0.295 0.296 0.294
15 0.088 0.093 0.088 0.093

4.3.2 STOCHASTIC SIMULATION OF PERMEABILITY CLASSES CONDITIONED
TO SIMULATED IMAGES OF LITHOCLASSES

In the selected layer, 124 x 42 x 21 points (total 109368) constitute the 3D grid. Again,
spacing between nodes is 250 metres in the horizontal direction and 1 S.U. in the vertical

direction.

Experimental omnidirectional variograms were calculated for each permeability class using
the set of samples available for the selected layer. Classes 1 and 4 display a long-range
variogram (about 4000 metres), unlike the complementary classes, which are more erratic.
Thus, two multi-phase variograms were calculated, one grouping classes 1 and 4 and the
other the complementary phases. For the continuous group of classes, the model fitted is an
exponential model with 4000 metres range in the horizontal direction and 20 S.U. in the
vertical direction. For the erratic group, an exponential model was fitted with 500 range (flow
simulator block model) was fitted in the horizontal direction and 10 S.U. in the vertical
direction. Figure 4.1 and Figure 4.2 show corresponding experimental omnidirectional

variograms and theoretical models fitted.
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Figure 4.1 Experimental multi-phase variograms of the continuous set of permeability classes and
theoretical models fitted: left) horizontal direction; right) vertical direction.
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Figure 4.2 Experimental multi-phase variograms of the erratic set of permeability classes and
theoretical models fitted: left) horizontal direction; right) vertical direction.

Permeability classes were simulated over the entire area A as categorical variables
conditioned to the simulated images of lithoclasses. Instead of performing one independent
simulation by lithoclass and merging the simulated images of permeability classes
conditioned to the lithoclasses, the simulation was performed in a single step, after changing
the original SIS code from GSLIB software (Deutsch and Journel, 1992). The advantage is
the imposition of the proportions of the classes in the area occupied by each lithoclass.
When a grid node x, in area A is selected randomly, the lithoclass previously simulated in
this grid node is identified. Thus, estimation of the probability of belonging to each
permeability class follows a search strategy including only the samples and grid nodes that
belong to the same lithoclass. Also, corrections for local probabilities are made taking into
account the proportions shown by each permeability class in the simulated lithoclass. The

result of the simulation consists of the allocation of each grid node x, to one permeability

class cl, in the case of the point x, belonging to the k lithoclass: [PzcI (xu)|k] s,
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In Table 4.2, experimental marginal frequencies of each permeability class inside each

lithoclass are displayed. In

Table 4.3 through Table 4.5, marginal frequencies of each permeability class inside each
lithoclass corresponding to 3 different simulated images of permeability classes are
displayed (values for each lithoclass were calculated for 100%). As can be observed, all
experimental proportions are matched approximately in the simulated images. Figure 4.3
shows a set of simulated images of lithoclasses (left) and the corresponding simulated

images of permeability classes (right).

Table 4.2 Experimental proportions P, (X,) by lithoclass and permeability class (samples).

Lithoclass 1 2 3 4 5 6 7

2 0.449 0.227 0.162 0.052 0.052 0.058 0.000
3 0.719 0.281 0.000 0.000 0.000 0.000 0.000
4 0.889 0.111 0.000 0.000 0.000 0.000 0.000
5 0.222 0.778 0.000 0.000 0.000 0.000 0.000
6 0.261 0.723 0.016 0.000 0.000 0.000 0.000
7 0.086 0.586 0.259 0.069 0.000 0.000 0.000
8 0.044 0.641 0.315 0.000 0.000 0.000 0.000
9 0.242 0.344 0.186 0.136 0.025 0.025 0.042
15 0.000 0.128 0.169 0.548 0.127 0.028 0.000

Table 4.3 Simulated proportions P, (X,) by lithoclass and permeability class (REALIZATION #1).

Lithoclass 1 2 3 4 5 6 7

2 0.444 0.253 0.150 0.064 0.043 0.046 0.000
3 0.624 0.376 0.000 0.000 0.000 0.000 0.000
4 0.824 0.176 0.000 0.000 0.000 0.000 0.000
5 0.268 0.732 0.000 0.000 0.000 0.000 0.000
6 0.289 0.630 0.081 0.000 0.000 0.000 0.000
7 0.193 0.501 0.217 0.089 0.000 0.000 0.000
8 0.119 0.580 0.301 0.000 0.000 0.000 0.000
9 0.276 0.358 0.169 0.116 0.026 0.022 0.032
15 0.000 0.126 0.152 0.581 0.112 0.029 0.000
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Table 4.4 Simulated proportions P, (X,) by lithoclass and permeability class (REALIZATION #2).

Lithoclass 1 2 3 4 5 6 7

2 0.439 0.256 0.148 0.065 0.040 0.051 0.000
3 0.614 0.386 0.000 0.000 0.000 0.000 0.000
4 0.825 0.175 0.000 0.000 0.000 0.000 0.000
5 0.281 0.719 0.000 0.000 0.000 0.000 0.000
6 0.292 0.623 0.084 0.000 0.000 0.000 0.000
7 0.201 0.495 0.210 0.095 0.000 0.000 0.000
8 0.123 0.578 0.299 0.000 0.000 0.000 0.000
9 0.271 0.359 0.175 0.114 0.025 0.023 0.033
15 0.000 0.136 0.147 0.576 0.113 0.028 0.000

Table 4.5 Simulated proportions P, (X,) by lithoclass and permeability class (REALIZATION #3).

Lithoclass 1 2 3 4 5 6 7

2 0.442 0.251 0.154 0.061 0.040 0.051 0.000
3 0.627 0.373 0.000 0.000 0.000 0.000 0.000
4 0.829 0.171 0.000 0.000 0.000 0.000 0.000
5 0.270 0.730 0.000 0.000 0.000 0.000 0.000
6 0.283 0.633 0.084 0.000 0.000 0.000 0.000
7 0.196 0.488 0.222 0.093 0.000 0.000 0.000
8 0.127 0.583 0.290 0.000 0.000 0.000 0.000
9 0.274 0.353 0.172 0.117 0.027 0.025 0.031
15 0.000 0.141 0.143 0.576 0.112 0.028 0.000
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4.3.3 TRANSFORMATION OF IMAGES OF PERMEABILITY CLASSES INTO
NUMERICAL IMAGES OF PERMEABILITY

The final step of the proposed methodology consists of transforming permeability classes
(categorical maps) into numerical values of permeability. The aim of this step is to simulate

probability values based on the local ccdf by using the p-field simulation approach. Thus, for
the field area A, 9 plus 9 independent probability fields were simulated [pk(xu)]s (one by
lithoclass and for the continuous and erratic sets) using the permeability classes (P, )

variogram model (see Figure 4.1 and Figure 4.2). Simulation of a probability field with
uniform distribution can be obtained via a sequential Gaussian simulation. After ranking the
entire set of Gaussian values in increasing order, each grid node is transformed according to
the following relation: p;/ N, where p; is the position order of the node x, in rank vector and N

represents the total number of grid nodes.

Finally, in each point x, a permeability value Zs(x,) is drawn with the local ccdf and the

simulated probability field [p, (x,)[:

Zo(Xy) = F (X4, 2, p(X,)) (4.13)

An additional step is required to ensure a match between the simulated permeability maps
and the core data samples. For this purpose, the experimental values of permeability were
directly allocated to the nearest grid node. This single step guarantees that the simulated

values match the core data samples.

The practical application of this final step - the transformation of permeability classes into
permeability values using the probability field values - is presented in the flow chart in Figure
4.4.
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Figure 4.4 Flow chart representing: a) building local ccdf(x) for the entire grid area; b) drawing
permeability values from the local ccdf(x), using a probability field and a Monte Carlo approach.

4.3.4 VALIDATION OF RESULTS

Figure 4.5 shows a sequence of cross-sections representing one realisation of permeability

values.

In Figure 4.5 the basic statistics of z(x) (each one by lithoclass) for the samples (left images)

and for one simulated realisation of permeability (right image) are displayed. As the figures

show, the match between the two types of data is excellent. This means that the

methodology used is an appropriate tool to describe heterogeneous reservoirs like this

carbonate field which involve dealing with under-sampled variables like permeability.
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Figure 4.6 Univariate statistics illustrating distribution of permeability by lithoclass: left) core data;
right) simulated values.
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Figure 4.6(cont) Univariate statistics illustrating distribution of permeability by lithoclass: left) core
data; right) simulated values.
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Figure 4.6(cont) Univariate statistics illustrating distribution of permeability by lithoclass: left) core
data; right) simulated values.

Finally, to evaluate the contribution of the conditioning effect of the samples on the different
images involved in the sequence presented in this section (initial images of lithoclasses,
filling of simulation of permeability classes and filling of permeability values), an entropy
analysis through these different images is performed. Thus the entropy measurement was
calculated (expressions 2.32 and 2.33, see section 2.5) for the set of simulated lithoclass
images and for the set of permeability classes images. As has already been stated, this is a
measure (varying between O and 1) of the variability of sets of images that represent a
categorical variable. Figure 4.7 contains illustrated images of entropy with reference to a
level selected from layer 150 for the lithoclass images and for the corresponding image of

permeability classes.

In the entropy image related to the simulated images of lithoclass, there is a gradual
increase in variability, which is smooth around some wells and sharp around others. These
differences in variability transitions depend on the type of lithoclass sampled in the well and
the respective continuity model: there is a significant increase in variability around wells of

erratic lithoclasses.

Regarding the entropy of the simulated images of permeability classes, there is a significant
increase in variability around wells of continuous lithoclasses due to the fact that there are
erratically distributed permeability classes in continuous lithoclasses. Overall, the entropy
measurement is lower in the images of permeability classes, due to the concentration of
permeability values in two classes (1 and 2), one of which is classified spatially as

continuous.
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Figure 4.7 Upper image: entropy distribution on level 1 of the lithoclass image set; Lower image:
entropy distribution on level 1 of the permeability class image set.

In order to be able to check whether the number of simulations was considered sufficient (30
lithoclass simulations and 90 permeability classes simulations — 3 for each lithoclass image),
entropies were calculated taken at each point of the whole grid of points for different sets of
realisations, varying between 2 and the total number of realisations. These results are
represented graphically in Figure 4.8. Observing the graphs, it can be seen that the number
of simulations may be considered sufficient given that the rate of increase of total entropy

diminishes greatly as the number of realisations considered increases.

Entropy vs Number of Realizations Entropy vs Number of Realizations

90000 80000.0
- /_‘/W 70000.0
70000

60000.0
60000

50000.0
50000 /

40000.0
40000

30000.0
30000
20000 / 20000.0 /

10000

10000.0

0

0.0
123 45 6 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 14 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88

Figure 4.8 Left: variability of the sum of the entropy with increasing number of realisations for
stochastic images of lithoclasses; Right: variability of the sum of the entropy with increasing number of
realisations for stochastic images of permeability classes.
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Characterisation of Spatial Uncertainty of Undersampled Variables

For the simulated images of permeability, the variance of values at each grid node was used
as a measure of the variability of the images. The variance obtained varies from 0 (in the
sample locations) to approximately 688. Figure 4.9 shows images of the variance relating to
a selected level of layer 150 for the image of permeability figures. Figure 4.10 shows the
total variances for all simulated nodes for different sets of realisations. Based on these
figures, it can also be observed that that the number of realisations may be considered
satisfactory given that the increase in variability stabilises. It should also be pointed out that
the criterion used was based on the sum of local measures of entropy or on local variances
to measure the variability of a set of simulated images. It should therefore be borne in mind
that the use of this criterion is based on local measures of the variability of simulated values

at each node of the grid and not on the variability of the whole set.
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Figure 4.9 Variance distribution on level 1 for the entire set of 90 simulated images of permeability
values.
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Figure 4.10 Variability of the sum of the variance with increasing number of realisations for the
stochastic images of permeability values.
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4.4. FINAL REMARKS

This case study illustrates a methodology for the characterisation of under-sampled
variables, which is a common situation in most oil reservoirs, regarding permeability data.
Permeability is usually estimated by correlation based on a small amount of core data and
detailed log measurements. The method described in this section is able to produce
simulated images of permeability combining core data (more accurate) and additional soft
data (less accurate). The advantage of this proposed method consists in the ability to

integrate two types of information that carry different levels of accuracy.

The permeability simulation must reflect the high level of heterogeneity usually associated
with this variable and must preserve the extreme values. Great care was taken in the
permeability simulation in view of the complexity involved in the methodology. It is important
that the variability shown in the permeability core histogram is preserved and reproduced
through the stochastic model. As the dynamic simulator must be fed with numerical values of
petrophysical properties, such as permeability, it was necessary to develop a process for
transforming the permeability classes into data values. This process accounts for the
heterogeneity of permeability values found in the field, preserving the spatial structure and,
perhaps most importantly, it reproduces the extreme values. In a field like the one presented
in the case study, where the permeability is either very low or very high, it is important that

the stochastic model reproduces the patterns of high and low fluids flow paths.
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5 RESERVOIR INTERFACE DESCRIPTION/RESERVOIR FLUID
FLOW SIMULATION

5.1. SCREENING OF DIFFERENT STOCHASTIC REALIZATIONS: GEOBODY
ANALYSIS

In reservoirs for which only a small amount of information exists, the range of geostatistical
techniques for producing conditional simulations can be used to generate several equally
probable realisations of the internal distribution of rock types and properties. This set of
images honours the data points, basic statistics and continuity models, and is a tool to
qguantify uncertainties in forecasting studies associated with reservoir fluid flow performance
and depletion. Geostatistical models based on simulation techniques have been devised to
account for small-scale variability, ensuring adequate representation of extreme values.
Each realisation is unique, because the random component influence is proportional to the
distance between wells and inversely proportional to the spatial continuity revealed by the
variogram tool. In areas where well spacing decreases and spatial correlation increases, the
different stochastic realisations become more alike. Furthermore, the presence of geological
heterogeneities conditions the drainage mechanism of oil and affects fluid flow. For example,
low permeability geobodies act as barriers to fluid flow, unlike high permeability connections,

which are preferential fluid flow channels.

Following the use of geostatistical stochastic simulations to generate equally probable
reservoir descriptions, the set of output images of permeability, porosity and fluid saturation
conditioned to lithoclass morphology constitutes the main input datasets for the fluid flow
simulators. The importance of having different realisations for this particular complex
reservoir is that they provide an assessment of uncertainty in space. Comparison between
realisations helps us to identify critical uncertainties and perform risk analysis, and
constitutes a guideline for future steps on data gathering programmes (Da Costa e Silva,
1992). The final objective is to obtain the range of uncertainty of the parameters that can
affect reservoir performance. To transform the uncertainty of the simulated images into
reservoir performance forecasting one needs to run the fluid flow simulator using the entire
range of images. In order to process all simulated images in a fluid flow simulator, even after
a change of scale, a previous selection of the more representative stochastic images is

proposed.

In this approach, the selection of a few images is based on the extreme behaviour of internal

characteristics (permeability) of the reservoir. The basic tool to classify all the simulated
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images is a measure of the continuity and connexity of geobodies of high and low

permeability. The application of this screening tool can be summarised in the following steps:

i) Define a threshold, the permeability being classified as high if it is above the
threshold, otherwise it is considered low or medium. To provide better screening
between realisations, the threshold should correspond to a value that creates a

considerable volume of high and low permeability areas;
Thus, for the entire set of simulated images:

i) Transform all permeability images into binary images, using the threshold defined

above;

iii) Identify of all geobodies in the binary image and calculate the volumes of all individual

geobodies;

iv) Represent on a single histogram the frequency of different volume geobodies for

each realisation;

v) Visually select the extreme situations: the realisation with highest percentage of high

volume geobodies; the realisation with highest frequency of low volume geobodies.

The main drawback of the proposed selection algorithm is that the spatial location of the
wells is not taken into account. In other words, a classification based on the volumes of
individual geobodies does not take into account the location of these same geobodies.
Another approach derived from this is to calculate the volume of high or low permeability
areas that contact a specific well or set of wells and comparison of volumes between
simulations. A major feature of these tools is that the scanning of each realisation is
performed in 3D space, which enables for a detailed and complete analysis of continuity

characteristics.

To illustrate the performance of the proposed measuring tools, 90 simulated images of
permeability produced using the simulation methodology for undersampled variables were
used and compared (see section 5). The threshold used to define high permeability
geobodies was 15mD, corresponding to the 0.85 percentile. Otherwise, to define low
permeability geobodies, the threshold used was 0.1mD, corresponding to the 0.2 percentile.

In Figure 5.1, the histogram of the geobodies volume is shown.
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Figure 5.1 a) Histogram of volumes for geobodies of high permeability for the set of realisations; b)
Representation of the index volume of geobodies (high permeability) for the set of realisations.

To produce this histogram, data from the first class corresponding to the smallest geobody
volumes was removed because this class has a very high frequency for all simulations (over
than 1500 occurrences compared with the second class, between 2 and 27 occurrences)

and this difference of occurrences would undoubtedly mask the analysis.

To summarise each of these lines into a value which can be compared to others, an index
based on the frequency of each class weighted by volume was computed for each

realisation #r using the expression:

f

!
Index,, =1=2
2

i=2

n

where n is the number of classes of volumes, f; is the number of occurrences of geobodies

with class of volume i, and 4, represents the weight of class of volume i - (4 =i-1) in this

application.

The results are given in Figure 5.1 b). Looking at this chart, it is easy to select low and high

continuity realisations or even middle situations based on the defined criteria.

In Figure 5.2 a) the histogram of the volume of low permeability geobodies is displayed. In
Figure 5.2 b) the corresponding representation of the index based on the frequency of each
class weighted by volume is also displayed. Extreme and middle situations based on the

defined criteria can be easily selected.
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Figure 5.2 a) Histogram of volumes for geobodies of low permeability for the set of realisations; b)
Representation of the index volume of geobodies (low permeability) for the set of realisations.

The second objective is to rank the realisations based on a measure of volumes of high
permeability that contact a set of wells. For illustrative purposes, the selection includes 11
wells located in the middle of the field (see Figure 2.12 through Figure 2.16). Figure 5.3
represents the number of blocks (volumes) of high and low permeability that contact the

selected central wells.
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Figure 5.3 Volumes of geobodies that contact the selected 11 central wells: left: high permeability
geobodies; right: low permeability geobodies.

Following this representation, the realisations were ranked by the defined criteria. The main
problem consists in the selection of a few realisations (for example, two or three) that are
representative of the field based on multi-selection criteria. Another difficulty is the
assumption that the criterion used to rank the simulations is appropriate for the required
purpose. However, it is important to note that the main objective at this stage is to use a

simple classification to rank the simulations before upscaling, ensuring that the flow
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simulations enable us to pick the most representative scenarios of extreme behaviours in

terms of fluid flow.

5.2. UPSCALING OF PROPERTIES

5.2.1 INTRODUCTION

In the present work a conditional and iterative approach of upscaling of permeability is
proposed based on the formulation of mass balance equations and Darcy’s Law (Archer and
Wall, 1986). In the classic approach, the effective permeability in a particular set of blocks is
derived from the application of a pressure gradient between two opposite boundaries and
the imposition of a no-flow condition in the others. Based on the pressure solver technique,
the idea is to improve the quality of upscaling by including in the calculation of the equivalent
permeability of each large-scale block (macroblock) the influence of the permeability values
in the set of neighboring small-scale blocks (microblocks) as well as the interdependence
between the scale-up values of previously transformed macroblocks (Gomez-Hernandez
and Journel, 1990, 1994, Almeida et al, 1996). These concepts led to the proposed
interactive method: in each iteration corresponding to the upscaling of one macroblock, the
solutions are ranked according to a criterion based on a flow test and expressed in one
objective function. In the second step, the macroblock corresponding to the minimum value
of the objective function is selected. The process continues until all blocks are scaled up.
This method guarantees that the solutions are successively conditioned to initial permeability

values and/or to scale-up values obtained in previous iterations.

The performance of this method is illustrated (in comparison with the classic approach) by
comparing the waterflood shape in a flow test using two opposite wells located in the small-

scale blocks and the large-scale blocks using the flow simulator ECLIPSE 100.

5.2.2 THE PROBLEM OF UPSCALING PERMEABILITY

The use of geostatistical simulation methods (e.q. sequential Gaussian simulation and
sequential indicator simulation) in oil reservoirs to describe the petrophysical properties
between wells (namely lithofacies, permeability and porosity), leads to equally probable
images of the spatial distribution of these properties (Journel and Alabert, 1988, Journel and
Gomez-Hernandez, 1994, Da Costa e Silva et al, 1993). Each of these images contains
several hundred thousand values and constitutes a valuable tool in interpretation of the

morphological and petrophysical structure of the reservoir. For instance, the studied
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reservoir illustrated in this work was sub-divided into 4 million small-scale blocks. Each set of
values is also used as input into dynamic simulation studies, which determine the flow

between adjacent wells.

Running flow simulations on computers is a complex task and consequently the operations
tend to be slow, which restricts the number of blocks and layers that can be used
simultaneously. These restrictions that in most cases the scale of the simulated blocks must
be changed, in order to come up with just one value for a set of adjacent blocks with a
particular fixed geometry. The solution lies in the use of a correct scale-up or upscaling (or
grossing up) technique coupled with a preliminary dynamic assessment and validation of the

model.

Since the permeability in a porous medium is a non-additive variable with tensor
characteristics, calculation of one equivalent value for a set of blocks can not be performed
using any type of averages (with exceptions for very simple geometrical configurations).
Also, of all petrophysical properties, permeability makes the greatest contribution to

formulation of the equations associated with fluid flow in porous media, namely Darcy’s Law.

Several methodologies have been proposed for calculating the equivalent permeability,
which are more or less complex depending on the simplifications imposed on the upscaling,
the geometry of the grid, and the heterogeneity of the field. The question of upscaling has
been approached from several standpoints, such as using techniques based on the stream
tube concept (Haldorsen and Lake, 1982), study of tortuosity in porous media - application of
the renormalisation technique (King, 1989, Abu-Elbashar, 1990), use of means of power n,
or the formulation of the equations of mass transfer based on mass balance and Darcy’'s
Law (Gomez-Hernandez and Journel, 1990, Rummy, 1990, Malick and Hewett, 1994).

Consider the following example, which illustrates the applicability of techniques based on
different averages and renormalization: for a set of blocks in a serial sequence (1 by 1 by n),
the equivalent permeability in the longitudinal direction is given by the harmonic mean; for
the same set of blocks in the perpendicular direction the equivalent permeability is given by
the arithmetic mean of permeability values. Using renormalization, it is possible to calculate
the equivalent permeability (the two orthogonal components of the permeability tensor K,
and Ky) for a set of blocks based on a geometry of 2 by 2, or with simplifications for other 2D
geometry (this implies recursive calculations). But considering a set of 2 by 2 by n blocks,
calculation of the equivalent permeability for each orthogonal direction cannot be done using
a single mean or combination of means. Thus, more complex upscaling methods based on

the formulation of transfer equations between blocks when a pressure gradient is applied

134



Reservoir Interface Description/Reservoir Fluid Flow Simulation

can be considered. The solutions provided by these methods are the set of pressures in
each block, which leads to the computation of the equivalent permeability, according to

Darcy’s Law.

In the present work a new technique of upscaling is proposed derived from these
formulations. The objective is to improve the quality of upscaling by including in the
calculation of the equivalent permeability of each large-scale block (macroblock) the
influence of the permeability values in the set of neighbouring small-scale blocks
(microblocks). The application of this principle has led to an iterative method. Each iteration
corresponds to the upscaling of one macroblock and the derived solutions are successively
conditioned to initial permeability values and/or scale-up values obtained in previous

iterations.

The performance of this method is compared with the classic approach, corresponding to the

formulation of the system of equations for each macroblock, when considered separately.

In this case study, one flow test was performed to evaluate the performance of the proposed
method. This test consists in the evaluation of the performance over the entire grid and is a
comparison of the shape of the waterflood in a flow test using two opposite wells located in
the small-scale blocks and the large-scale blocks and using the flow simulator ECLIPSE
100.

5.2.3 CALCULATION OF EFFECTIVE PERMEABILITY USING THE PRESSURE
SOLVER TECHNIQUE

Figure 5.4 represents a partial set of microblocks extracted from reservoir grid blocks, each

with dimensions 4x, Ay and 4z, and a known permeability value on each grid block.

Given that permeability is a tensorial variable, in each block orthogonal components are
assumed to be known. In this case, the same value is allocated to the three components of

the permeability tensor Ky = K, = K, = K.

For simplification, consider this explanation of upscaling using the pressure solver technique
in two dimensions. The objective is to calculate the effective components of permeability for
each macroblock (set of ny by n, microblocks), respectively K, and K, (Figure 5.4), that

summarise the initial isotropic values.
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Figure 5.4 Upscaling of permeability: representation of microblocks and corresponding macroblocks.

In each set of microblocks that corresponds to a macroblock, two flow situations are created
(Figure 5.5), parallel to the axes of the block coordinates, and derived from a pressure
gradient imposed under no-flow boundary conditions. Boundary conditions are imposed to
ensure that the system of equation resulting from the application of mass balance and
Darcy’s Law can be solved. To calculate the component K, of equivalent permeability, a flow

is simulated parallel to the X direction, under the following conditions:
i) Blocks belonging to the first column have a constant pressure, Pinp;

ii) Blocks belonging to column n, have a pressure lower than Pin, ; Poue results from the

application of a pressure gradient equal to Piy,-Pou;

iii) Blocks in boundaries have null transmissivity, i.e. no flow in the Y direction.

Consider the flow Q of an incompressible fluid; the equations for the microblock of indices

(i,)), resulting from the mass balance due to steady-state conditions are:

2

(Qx_ 1 _Qxi—l,j)+(Qyi,j+l _Qy__ 1):0 (51)

where indices (i+1/2, j), (i-1/2, j), (i,j-1/2) and (i,j+1/2) represent respectively the interface of
the block (i, j) with its neighbouring blocks, namely (i+1,j), (i-1,j), (i,j+1) and (i,j-1).
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Figure 5.5 Two-flow design conditions for the determination of the effective permeability for each
macroblock aggregating a set of 3 by 3 microblocks.

Suppose that only a single fluid is considered and the flow is under Darcy’s Law conditions:

- - K, AXAz
QX :Md_lj and Qy :y—d_P (52)
uoodx u o dy
where p represents the viscosity of the fluid.
This equations yields:
K AYyAZ K AyAZ
T y (P_y;—P) 0 Tied y (P —Pi1j)
Qx - Qx - (53)
i3] U AX 430 Y7, AX
o) Z_Kyi,i—%AXAZ (Pi,jfl_Pi,j) Q :_KyiyJ‘%AXAZ (Pi,j _Pi,j+1) (5.4)
Yii-g H Ay Tiieg H Ay '
where K, . and K, . represent respectively the permeability in the interface between
i-1/2,j i+1/2,j
the blocks (i-1,j) with (i,j) and (i,j) with (i+1,)); K, 12 and K, ..., Tepresent respectively the

mean permeability in the interface between the blocks (i,j-1) with (i,j) and (i,j) with (i,j+1).
These permeability values in the interface between the blocks can be estimated using the

harmonic average of each two adjacent blocks:
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K, K, K,
K, , =2 X oz M Nl (5.5)
2 KX| 1] +KXi,j 2! Kxi,] me,j
K ~2 KYi,j-l'Kyi,j K ~92 Kyi,j 'Kyi,j+1 (5 6)
y. . - y. . = .
"2 KYl,j—l KYl i IYH% Kylj KYi,j+1

(5.7)

(5.8)
AX{KM Pia—K, Pia+(K, [ +K, 1).&,}:0
2 ) *3 )

The formulation of this mass balance equation for all blocks leads to one n,.n, system of
equations (one equation for each block) in this general form:

A P.-B

VRN

i ijritL] 1P~ EijPija=0 (5.9)

This equation system can be solved using iterative techniques. For example, in Matax and
Dalton (1990, pp. 146-151) several common iterative methods used in the solution of this
particular type of equation system are described. The approach used in this case study (and
implemented FORTRAN-77 code, Almeida®, 1996) is based on point relaxation. In each

iteration, for the block i,j a new pressure value is calculated, using the following expression:
Pk+li,j :Pki,j +a’(Rki,j/Ai,j) (5.10)
where:

o Is the relaxation parameter, with an optimal value (which leads to a smaller number of
iterations) between 1 and 2. In our example, after some attempts and comparisons based

on the number of final iterations, the value 1.8 was used,
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and

RYj=-A P ;+B P, +C P" ., +D, P, +E P ., (5.11)

The solutions of this system of equations are the pressure values P;;in the centre of each

block (i,j), conditioned to the boundary conditions imposed by the flow.

Taking the flow in the X direction to obtain the permeability tensor component in the same

direction, and making use of the Darcy’s Law and mass balance, leads to the following:

L AYAZ Y
Qinp - AX ]gl |:Kx1+%’j (P2,j - I:’inp):| (512)
and:
AYAZ
Qout == Y Z Kx 1. (Pout - an—l,j) (5.13)
AX 3 -3

Given that Qinp = Qout , USiNg expressions (5.2) and (5.12) or (5.13):

AYAZ I nyAyAz
- K P, —P =————K (P — P 5.14
AX JZ:;- { xl+%’j ( 2,j inp )} (nx _ 1)AX x( out mp) ( )

which leads finally to:

ny
Z|:Kx1 1. (Pz,j - Pinp):|
j=1 +o)
K, =12 (5.15)
Y (Pout - I:’inp)

(nx =1

Similarly, taking a flow parallel to the Y direction, one has the solution:

nx

Z{Kyml (P2 = Pinp )}

K ==L — 2 (5.16)
m(Pout - F)inp)
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5.2.4 IMPROVEMENT OF THE PRESSURE SOLVER TECHNIQUE FOR A
CONDITIONAL UPSCALING APPROACH OF PERMEABILITY

In the previous chapter the calculation of the equivalent components of the permeability
tensors is illustrated based on the pressure solver technique, Ky and K, using expressions
(5.15) and (5.16) respectively. This approach assumes a flow parallel to the coordinate axis
with no-flow boundary conditions to solve the equation system. The upscaling of different
blocks is considered independently of each other. Thus the permeability and consequent
flow in the neighbourhood of a given block are not taken into account. The permeability
values in neighbouring blocks and sets may result in different flow patterns from the

assumed orthogonal X and Y directions.

In this study a new approach is proposed based on one iterative and optimal calculation of
the tensor permeability components for each macroblock; these are conditioned to the
permeability values of the neighbouring microblocks and to the values that result from this

upscaling approach in previous iterations.
This proposed algorithm can be summarised in the following steps (Figure 5.6):

1) For each set of microblocks to come up with one value, calculate a variability measure,

for instance the range of values.
2) Rank these values in increasing order.

3) For the first selected set of microblocks, the effective permeability (tensor components Ky
and Ky) is calculated using the pressure solver approach described above. Each of these
components is the solution of the system of equations resulting from the mass balance in
a flow test as illustrated in Figure 5.7 a), which in this particular case, shows the

determination of the component K,.

In the first stage, the amount of flow Qlinp that occurs in the conditions illustrated in Figure 5.7
a) is calculated. This flow is calculated taking the pressure calculated in the centre of each
microblock (assuming steady-state flow conditions) resulting from a pressure gradient to be
equal to (Pinp-Pou) applied to the blocks of both extremities and corresponding
transmissivities in the interface between these microblocks. The pressure on the centre of
each microblock is calculated by solving a system of equations similar to the (5.9). In this
system of equations, null transmissivity between microblocks (to come up with one value) in

the Y direction is imposed to ensure a single solution in the calculation of equivalent K,.
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Figure 5.6 Steps of the proposed conditional upscaling approach.

Given the calculated values of pressure in all microblocks P;; and transmissivities in the

interface of blocks KXH;]. , the flow Q%,, is computed using this expression:
L

K AYAz K AYAz
oty & e G A N B R A
inp = E = E =..
-1 H AX j=1 H AX

In the second stage, the value K, equivalent is calculated to be assigned to the macroblock
(see example illustrated in Figure 5.7 b), with the condition innszlmp, when the same

pressure gradient is applied.
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Determination of equivalent permeability K, based on the condition Qlinp = innp

Solution of the solver pressure system of equations:

3 | | | \
Kl 1 KZ 1 K3 1 K4 1 K5 1 K6‘1 Pl 1 PZ 1 P3 1 P4 1 P5 1 P5 1
Kl 2 KZ 2 K3 2 K4 2 K5 2 KG‘Z Pl 2 PZ 2 PS 2 P4 2 PS 2 PB 2
Kiz| Kog [ Kag | Kag | Kss | Kes Pia | P2s [ Paa | Pag [ Psa | Pss p
— — Pinp o
1 Kia| Koa | Kaa | Kaa | Ksa | Kea 1 Pia | Poa | Paa | Kaa | Psa | Pea
Q inp Q out
K15 K25 K35 K45 K55 K6,5 P15 P25 P35 P45 P55 P65
Kig | Kog | Kag | Kag | Kse | Kes Pis | Pas [ Pas | Pag | Pss | Pes
1 1 i iti
22222 No-flow boundary Q inp= Q out Map of pressures in steady state conditions
b)
Kll K21 K31 K41 K51 Kﬁ,l Pll PZl P31 P41 P51 P61
KlZ KZZ K32 K42 KSZ KG,Z PlZ PZZ P32 P42 PSZ PGZ
Kis| Kas Kss | Kes P13 | P2a | Psg  Pa3 | Ps3 | Pes )
|:> Ky ? |::> Pinp out
2 K1,4 K2,4 K5,4 K6,4 2 P1‘4 P2,4 P3,4 K4,4 P5‘4 PEA
Q inp Q out

K15 K25 K35 K45 K55 KG,S P15 PZS P35 P45 P55 PGS
Klﬁ K26 K36 K46 K56 KG,G P16 P26 P36 P46 P56 P66
222777 No-flow boundary innp: onut: Qlinp Map of pressures in steady state conditions

Figure 5.7 Flow test for the formulation of the system of eciuations in order to calculate the equivalent
permeability K,: a) first stage: calculation of the flow Q7 ; b) second stage: calculation of the
equivalent permeability K, based on the condition innp:lep, when the same pressure gradient is
applied.

Following this sketch, if a given permeability K’y is greater than K, this means that:

Q%np =f(K',)> Q%np (K,) (5.17)

This condition suggests that the calculation of K, can be performed iteratively using a

suitable optimisation procedure.

The calculation of K, follows a similar scheme, in this case generating a flow parallel to Y

and imposing a no-flow boundary condition on the X direction.
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4) Test if microblock exist. If there are more small blocks, return to step 3, which means

triggering a new iteration. The process continues until all small blocks are upscaled.

During this upscaling process, the calculation of the equivalent permeability components K,
and K, takes into account the upscaled blocks given by previous iterations. Figure 5.8
illustrates the flow scheme used to calculate the Ky and K, in one iteration step of the
upscaling procedure by using microblocks together with macroblocks already upscaled in

previous steps.

Determination of equivalent permeability K, based on the condition Qlinp = innp

Solution of the solver pressure system of equations

3) | | | |
Kl 1 KZ 1 K3 1 K4 1 K5 1 Ke‘l Pl 1 PZ 1 P3 1 P4 1 P5 1 PG 1
Kl 2 KZ 2 K3 2 K4 2 K5 2 KG‘Z Pl 2 PZ 2 P3 2 P4 2 PS 2 PG 2
Kiz| Kog [ Kag | Kag | Kss | Kes Pia | P2s | Pag | Pag [ Pss | Pes
— — Pinp Pout
Ql Kia| Kog | Kag | Kag | Ksg | Kes Q 1 Pia | P2sa | Paa | Kaa | Psa | Psa
inp out
Kl 5 KZ 5 K3 5 K4 5 K5 5 K6,5 Pl 5 P2 5 P3 5 P4 5 P5 5 PG 5
Kis| Kog | Kag | Kag [ Kse | Kes Pis | P2s | Pas | Pas | Pss | Pes
1 1 i iti
B2 No-flow boundary Q inp= Q out Map of pressures in steady state conditions
b)
K3 1 K4 1 K5 1 Kﬁ,l P3 1 P4 1 P5 1 P6 1
Ky, Kyt Py
K3 2 K4 2 K5 2 KG,Z P3 2 P4 2 PS 2 PB 2
Kiz| Kag Pia | P2z [Pas  Pag
|:> Ke2 | KeKp |:> Pinp P, Pout
Q2 K1,4 K2 4 Q2 P1,4 P2‘4 P3,4 K4,4
inp out
Kl 5 KZ 5 K3 5 K4,5 Pl 5 P2 5 P3 5 P4 5
Kz Kys Ps
K16 K26 K36 K4,6 P16 P26 P36 P46
2 2 1 f i
E72722) No-flow boundary Q inp= Q%u= Q inp Map of pressures in steady state conditions

Figure 5.8 Calculation of flow ratios and equivalent permeability in one step of upscaling.
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5.3. VALIDATION OF THE PROPOSED UPSCALING METHODS FOR
PERMEABILITY

To evaluate the quality of the upscaling a single test is proposed that consists in the
observation of the waterflood front advance in a flow simulation using the simulation
package ECLIPSE 100. This dynamic simulation test involves comparison of the shape of a

waterflood front when a full set of blocks is submitted to injection of water.

The first part of the test consists of a dynamic flow test, using initial microblock geometry and
two wells: one is used to inject water and the other, in the opposite corner, is used to
produce oil, assuming initial pressure, water saturation, and porosity constant for all
microblocks. Time steps of reports and total simulation time were chosen in order to observe
the advance of the waterflood front over the entire field and when water arrives at the
producing well. The second part of the test consists of a similar dynamic flow test, at using
this time the upscaled macroblock geometry and corresponding permeability components K,
and K,. Thus, for the same time period of simulation the waterflood front advance was
compared in both situations (after and before upscaling), particularly in critical regions,
where the amount of heterogeneity in permeability values leads to a more irregular and

winding flow.

The initial permeability map is obtained by stochastic simulation, see section 5. This test was
conducted for a selected level of the entire 3D model. In this set of values (120 by 40 by 1

blocks) it is possible to observe some spatial heterogeneity of the values, and more or less

tortuous connections of the highest and lowest values (Figure 5.11, upper image).

Permeability

1091.352

982.218
B73.084
7B63.948
654.816
545 631
436.547
327413
218.278
109.144
0.010

In this example the performance of the proposed approach is illustrated when applied to the

Figure 5.9 Initial permeability map.

upscaling of 2 by 2 blocks and 4 by 4 sets of blocks using the proposed test.
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e 2 by 2single upscaling grid

The upscaling of 2 by 2 grid nodes was conducted using a set of 4 neighbouring microblocks

to condition the solution.

For illustrative purposes only, the permeability components K, and K, resulting from the

conditional upscaling approach are illustrated in Figure 5.10.

1022 358
20123
B17.858
115054
613419
511184
408949
6714

204 250

Figure 5.10 Equivalent permeability components K, and K, resulting from a conditional upscaling
approach.

Relative to this grid, the results of the advance of the waterflood front are illustrated in a
sequence of 3 time steps, Figure 5.11 through Figure 5.13. Following this sequence of
images an improved match of the waterflood front is observed when the permeability values
coming from the conditional proposed approach are considered. These improvements are

highlighted in the selected images of the waterfront advance.

Looking at Figure 5.13, a slight retardation of the waterfront near the produced well is
observed when the permeability values coming from the non-conditional approach are
considered. Again, results from this dynamic study show that the conditional approach
produces large-scale permeability maps that attenuate the differences between flow

movements at both scales.
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Figure 5.11 Waterflood front advance in a first time step (2 by 2 upscaling grid): upper image - flow
simulation using initial microblocks; central image - flow simulation using permeability values from the
conditional approach; lower image - flow simulation using permeability values from the non-conditional

approach.

Figure 5.12 Waterflood front advance in a second time step (2 by 2 upscaling grid): upper image -
flow simulation using initial microblocks; central image - flow simulation using permeability values from
the conditional approach; lower image - flow simulation using permeability values from the non-
conditional approach.
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Figure 5.13 Waterflood front advance in a third time step (2 by 2 upscaling grid): upper image - flow
simulation using initial microblocks; central image — flow simulation using permeability values from the
conditional approach; lower image - flow simulation using permeability values from the non-conditional

approach.

e 4Dy 4single upscaling grid

Relative to this grid, the upscaled permeability values and results of the different tests can

be seen in the sequence of Figure 5.14 through Figure 5.16.

Parmeabdity
40 216
1%
175
2155
24134
20113
16083

12072

Figure 5.14 Equivalent permeability components K, and K, resulting from a conditional upscaling
approach.
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cese=n = > Blame 1 sSweaT stee =

Figure 5.15 Waterflood front advance in a first time step (4 by 4 upscaling grid): upper image - flow
simulation using initial microblocks; central image - flow simulation using permeability values from the
conditional approach; lower image - flow simulation using permeability values from the non-conditional

approach.

Figure 5.16 Waterflood front advance in a second time step (4 by 4 upscaling grid): upper image -
flow simulation using initial microblocks; central image - flow simulation using permeability values from
the conditional approach; lower image - flow simulation using permeability values from the non-
conditional approach.
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The upscaling of 4 by 4 grid nodes was conducted using a set of 8 neighbouring microblocks

to condition the solution.

Again, looking at the results from this dynamic study it is possible to conclude that the
conditional approach produces large-scale permeability maps that attenuate the differences

between flow movements at both scales.

5.4. FINAL REMARKS

The selection of a particular upscaling methodology should be related to the major or minor
heterogeneities of the initial permeability values and the number of blocks to be aggregated
and represented by one value. If the set of values is homogeneous the conventional
pressure solver approach with isolated sets of blocks provides a good solution. For
heterogeneous block grids this study shows that the use of a more elaborate method
increases the quality of the reproduction of the flow shape in tests with the simulation

package.

With these results it is possible to conclude that the reproduction of the flow shape over the
upscaled blocks is more accurate when using the proposed conditional methodology of
upscaling. This improvement is evident in both upscaled grids used, 2 by 2 and 4 by 4. In
Figure 5.11 through Figure 5.13 and Figure 5.15 and Figure 5.16 the advantage of using this

type of upscaling versus the conventional pressure solver is demonstrated.

This approach can easily be generalised to three-dimensional grids. It is necessary to
emphasise that all tests in this case study are performed in two dimensions to simplify the
presentation. The disadvantage of this method is that it is extremely time-consuming,
especially when using three-dimensional grids. One possible way to avoid this problem is to
combine this method with the simple pressure solver approach. Thus, in small
heterogeneous sets of blocks, upscaling could be performed successfully using the simple
pressure solver. Otherwise, in more heterogeneous sets of blocks, the optimisation method

proposed should be used.

149






6 CONCLUSIONS

At this final stage it is useful to emphasise the main steps of the proposed methodology for
the spatial characterisation of heterogeneous reservoirs. Regarding this, the following
paragraphs synthesise the new developments and the main remarks concerning to the

proposed set of methods.

This integrated methodology of characterisation is based on a multi-step approach and
encompasses the construction of a geological model of lithoclasses, a petrophysical model,
constrained to the previous geological model, and the interface between geostatistical
models and the input to the fluid flow simulator. The geological model of lithoclasses is
intended to reproduce the heterogeneity observed between lithoclasses. The conditional
petrophysical model is responsible for displaying the heterogeneity within each lithoclass,

rather than between lithoclasses.

This multi-step methodology was implemented and adapted to the particular specifications of

the reservoir studied - a highly heterogeneous carbonate reservoir.

The simulation of lithoclasses was performed using alternative methods of simulation of
categorical variables that enable a comparative study to be performed. Regarding this

comparative study, it is important to highlight the following points:

a) All approaches used generate sets of equally probable images of lithoclasses that
reproduces spatial continuity models, the proportions of each lithoclass and experimental
data. However, each of them produces typical spatial patterns of lithoclass distribution,

which were compared exhaustively.

b) The theoretical background of all simulation approaches implemented in the
characterisation of the spatial geometry of lithoclasses is based on the multi-phase
concept. This concept and the corresponding multi-phase continuity measure tool,
proved throughout along this study to be one of the most suitable to characterise the
spatial continuity of categorical variables (for example, lithologies or rock types) rather

than the usual alternative methods.

c) The improvement of correction for local probabilities in SIS shows accurate reproduction
of the proportions of each lithoclass in the final simulated images, maintaining the

reproduction of the variograms.
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The characterisation of petrophysical properties was conducted following the estimation of

the

properties of porosity, permeability and water saturation. Permeability, due to its

particular characteristics, was also modelled using stochastic simulation.

a)

b)

d)

f)
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Regarding porosity and permeability, estimation models were built using zonal control
estimation (with ordinary kriging) taking into account the previously generated images of

lithoclasses.

One of the most important advantages of estimation with zonal control is that the spatial
location of samples of all phases are accounted for while, in the classical procedure, only
samples from the phase which X, (point to be estimated) belongs to are taken into

account.

Given that permeability is a variable which displays a tensorial nature and strong
variability in space, it was always coded in different classes and treated as a multi-phase

set (or categorical set) in the general framework of the stochastic model.

The resulting stochastic model of permeability enables the occurrence of extreme values
of permeability to be handled and mapped, which is of great importance in modelling
fluid flows in the reservoir, since low and high permeability values define flow barriers

and preferential paths.

Estimation of water saturation must take into account the physical rules that condition its
spatial distribution and variability, rather than the distribution of lithoclasses. The
construction of a 3D model of water saturation was performed by ordinary kriging
estimation. The basis of this method is the use of a spatial referential based on the
surface free water level (FWL) that proves to be the most suitable to find the horizontal
correlation and to select the neighbouring samples used to estimate each grid node

(samples at the same depth from the FWL).

Permeability is a variable that mainly conditions the preferential flow patterns and
dynamic behaviour of the field, and consequently the characterisation of its spatial
uncertainty is a key point of the study. Regarding this, a combined approach is presented
able to produce several equally probable simulated images of permeability. Major
advantages of this approach are the combination of two types of information with
different sampling densities, the integration of the undersampled variable (in this
particular permeability) using a probabilistic formalism, and the reproduction of continuity

models and histograms by the simulated images.



Conclusions

Due to the difficulty of using all simulated images in flow simulation studies, it is important to
rank the set of images based on some criteria easily and rapidly implemented criterion that
will select the more representative stochastic images. Concerning permeability realisations,
this study illustrates the application of one simple classification tool based on measure of

volumes of geobodies of high and low permeability and their connectivity with selected wells.

Finally, this characterisation study presents a new technique of permeability upscaling
derived from pressure solver methods. The objective is to improve the quality of upscaling by
including in the calculation of the equivalent permeability the influence of permeability values
in neighbouring blocks. This work illustrates that this method produces coarse images that

more accurately reproduce the patterns of flow observed at small scale.

Finally, it is important to point out that all stochastic methods presented in this work belong
to a more general set of geostatistics methods that are currently used in numerous
applications of earth and environmental sciences. Thus, the methods presented here are not
exclusively for application to reservoirs, but can be generalised to many different

applications.
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