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Abstract 

This work presents a set of techniques able to describe the internal morphology and spatial 

distribution of petrophysical properties within a highly heterogeneous reservoir based on 

data from a small number of wells. The techniques used show that it is possible to present a 

coherent description of highly complex and heterogeneous reservoirs, by imposing the 

spatial continuity models extractable from the experimental data. In the present work, 

reservoir characterisation focuses in the following main topics: 

i) Stochastic simulation of the internal morphology of the reservoir (spatial distribution 

of lithoclasses) encompassing a comparative study between three simulation 

algorithms for categorical variables: truncated Gaussian field with posterior 

conditioning, sequential indicator simulation with correction for local probabilities, and 

simulated annealing. 

ii) Zonal control estimation of porosity and permeability conditioned to the simulated 

images of lithoclasses. Estimation of water saturation based on a coordinate 

transformation to the referential of the free water level to cope with the problem of the 

non-stationarity displayed by this variable. 

iii) Stochastic simulation of permeability – an undersampled property presenting high 

variability and heterogeneity that significantly affect all fluid flow scenarios. 

iv) Screening of realisations following a ranking selection based on the volume of 

geobodies of high and low permeability.  

v) Upscaling of properties from the stochastic block model to the fluid flow simulator 

block model based on a pressure solver technique. 
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Resumo 

Este trabalho tem como objectivo a caracterização da morfologia interna e das propriedades 

petrofísicas de um reservatório de petróleo heterogéneo tendo por base um conjunto de 

amostras de um número reduzido de poços. As técnicas utilizadas mostraram que é 

possível efectuar a descrição coerente de reservatórios deste tipo, ao impor nos cenários 

obtidos as características de continuidade evidenciadas pelas amostras. Este estudo de 

caracterização resume-se à seguinte sequência de etapas: 

i) Simulação morfológica da arquitectura interna do reservatório (distribuição espacial 

de litoclasses). Efectuou-se um estudo comparativo de três algoritmos de simulação 

estocástica de variáveis categóricas: truncated Gaussian field com condicionamento 

posterior, simulação sequencial da indicatriz com correcção das probabilidades 

locais e simulated annealing. 

ii) Estimação por krigagem com controlo zonal da porosidade e permeabilidade 

condicionadas aos mapas de litoclasses. Estimação da saturação em água, 

recorrendo a uma transformação de coordenadas por forma a contornar o problema 

da não estacionaridade desta variável. 

iii) Simulação estocástica da permeabilidade – propriedade petrofísica, regra geral sub-

amostrada, de elevada variabilidade e heterogeneidade. 

iv) Classificação e selecção das imagens simuladas, baseada em critérios de volumes 

de corpos de alta e baixa permeabilidade.  

v) Mudança de escala – upscaling - dos blocos do modelo estocástico para os blocos 

do modelo de simulação de fluidos, com uma abordagem nova baseada no método 

de “pressure solver”. 
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1 

1 INTRODUCTION 

1.1 METHODOLOGICAL ORIENTATION 

The characterisation of oil reservoirs is one of the most important strategic areas in the 

process of studying a reservoir. Indeed, the great challenge we face nowadays is that 

production from increasingly depleted and heterogeneous reservoirs is generally a result of 

previous strategies which were not always the most appropriate to ensure the maximisation 

of oil recovery. The new strategies for reservoir characterisation based on geostatistical 

models are the outcome of a close inter-relation between reservoir knowledge and its 

complexity. The result is the need to increase knowledge based on greater intervention 

during characterisation and bearing in mind the strategic guideline of maintaining a market 

balance between oil recovery and required reservoir knowledge. 

Stochastic characterisation of reservoirs is a relatively recent application in the history of 

geostatistics (Journel and Huijbregts, 1978, Da Costa e Silva, 1984, 1992, Isaaks and 

Srivastava, 1989, Pereira et al, 1990, Daly and Verly, 1994, Deutsch, 1996). Geostatistical 

models were first applied in the mining industry. The oil industry’s considerable initial 

reluctance to use these techniques was due to a number of different factors, the most 

important of which were the following: 

• Lack of available information, which made it difficult to create reliable models of spatial 

continuity which are at the basis of their design and application; 

• Geostatistical estimation techniques are not particularly appropriate in terms of results 

when applied to large areas generally recognised as having relatively little information. In 

such cases, the result consists of vague and smooth images showing the spatial 

distribution of the properties, and is therefore not very realistic; 

• There is little objective and methodological parallelism between a calculation of mining 

reserves and applications for the oil industry. In the case of mines, what is required is a 

calculation of most probable reserves using available concrete information. In the oil 

industry, as the reserves are a dynamic concept, what is required is a range of possible 

scenarios based on a set of descriptive models in line with a limited number of premises 

imposed by the scarcity of information. Most of the uncertainly comes from poor 

knowledge of the surrounding geology: the oil industry is exploiting a resource where 

there is no way of making close contact with associated surrounding geological 

formations. 
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To cope with this situation, several techniques suitable for dealing with poorly sampled oil 

fields based on stochastic simulations have been applied with success. Conceptual models 

with deterministic characteristics have proved not to be the most appropriate methods to 

describe the internal geometry of complex fields. The output of these models consists of just 

one smooth image of spatial variability, precisely because its background does not include 

any type of uncertainty model and spatial continuity structure. The history match using the 

data from these deterministic models is certainly simplistic, and performing further studies 

forecasts of production or injection has serious drawbacks that could led to calamitous 

results. Questions answered by dynamic flow simulation studies, like the proper location of 

newly developed wells, horizontal wells, injection of water and steam, flow pattern channels 

and preferential location of dead areas, can not be properly answered using deterministic 

models, which are also unable to provide extreme scenarios and uncertainty in forecasting 

studies. 

The use of geostatistical techniques in oil fields may produce an average image or a set of 

equiprobable images of the spatial distribution of petrophysical variables, highlighting 

lithologies or rock types, permeability, porosity and saturation. Each of these images 

comprises a two or three-dimensional regular grid, usually with millions of nodes 

representing the internal architecture of the field (morphology and petrophysical values) 

(Journel 1989, Deutsch and Journel, 1992, Srivastava, 1994). They are used in flow 

simulation studies to characterise the fluid flow between adjacent blocks. 

Stochastic models act as tools in oil field characterisation, and the modelling process has a 

multidisciplinary nature. The stages of characterisation involve niches of methodologies 

designed to satisfy each area of the model. These working areas may develop 

independently and are interrelated so as to come together to form a strategic action aimed at 

the same objectives. The contribution of each of these areas is updated with the 

developments taking place in the others, to update the capacity of the models in such a way 

as to involve new sources of information and to ensure coherent development in interaction 

with the other areas, always bearing in mind that innovation should be associated with 

coherence and the validation of many different disciplines. 

This study is therefore very much along the lines outlined above, a contribution showing the 

current state of the application of geostatistical models to the characterisation of oil 

reservoirs. Following this study, the development and explanation of each methodological 

sequence always appears alongside the correspondent characterisation step, leading to the 

development of a complete stochastic model of the reservoir. 
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1.2  OBJECTIVES AND PRESENTATION OF THE WORK 

This research work was developed with the main aim of describing the internal morphology 

and properties within oil fields. The objective is accordingly to apply geostatistical techniques 

to under-sampled and particularly heterogeneous reservoirs. The under-sampled reservoir 

treated in this study is characterised by few wells; also few cores and no seismic data are 

available. In fact, in the studied reservoir the number of wells is relatively low: 19 for a field 

surface area around 160 km2 and a thickness varying from 100 to 1000 feet.  

In this study, the characterisation of oil fields is proposed in a step-by-step process, focused 

on the following main topics:  

i) Morphological simulation of the internal architecture of the reservoir using categorical 

or indicator algorithms (the field is previously classified by rock types or lithoclasses);  

ii) Characterisation of the petrophysical properties by estimation, conditioned to the 

morphological model of geological categories;  

iii) Geostatistical simulation of the properties showing more spatial variability and 

heterogeneity (usually permeability and in some cases porosity), followed by a spatial 

uncertainty evaluation based on these output images; 

iv) Data preparation for the dynamic fluid flow simulator: screening of realisations using 

geobody analysis and flow sensibility tests and upscaling of the detailed stochastic 

model to be a suitable input for a fluid flow simulator. The scale-up of the detailed 

stochastic model in a small number of coarse grid blocks to be inputted into the 

simulator of fluids is the final but not least important step of this study given the need 

to preserve heterogeneities observed in the detailed pattern of the fine grid blocks. 

The stochastic reservoir model developed agrees with the major features present in the 

conceptual geological model, honours the known data from wells and matches the available 

core and log data and continuity models. It provides an internal representation of the 

reservoir heterogeneities between wells, taking into account the morphology of the defined 

facies. The result is a 3D model of geology (lithoclasses) and petrophysical variables 

(porosity, permeability and saturations) with several million small blocks. Each stochastic 

realisation is a lithological reservoir image, which reproduces the spatial variability of, for 

instance of permeable and impermeable formations. Multiple generation of such equally 

probable images allows visualisation of different geometry scenarios. Although this model is 
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reduced in number of blocks (scale-up) the detailed geostatistical model provides insight into 

reservoir connectivity and vertical and lateral distribution of properties. 

In the particular oil field studied, four main sources of heterogeneity were found (the same 

sources that can be found in other similar heterogeneous oil fields) (Da Costa e Silva and 

Soares, 1994, Da Costa e Silva et al, 1997): vertical heterogeneity (between layers), 

lithological changes within each layer, geometric arrangements of lithoclasses and some 

petrophysical variability inside lithoclasses. The modelling approach should deal with the 

complexity deriving from the high degree of variability in petrophysical properties, mostly 

between lithoclasses. With this in mind, a geostatistical or stochastic simulation model of the 

geology is proposed first, and the sources of heterogeneity are incorporated in the final 

model as follows:  

• The vertical zoning effect is taken into account if the spatial continuity analysis and the 

conditioning procedure and imposed statistics are done within a layer and 

independently layer by layer; 

• Geometrical arrangements and the corresponding transitions between rock types are 

taken into account in the construction of individual or multi-phase covariances, and 

simultaneously by imposing the experimental proportions within each layer; 

• The spatial variability of the properties observed within geological units and the actual 

variability of the geological units is taken into account following the two-step sequential 

methodological approach proposed. This two-step approach comprises simulation of 

the geological units and subsequent estimation or simulation of petrophysical 

properties conditioned to the simulated categorical images of the internal geology of the 

field. 

Part of the morphological geostatistical methods described and implemented in the scope of 

this research work are based on the multi-phase concept introduced by Soares, 1992. When 

the number of categories is significant and the reservoir is highly heterogeneous, this 

concept and the correspondent multi-phase continuity measure tool have proved to be at 

present the most suitable to characterise the spatial continuity of categorical variables (for 

example, lithologies or rock types) compared to the usual methods of calculating individual 

covariances or more complex co-regionalization models. These methods are a priori more 

complex and detailed but are more demanding in terms of the number of samples and 

evidence of continuity. The usual methods in heterogeneous and under-sampled reservoirs 
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are implemented using simplifications and assumptions that are generally difficult to justify, 

except if the reason is simply to run the model. 

In this research work, the main topics are presented in the following sequence: 

Section one is an introduction explaining the main methodological orientations, guidelines 

and innovations. It also includes a summary of the geology and main field characteristics of 

the reservoir studied related to the construction of the stochastic model. 

The second section is dedicated to an explanation of categorical simulation methods using 

the indicator formalism extended to multi-phase structures for the spatial description of 

lithoclasses or geological units. In the case study presented, results from three different 

algorithms of spatial simulation of categorical variables are compared. These methods are 

sequential indicator simulation with corrections of local probabilities, morphological 

simulation based on a truncated Gaussian field plus a subsequent conditioning step, and 

simulated annealing (used basically for post-processing the results provided by the two 

previous methods). The output images from both methods are validated based on the 

imposed premises: the global continuity model, basic statistics, and matching of 

experimental data. For each individual approach, a comparative evaluation of the variability 

between the resulting images is carried out, in order to rank these three methods by an 

entropy quality measure. 

Section three deals with the spatial characterisation of petrophysical properties (porosity, 

permeability and water saturation) using estimation methods based on kriging. Estimation 

was sub-divided into two sections, corresponding respectively to variables extremely 

dependent on the internal morphology of the geological units and thus predominantly 

dependent on deterministic phenomena. The first encompasses porosity and permeability 

and the second is related to fluid saturation. For porosity and permeability, estimation follows 

the zoning control estimation technique, which consists of extending multi-phase 

morphological estimation to the domain of continuous variables. The objective consists of 

estimating the variable spread along a set of geological units. To accomplish this, just one 

multi-phase variogram is required, instead of individual variograms or covariances, in order 

to perform the estimation in a single step for all geological units. The same method is used 

to estimate the permeability previously classified in classes. Considering that permeability is 

a non-additive variable and the main interest is to map extreme values, and knowing that 

kriging is not an adequate estimator of extreme values, the multi-phase indicator formalism 

is more suitable for permeability estimation. Concerning estimation of fluid saturation, this 

research work proposes an approach based on a single coordinate transformation to the 
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referential of the free water level (FWL). This single transformation is able to cope with the 

problem of non-stationarity displayed by this variable in the oil fields. 

Section four is dedicated to the characterisation of spatial uncertainty in permeability, 

provided by stochastic simulation. Due to the non-additive nature of permeability and the 

major importance of extreme values, the simulation follows a methodological sequence that 

combines sequential indicator simulation (SIS) and probability field simulation (p-field).  

Section five deals with the interface between geostatistical models and the input to the fluid 

flow simulator. Two main aspects are reviewed in this section: the screening of realisations 

and the upscaling of permeability. As far as the screening of the realisations is concerned, 

the study proposes a single method using a ranking selection based on the volumes of 

geobodies of high and low permeability. Regarding the upscaling of permeability, this work 

proposes a technique derived from the traditional upscaling technique based on the pressure 

solver. The objective is to quantify and minimise the differences between fluid flows at small 

and corresponding large scales using a moving window that covers a set of neighbouring 

blocks of the current upscaling block. The upscaling of each block in each loop takes into 

account the neighbouring blocks and the values from previous iterations.  

Finally, section six contains a final series of important remarks involving all methodologies 

described. The global set of techniques used in the framework of this research work is 

summarised in Table 1.1, which shows the main characteristics (variable name, data 

structure, input and outputs). 

1.3 FIELD SELECTED: SUMMARY OF GEOLOGICAL CHARACTERISATION 

AND PETROPHYSICAL DATA 

The studied reservoir is located in the Middle East. This reservoir is one of the most 

heterogeneous in the region, and for this reason has become a reference-framework for 

researchers associated with geology and reservoir engineering. The main geological 

structure of the field consists of a single lengthened anticline with a NE-SW orientation, 

measuring approximately 27 km along the major axis and 8 km at the perpendicular, 

corresponding to a surface area of about 160 km2 (Craft and Hawkins, 1959; Gatlin, 1960, 

North, 1985). The geological structure of this reservoir is a carbonate rich sequence of 

Maashtrichiana age (Upper Cretaceous) deposited during an actively growing paleohigh in 

shallow marine subtidal to intertidal and supratidal conditions. Based on palaeontological 

information, this formation is sub-divided into two sub-units, Upper R1 and Lower (R2 plus 

R3), the Lower being sub-divided into two further sub-units (R2 and R3). 



 

Table 1.1  List of proposed methodologies and main characteristics. 

Variables 
Methods Sata structure Inputs Outputs Group of 

methods 
Section 

Sequential indicator 
simulation 

Truncated Gaussian 
simulation plus 

subsequent conditioning 

 
 

Lithoclass 

Simulated annealing 

 
 
 

Categorical 

 
Samples location 

 
Marginal histograms 

 
Multi-phase variograms 

 
 

Simulated images 
displaying the spatial 

variability of 
lithoclasses 

 
 

Simulation 
 

 
 

2 

 
Porosity 

 

 
Zonal control estimation 

 
Continuous 

Samples location 
Multi-phase variograms 

Basic statistics 
Simulated images of 

lithoclasses  

 
Estimated images of 
porosity conditioned 

to the images of 
lithoclasses  

 
 

Estimation 

 
 

3 

 
Zonal control estimation 

Categorical 
(permeability 

classes) 
 

Estimated images of 
permeability classes 

conditioned to the 
images of 

lithoclasses  

 
Estimation 

 
3 

 
 

Permeability 

 
Sequential indicator 

simulation plus p-field 
simulation 

 
Continuous 

 
Samples location 

Multi-phase variograms 
Basic statistics 

Simulated images of 
lithoclasses Simulated images of 

permeability 
conditioned to the 

images of 
lithoclasses  

 
Simulation 

 
4 

 
Water 

saturation 

 
Ordinary kriging 

 
Continuous 

Samples location 
Water saturation 

variograms 
Depth and thickness of 

each layer 

 
Estimated images of 

water saturation 

 
Estimation 

 
3 
 

 
Permeability 

 
Conditional upscaling 

 

 
Continuous 

 
Detailed images of 

permeability 

 
Coarse grid images 

of permeability  

 
Upscaling 

 
5 
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The geological characterisation of the field involves interpretation of the intensive diagenetic 

alterations of the original carbonates (North, 1985). The interaction of the diagenetic cycles 

with tectonic activity led to the formation of a perceptibly layered sequence in the upper 

zones of the field named unit R1. This sequence is made up of porous and permeable 

carbonates alternating with clay beds. Each of these lithological units is relatively 

discontinuous. During the deposition of the Lower Units (R2 and R3), the interplay comprises 

dolomitization, sedimentation and tectonic activity, which led to overdolomitization and 

amalgamation at the crest, with thicknesses varying from 50 to 150 feet. These dolomites 

are impermeable, with a massive aspect, and the porosity occurs along cavities, particularly 

vugs and percolating fractures. These tight dolomites, located along the crest of the principal 

structure, are surrounded by porous dolomites (sucrosic dolomites) along the flanks. 

In the Upper unit, the depositional conditions changed and, as a consequence, the beds are 

more clearly defined and observed. However, it is difficult to correlate the numerous beds 

identified in wells throughout the field, due to a sharp variation in thickness (between 5 and 

20 feet). Thickness increases from crest to flanks along all the structure and in all directions, 

although more quickly in the longitudinal direction of the anticline (NW-SE). These variations, 

associated with the depositional process, justify the need for a transformation of coordinates. 

This transformation was carried out on all well data before running stochastic models. The 

only exception was the saturation model, where a different transformation method was 

applied due to a deterministic factor (capillary pressure) that conditions the vertical 

distribution of fluids. 

Based on well data (logs and cores) a detailed classification of the rocks was established. 

Eight layers were identified in the Upper Unit of the field (R1 Unit) and initially six in the 

Lower Unit (R2 plus R3), making up the 14-layer model initially identified which forms the 

basis of the initial geological study. The above six layers were further redefined and finally 

17 layers were identified, in addition to the 8 layers for the Upper Unit (see Figure 0.1). 

Additionally, a new unit was added to the basis, characterised by its accumulation of oil. 
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Figure 0.1  Stratigraphic representation and vertical zoning of the studied field: sequence of reservoir 
units: R1, R2 and R3. 

 

From the first studies it was observed that this field is particularly complex, showing sharp 

variations in petrophysical properties for both vertical and horizontal directions. These 

variations are the result of the combination of a complex depositional scenario, influenced by 

syndepositional structural development, with an elevation followed by erosion due to 

meteoric waters and evaporites of diagenetic origin, associated with post-depositional 

diagenesis. For all these reasons, strong variations in the petrophysical attributes are clear 

throughout the field (porosity, permeability and, in addition, saturation) as well as the 

thickness of each layer or stratum.  

Due to the wide range of values displayed by the petrophysical characteristics within each 

rock type and inside each layer, it was necessary to take into account an additional sub-
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division of the lithologies, based on the following parameters: rock type, capillary pressure 

variations in the stratigraphic column and porosity and permeability. The concept of 

lithoclass was introduced in order to represent spatial areas with high homogeneity of 

porosity and permeability and represented by a typical capillary pressure curve, obtained in 

laboratories through core analysis procedures.  

Due to the great heterogeneity in this particular oil field, it is difficult to perform a 

classification into lithoclasses that simultaneously lead to an internal small range variability 

concerning these variables, which are discordant most of the time. However, the 

classification into lithoclasses is considered a suitable basis for the implementation of a 

stochastic model, rather than using a few and more heterogeneous lithologies. The 

discordance involving these parameters and the high heterogeneity means that only around 

half of the lithoclasses present significant spatial continuity within each layer.  

Well data came from 19 vertical wells (see geographical representation in Figure 0.2) that 

cross all identified units and allow the identification by geologists of the 20 lithoclasses. 

Table 0.1 lists all identified lithoclasses and displays the corresponding rock type and 

indicative values for porosity and permeability. One important point to note is that, in the 

same geological unit, the entire set of lithoclasses do not appear simultaneously (maximum 

observed is 17, but usually less than 10 occur), which contributes to the construction of a 

model showing a remarkable vertical zonation, as described by the geology and observed in 

the marginal histograms. 

 

 

 

 

 

 

Figure 0.2  Aerial view of the entire field with superposition of the stochastic simulation grid and well 
locations. 

 

Each well was sampled at intervals of 1 foot and is now represented by a categorical 

sequence of geological formations - lithoclasses. Lithoclass unit (LCU) or statigraphic unit 
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(S.U.) designates each one of these intervals. Each unit is described by a set of variables 

derived from core or log analysis, among which the most important are porosity, permeability 

(core permeability - horizontal and vertical - and log derived permeability by correlation with 

porosity) and fluid saturation. The proportion of wells with cores varies from 20 to 80 % 

approximately, depending on the layer.  

Table 0.1  Lithoclasses identified in the present oil field: typical rock types and porosity and 
permeability average ranges. 

 

Lithoclass Rock type Porosity1 (%) Permeability1 (mD) 

1 Shale 0.0 0.0 

2*, 3 Mudstone 4.0 0.5 

4,5*,6 Mudstones to 
wackestones 

7.5 0.9 

7* Wackestones 15 1.5 

8*,9*,10,15 Mouldic dolomites 25.5 29.5 

11,12*,13,14* Grain to 
packstones 

25 68 

20,21*,22* Tight dolomites 15 4.2 

23*,24* Sucrosic 
dolomites 

25.5 1250 

* - Dominant lithoclass 

The stochastic models presented in this study characterise the reservoir properties in a 

discrete grid of points, covering the volume, which bounds the entire reservoir. The unitary 

block in the grid selected for the stochastic model is 250 by 250 m in both X and Y directions 

and 1 foot in the vertical direction. Taking into account the dimensions of the reservoir, the 

total number of blocks is laterally 124 in the X direction and 42 in the Y direction. The 

number of blocks in the Z direction depends from the maximum thickness of each layer. 

 

                                                           
1 Illustrative values 
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2 STOCHASTIC MODELLING OF LITHOCLASSES 

2.1 DEFINITION OF LITHOCLASSES 

One of the most critical steps in the construction of a reservoir flow simulation model is the 

description of the reservoir geology. To describe reservoirs characterised by high 

complexity, conceptual and deterministic geological models are, in most cases unable, to 

represent the internal geometry of the reservoir adequately. In fact, they ignore spatial 

zoning effects derived from the irregular distribution of the heterogeneities, and as a 

consequence they do not represent the actual connectivity and flow patterns. The concept of 

heterogeneity is very complex, but it has commonly been associated with predominant 

spatial random transitions and patterns evidenced by geological formations and/or 

petrophysical properties. 

The stochastic simulations of geological units in this heterogeneous reservoir were based on 

an initial descriptive geological model of the reservoir. Core analysis available in a limited 

number of wells provided detailed information on the geological formations. Usually with this 

information it is possible to provide a first geological classification into rock types. However, 

in very heterogeneous reservoirs a wide range of porosity and permeability can be found for 

the same rock type, which constitutes a considerable challenge when mapping extreme 

values of the petrophysical properties. To cope with the geological complexity and to assist 

in understanding the internal distribution of properties, the concept of lithoclasses was 

introduced in this oil field. Lithoclasses were identified from cores based on their lithology, 

petrophysical properties and capillary pressure. The stochastic simulation of the geological 

units performed in the present work consists in the spatial simulation of this lithoclasses as 

categorical variables. 

Four main sources of heterogeneity were found in the oil field studied (which are of course 

the same sources that can be found in similar heterogeneous oil fields) (Da Costa e Silva 

and Soares, 1994): heterogeneity between layers, lithological changes within each layer, 

geometric arrangement of lithoclasses, and some petrophysical variability inside 

lithoclasses. The high degree of variability in petrophysical properties, mostly between 

lithoclasses, suggests that this spectrum of variation covers a wide range and that the 

modelling approach should cope with this complexity. Bearing this goal in mind, the 

stochastic modelling of reservoir properties followed in this case study includes two main 

steps: the geometry of the lithoclasses is simulated first, and then the spatial 

characterisation of the petrophysical variables is performed within each simulated lithoclass. 
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Following this methodology, a geostatistical or stochastic simulation model for the geological 

characterisation of heterogeneous fields is proposed in the present section.  

Once a set of simulated images of the distribution of lithoclasses is generated, the next 

critical step is to fill each one with the petrophysical properties (permeability, porosity and 

water saturation). Each stochastic image or realisation must honour the experimental data, 

the real proportions of each lithoclass, and the spatial continuity revealed by experimental 

variograms. 

2.2 SPATIAL SIMULATION OF LITHOCLASSES 

2.2.1. INTRODUCTION 

Stochastic simulations consist of a set of methods able to generate numerical models or 

realisations of the spatial distribution of a categorical variable (for example, geological units, 

lithotypes, etc) or a numerical variable (porosity, permeability, water saturation, etc.). The set 

of outputs consists of equally probable images in the sense that they have the same 

probability of occurrence (Matheron et al, 1987, Journel and Alabert, 1988, Journel and 

Hernandez, 1989, Perez and Journel, 1990, Goovaerts, 1994, 1996). 

As has been demonstrated in several case studies, these models are based on a 

probabilistic formalism and have proved to be the most suitable to describe spatial 

heterogeneity in oil fields. The use of stochastic models enables this intrinsic complexity to 

be modelled and equally probable scenarios of the internal architecture of the reservoirs to 

be predicted, mainly in inter-wells or low conditioned areas. In fact, these techniques allow a 

set of different equally probable images of the spatial distribution of the main petrophysical 

properties that describe the oil fields, namely lithologies, lithogroups, permeability and 

porosity, to be created based on a small amount of data extracted from an experimental data 

set.  

All the steps involving the development of these models, mainly data preparation and 

interpretation, constitute a multidisciplinary task, which entails the cooperation of several 

teams, ranging from geology and seismic studies to reservoir engineering. These different 

spatial output images constitute the input of the fluid flow simulators (a transfer function), 

helping to develop dynamic simulation studies that can lead to a better management of fields 

over their productive life. 

The methodological approach for the characterisation of an oil field using geostatistics can 

be sub-divided into two main sequential steps. The first step consists in simulation of the 
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morphology of geological units using categorical simulation algorithms. The second step 

consists in a subsequent estimation of petrophysical variables within each layer, using local 

conditioning to the previous simulated geological units. The result of the first step consists of 

a set of equally probable geological images representing the heterogeneity among 

lithoclasses. 

The implementation and application of a geostatistical method (sequence) must take into 

account the existing heterogeneities and if possible their sources. The use of a two-step 

methodology as outlined above implies that the model will cope with the main sources of 

heterogeneity: heterogeneity among and within lithoclasses. The other two important 

sources of heterogeneity (heterogeneity between layers and geometric arrangement 

between lithoclasses) are achieved by these methods: independent simulations performed in 

several layers using spatial continuity analysis give rise to a measure of uncertainty (see 

section 4). 

The practical application of these methodologies must comply with the Conceptual 

Geological Model that describes the internal architecture of the reservoir. This association of 

procedures (conceptual geological description and stochastic model) proved to be an 

advantage in most case studies. First of all, geostatistical models deal with continuity 

measures, which is their major advantage. The possibility of generation of multiple equally 

probable images and the integration of different sources of information are equally important 

advantages. On top of that there are other advantages, such as matching of experimental 

data, basic statistics and continuity measures. Given the lack of data and additional 

information in inter-well areas, the use of this type of model can also be justified by the need 

to generate multiple images, which constitute one practical way to characterise the 

uncertainty in oil fields. 

2.2.2. GENERAL DESCRIPTION OF GEOSTATISTICAL SIMULATION 

ALGORITHMS FOR CATEGORICAL VARIABLES 

Many algorithms to perform stochastic simulations of categorical variables have been 

described in the literature with different backgrounds. Examples of stochastic simulation 

algorithms used to create equally probable images of the internal architecture of a 

categorical set include Boolean models (object-based models) (Ripley, 1987, Haldorsen et 

al, 1988, Omre et al, 1990, Deutsch and Wang, 1996, Soares and Brusco, 1997), truncated 

Gaussian field plus subsequent conditioning (Deutsch and Journel, 1992, Journel and 

Huijbregts, 1978, Da Costa e Silva et al, 1991), sequential indicator simulation (Journel and 

Alabert, 1989) and the more recent simulated annealing (Deutsch and Journel, 1992). It is 
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also possible to combine these individual techniques to solve various questions in particular 

cases. Bearing in mind the diversity of methods, which is the most appropriate?  

The answer to this fundamental question depends on each particular case study. Any 

method has advantages and drawbacks depending on the theoretical formulation and its 

suitability to the specific features of the case studied. In a general way any method can be 

used so long as it can integrate all the available information and ensure that (depending on 

the volume of work) (Deutsch, 1994): 

• The simulation runs in a realistic period of time; 

• Several aspects evidenced by the samples can be matched. These aspects are 

dependent on the available amount and diversity of information (geological 

information, seismic interpretations, production well data, etc.) and the major goals 

defined for the study; 

• It puts a wide spread of uncertainty in the final images conditioned by the experimental 

data and quantifies that uncertainty. 

All algorithms involved in a stochastic simulation study are designed to match a set of 

measures revealed by the experimental data. The final images should reproduce the 

variable statistics, the patterns revealed by the experimental samples, the geological 

conceptual trends, the information from the seismic images (soft data) and even some 

features of analogous fields and outcrops. The possibility of imposing some additional 

constraints depends on the way they can be numerically expressed. 

Usually, with a geostatistical simulation model one intends to reproduce in the final images 

the spatial variability of the phenomena, by imposing the two following statistics: the 

probability distribution function and the variogram or multi-phase variogram. When dealing 

with a categorical set (multi-phase set), the final simulated images must honour the following 

aspects: i) the proportion of each phase 
iSi mm = , (i=1,…K phases) as evidenced in the 

initial data set; ii) the spatial continuity as revealed by the individual or multi-phase 

variograms )()( hh
iSi γγ = ; iii) at each experimental data location xα, the simulated images 

have the same value )()( αα xKxK
iSi = . 

The set of resulting images is named equally probable in such a way that all images have 

the same probability of occurrence and reproduce the two main statistics - the probability 

distribution function and the variogram - and finally match the experimental data.  
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Basically two main groups of algorithms for stochastic simulation can be found in the 

literature: simulation with independent conditioning and sequential simulation. One additional 

group can be considered - simulated annealing - based on the background concept of “trial 

and error”. This generic classification can be applied both to categorical (single or multi-

phase sets) and continuous variables. However, later in the present section, we assume 

dealing with categorical variables. 

Independent conditioning simulation groups a set of techniques, which are based on a 

simulation process independent of the posterior conditioning process. Basically these 

methods have two main steps: non-conditional simulation and posterior conditioning. The 

non-conditional simulation can be any one since the result consists in a non-conditional 

categorical simulation that reproduces the two main statistics – the probability distribution 

function and the variogram. The conditioning step is based on a spatial estimation of errors, 

leading to the designation of ESE: estimation plus simulated errors. One method of this 

group, to deal with categorical or multi-phase sets, is named truncated Gaussian simulation 

plus subsequent conditioning approach or morphological simulation (Journel and Isaaks, 

1984, Da Costa e Silva et al, 1994, 1997).  

Sequential simulation methods belong to a relatively new family of simulation algorithms 

based on a sequential approach (Journel and Alabert, 1988). When dealing with categorical 

variables the method is sequential indicator simulation.  

The use of methods based on simulation annealing algorithms to perform the simulation 

appears as an alternative way of simulation or as a post-processing in association with 

conventional processes. In a more general context, one can denote as simulated annealing 

a class of algorithms based on a solution of an optimisation problem (Aarts and Korst, 1989, 

Farmer, 1992, Sen et al, 1992, Almeidaa, 1996). This process is based on an evolution of the 

system towards the minimisation of an objective function that describes the final and 

appropriate state following a perturbation mechanism and evaluating the consequences in a 

“trial and error” iterative sequence.  

2.2.3. GEOSTATISTICAL SIMULATION METHODOLOGY USING A MULTI-PHASE 

FORMALISM 

The multi-phase concept represents the continuity and transitions of a set of phases using a 

global continuity model. Instead of assuming the probability of two points separated by h 

belonging to a particular phase A or B, the covariance assumes the probability of two points 

separated by h belonging to the same phase whatever it may be. From a spatial analysis 
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point of view, this average measure is conceptually weaker than individual covariances, but 

in most cases it is the only tool to properly model simultaneously heterogeneous and 

undersampled reservoirs, without assuming prior simplifications that may misrepresent the 

field characteristics. In the present section an experimental procedure is proposed involving 

a set of algorithms that can be chosen depending on the conditioning effect and computing 

time. Basically, two main simulation algorithms are proposed each of them encompassing 

two alternatives. A final post-processing is suggested to improve the variogram match and 

the conditioning effect. 

The complete simulation approach is described below and comprises three main 

methodological steps (see flow chart in Figure 2.1): 

• First, identification of the present phases and construction of a multi-phase variogram 

as a spatial continuity tool; 

• Stochastic simulation of the set of lithoclasses; 

• Finally, checking of the imposed statistics and the data conditioning process through 

visual validation of the output images. 

Following the proposed flow chart in more detail, the first step involves the following sub-

tasks: 

1. Identification of lithoclasses and transformation of categorical variables into indicator 

multi-phase vectors; 

2. Computation of individual indicator variograms for each lithoclass, along different 

preferential directions (major and minor directions of the reservoir, vertical direction); 

3. Identification of groups of lithoclasses with similar characteristics in terms of continuity. In 

the present case study this implies the spatial simulation of the morphology of a multi-

phase heterogeneous set, being identified by two groups with very distinct continuity 

measures along the horizontal direction within each layer. One clearly shows continuity 

greater that 2000 metres and the other is characterised by no evidence of any continuity; 

4. Computation of experimental multi-phase variograms for the two groups along the 

preferential directions and fitting a theoretical model to the experimental values for both 

groups; 

5. Stochastic simulation of categorical variables; 
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Figure 2.1  A flow chart illustrating the proposed experimental steps for the generation of stochastic 
images of lithoclasses. 

 

The first method proposed, named morphological simulation, is based on the truncated 

Gaussian field model with posterior and independent conditioning to the experimental data. 

The output consists of maps representing the probability of each grid node belonging to each 

identified category or to each lithoclass (in the context of this particular case study). These 

values must be transformed into indicator values following one of the two proposed 

algorithms: i) morphological classification based on local and global probabilities; ii) one 
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alternative method that combines the conventional process based on local and global 

probabilities with the simulated annealing technique. This method performs a transformation 

controlled by one objective function that computes in each loop the bias between the 

continuity models (theoretical and experimental) and the proportions of each phase.  

The second method proposed is based on sequential indicator simulation (SIS) extended to 

multi-phase structures. The basis of the algorithm includes the correction for local 

probabilities proposed by Soares, 1998. The objective is to minimise deviations between the 

objective probabilities and simulated proportions. These deviations occur at times, especially 

when long range variograms in phases evidencing small proportions were used. Outputs of 

this method consist of morphological multi-phase maps conditioned to the experimental data.  

6. Post-processing using simulated annealing; 

Any of the above categorical simulated maps could be post-processed using the simulated 

annealing algorithm in order to improve initial patterns or to incorporate additional 

constraints. It is possible to apply this algorithm to completely random images and the result 

will be one simulated image matching the required parameters. However, bearing in mind 

the particular background of this method (massive use of CPU due to intensive calculations) 

it is recommended to use one initial image partially matching the required parameters and 

use the simulated annealing in a post-processing step.  

7. Analysis of the outputs. 

This consists in checking of the parameters to be honoured: the proportions of each 

lithoclass and the continuity model and verifying if the simulated points match the 

experimental values. Other equally important aspects, like the shape uncertainty evidenced 

when performing several realisations, some zoning effects and contacts between 

lithoclasses and the extension of the continuity evidenced by each lithoclass, must also be 

analysed and validated, based on geological, geophysical and reservoir knowledge. 

In order to rank outputs based on an entropy measure, 30 realisations were performed using 

the proposed methods: i) sequential indicator simulation with correction for local 

probabilities; ii) morphological simulation plus classification based on local and global 

probabilities; iii) morphological simulation plus classification using simulated annealing. All 

30 images resulting from sequential indicator simulation were post-processed by simulated 

annealing and the entropy of all these images was calculated. In this test it is possible to 

evaluate the conditioning effect derived from simulated annealing.  



Stochastic Modelling of Lithoclasses 

21 

2.3 MULTI-PHASE VECTOR VARIABLES 

2.3.1. DEFINITION OF AN INDICATOR VECTOR VARIABLE 

The basic idea of the proposed methods is to use the framework of indicator random 

functions to spatially describe the Xk, (k = 1, K ) lithoclasses - where K denotes the number 

of categories or phases. At each spatial location x and according to the vertical sub-divisions 

in layers, all lithoclasses were coded as a non-ordered indicator vector Xk to all phases,       

(k = 1, K) (see Figure 2.2): 
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⎧
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Figure 2.2  Codification into an indicator vector. 

 

In the framework of a stochastic model, the indicator vector or variable at each point x:          

{I1(x), I2(x), I3(x), ... Ik(x)} can be interpreted as the probability of a point x belonging to one 

lithoclass Xk, k = 1, K, and can be used as a random variable located at x. 

 { }      )( kphasexprobxIk ∈= ,   ∀  k = 1, K      (2.2) 

The set of N samples in area A were coded in all possible combinations of “1” and “0” and 

can be interpreted as a realisation of a random function Ik(x). 

 

 

Phase X1 Phase X2 

Phase X3 

Phase X4 

  I2 (x) = 0 1 0 0 

  I4 (x) = 0 0 0 1 

  I1 (x) = 1 0 0 0 

  I3 (x) = 0 0 1 0 
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The realisation Ik(xi), i = 1, N of the random function Ik(x) has the two following moments: 

a) Mean of each phase mk : measure of the proportion of each phase Xk in all area A: 
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)(1         (2.3) 

b) Variance of each phase 2
kσ  

 )1())((1
1

22
kk

N

i
kikk mmmxI

N
−=−= ∑

=

σ      (2.4) 

Important remarks:  

• The values of Ik(x) are usually dichotomous, which means that each point x belongs 

only to one category or lithoclass. However, it is possible to include points with an 

associated uncertainty degree of belonging to a set of phases. In these cases, the 

meaning of probability is preserved and the same concepts can be applied; 

• The terms of the indicator vector have no order relation between them. 

 

2.3.2. SPATIAL CONTINUITY CHARACTERISATION 

The spatial continuity of each phase in area A can be measured using bi-point statistics, 

namely the covariance Ck(h) of phase k, with (k = 1, K) number of phases: 

 { } 2)().()( kkkk mhxIxIEhC −+=       (2.5) 

or the equivalent indicator variogram: 

 { }2

2
1 h)(xI(x)IE(h) kkk +−=γ        (2.6) 

with: 

 (h)-)(ChhC kkkkk γγσ   0     or   )()( 2 −=   
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When dealing with multi-phase sets the amount of data is usually insufficient to estimate all 

individual covariances or variograms. In these cases or when it is not possible to calculate 

spatial continuity models for each phase (which is normal when dealing with a set of phases 

in undersampled oil fields), Soares (1992) proposed using a global model which synthesises 

the spatial continuity of all sets of lithoclasses - multi-phase covariance. This means the 

probability of two points separated by h belonging to the same phase. The multi-phase 

covariance can be calculated by: 

 [ ]
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⎬
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and the equivalent multi-phase variogram: 
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Obviously, the application of a unique model to a mixture of different structures should be 

avoided. In some case studies, depending on the number of samples and phases, it is not 

possible to join all calculated individual covariances or variograms into a unique model. In 

these cases (for example, when we have many lithoclasses in a heterogeneous field), the 

entire set of lithoclasses must be characterised by more than one multi-phase variogram, 

usually no more than two.  

Denoting as N(h) the number of pairs of points separated by h, the multi-phase variogram 

can be directly estimated using N experimental indicator vectors (Ik(xi), k = 1, K ; i = 1, N) 

using the following expression: 
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Both covariance and variogram can be decomposed by the sum of the individual 

covariances or variogram: 
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Once one or a set of experimental variograms have been calculated, the continuity modelling 

process follows the conventional sequence of steps:  

 



Chapter 2 

24 

• Find anisotropies between the different directions; 

• Fit the experimental points with a theoretical model, usually a spherical or exponential 

function type. 

In fact, multi-phase continuity can be modelled by the classic variogram parameters: range, 

nugget effect, main and minor directions and anisotropy relations. All these parameters have 

a different but determining influence on the simulated images. For instance, range gives an 

average of the lengths of the geobodies, and the relations of anisotropy reflect the variations 

of these measures along different major directions. The nugget effect is a measure of the 

transitions at a short scale and as a consequence reflects heterogeneity at very small 

distances. When the nugget effect is high, the consequences in the output images are 

remarkable and can be observed in the increasing number of transitions at a small scale and 

the irregularity of the contour-shape - the image appears more irregular or random. 

 

2.4 SIMULATION OF MULTI-PHASE STRUCTURES 

In the following sections, morphological simulation, multi-phase sequential indicator 

simulation and simulated annealing post-processing will be succinctly described, noting 

various improvements performed in each methodology to run this particular case study.  

The practical implementation was performed using both routines provided by GSLIB 

software (Deutsch and Journel, 1992) with some modifications (for example SISIM and 

SGSIM) and geoMS (geostatistical modelling software developed by CMRP, Rodrigues et al, 

1998) with modules developed in the scope of this study. 

 

2.4.1. MORPHOLOGICAL SIMULATION 
 

2.4.1.1. TRUNCATED GAUSSIAN SIMULATION PLUS POSTERIOR 
CONDITIONING APPROACH 

 

Morphological simulation approach belongs to a set of methods that split the simulation in 

two distinct and consecutive steps: a non-conditional indicator simulation followed by a 

posterior conditioning. For a multi-phase set, it can be applied according to the following 

sequence of steps (see Figure 2.3): 
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Figure 2.3  Sequence of steps to perform a non-conditional indicator simulation followed by a 
conditional step. 
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i) A non-conditional Gaussian simulation YS(x) is performed covering the entire volume 

of the layer using the theoretical model fitted to the experimental multi-phase 

variogram, plus a transformation. Several algorithms provide a Gaussian simulation, 

including non-conditional sequential Gaussian simulation (Deutsch and Journel, 

1992) and the turning bands method (Journel, 1977, Journel and Huijbregts, 1978, 

Dowd, 1979, Sousa, 1983). 

During this non-conditional step, a Gaussian transformation of the experimental indicator 

data is not required. Indeed, this transformation is not possible when dealing with categorical 

variables (Gaussian transform of a non-continuous distribution). It is important to point out 

that only transformation of the indicator multi-phase variogram is required to accomplish this 

step.  

Calculation of the variogram of YS(x) can be achieved in several ways. For instance, Journel 

and Posa, 1990 propose a heuristic model for indicator variogram transformation. 

Journel and Isaaks, 1984, propose the use of the following relation, which can be applied to 

multi-phase sets: 

 [ ] [ ] );(G(y))-(1 , ,1)(    );( , ,)( 11 yhyyLhoryhmyyLh kYkkY SS
γγγγ −−=−= −−  (2.11) 

where: 

           - variogram of YS(x) 

L - the standard bivariate normal distribution (tabulated in e.g. Abramovitz and 

Stegum, 1972) 

y - the cut-off value in the Gaussian set of values: y = G-1 (1 - mk) 

G - is the distribution function of Y(x) - Gaussian distribution function 

mk - proportion of phase k 

Another approach is based on the hermitian polynomial development proposed by Matheron, 

1987: 
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Hn - hermitian polynomial of order n 

g(y) - the standard Gaussian density function 

)(hIρ  - correlogram of the indicator variable for a distance h 

)(hYρ  - correlogram of the Gaussian values for a distance h 

 

ii) Truncation of the Gaussian simulated variable YS(x) in K classes, using (K-1) 

thresholds 
kcy , calculated according the experimental means of the phases: 
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ic mGy

k
−= −  with        (2.13) 

 ∑
=

=
i

k
ki mm

1
         (2.14) 

In the above expression, G(x) denotes the Gaussian probability distribution function pdf and 

mi and mk respectively the cumulative and the experimental mean of each phase k. 

These thresholds are obtained by calculation of the G-1(x) using polynomial approximations 

of the Gaussian pdf (Abramowitz and Stegun, 1972). Alternatively the YS(x) simulated values 

can be ranked by decreasing order and the threshold value that correspond to the calculated 

one can be picked directly, using the experimental proportions. 

Applying the above cut-offs with the YS(x) leads to a non-conditional indicator simulation: 
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The simulated values )(xI
kS  reproduce the global multi-phase variogram model. 

iii) Conditioning step 

The final conditioning process aims to condition the simulated images to the experimental 

sample values and to reproduce the spatial patterns imposed by the experimental samples. 

In this regard, the conditioning step should not be performed with the Gaussian values since, 

as has been already, it requires the Gaussian transformation of indicator values, which in all 
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rigour is not possible. In the technique proposed the conditioning phase is performed with 

the indicator data. 

In this critical step, the multi-phase kriging technique is applied for conditioning the simulated 

values to the experimental data. The simulated values )(xI
kS  are conditioned to the 

experimental values Ik (xα), α = 1, N via the classical relation where the final conditional map 

(x)I c
Sk

 is equal to the estimated map Ik* (x) plus a simulated error eS(x): 
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with 
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The two multi-phase kriging estimations )(* xIk  and )(* xI
kS  are calculated with the same 

global multi-phase covariance: 
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and can be summarised to the estimation of the difference: 
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The values (x)I c
Sk

 have the meaning of the probability of a point x belonging to each phase 

Xk : for each simulated point x, the sum of (x)I c
Sk

 is equal to one, and the values are in the 

range 0 to 1. 

iv) After the simulation of (x)I c
Sk

 the probability of a point x belonging to the phase k - for 

all points x0 inside the area A, the final step consists in a classification of each point 

x0 to the most probable phase - which means transforming each probability value 

(x)I c
Sk

 into an indicator value.  
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To perform this final step, two different methods based on the values of (x)I c
Sk

 were 

followed and the corresponding results are further compared: 

• The first classification is based on the local and global probabilities belonging to 

phases Xk   (k = 1,K) (Soares, 1992, Almeida et al, 1993); 

• The second consists of using the simulated annealing technique to obtain the shape of 

each unit with spatial variability as revealed by the multi-phase variogram of Ik(x). 

 

2.4.1.2. TRANSFORMATION OF PROBABILITY MAPS INTO MORPHOLOGICAL 

MAPS USING LOCAL AND GLOBAL PROBABILITIES BELONGING TO 

PHASES XK 

The resulting simulated probability maps are transformed into morphological maps according 

to the twofold criteria: maximisation of local probabilities until the global probabilities are 

honoured. It can be summarised in the following sequence of steps: 

i) For each phase, rank the total N local simulated probability values (x)I c
Sk

 in 

decreasing order. Hereafter, consider nk, the number of grid nodes allocated to each 

phase in order to respect the required proportions: 

n1 = m1 . N 

n2 = m2 . N 

      ... 

nK = mK . N 

 

ii) Select and allocate to phase Xk the nk highest values of (x)I c
Sk

 until the global 

proportion of phase Xk , (mk) is reached, with mk=nk / N. The global proportion of each 

phase is expressed by the mean of the experimental indicator values. The 

transformation of the probability maps into morphological maps starts row by row: the 

highest value (x)I c
Sk

 of each phase: )(xI c
S α1

, )(xI c
S β2

, ... )(xI c
Sk γ  is chosen and 

transformed until the absolute number of each phase nk is reached. 
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iii) When a point is spatially located in the transition zone of these phases (not 

conditioned inter-well areas) it can belong to more than one phase. The criterion to 

allocate the point is still based on the simulated highest probability of belonging to the 

phases. For example, the point xη, spatially located in the transition zone between 

phases 1 and 2 can belong to both phases. Thus, if )(xI c
S η1

 > )(xI c
S η2

 the point xη is 

allocated to phase 1; otherwise is allocated to phase 2. Once xη is allocated to phase 

1, the point is withdrawn from the ranked ordered vector of phase 2 and the next 

value corresponding to the n2 + 1 position of rank ordered vector )(xI j
c

S2
 is added to 

the phase 2. 

 

In this classification there is a balance between the maximisation of local probabilities and 

the global criteria of reproducing the estimated proportion of each phase Xk  in area A. The 

main drawback of this approach is that during the transformation of probability maps into 

morphological maps the variogram of the output image can show some deviations from the 

theoretical model imposed, and as a consequence the final shapes of each phase Xk do not 

reproduce the spatial variability of the multi-phase variogram of Ik(x). In order to overcome 

this important drawback, an additional criterion is proposed based on the definition of an 

objective function designed to minimise the deviations regarding the multi-phase indicator 

variograms and simultaneously to control the proportion of each phase. 
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2.4.1.3. USE OF SIMULATED ANNEALING TO CONTROL CLASSIFICATION 

The basic idea of this class of algorithms is the analogy with certain thermodynamic 

processes, specifically how liquids or metals slowly cool and become solids. At high 

temperatures, the molecules that constitute these substances move freely. When cooling, 

molecules cease their free movement and begin to arrange themselves in crystals that 

correspond more appropriately to external conditions. This analogy can be completely 

transposed to the background of this class of algorithms. At the beginning - corresponding to 

high temperatures - every perturbation is usually accepted, although the objective function 

increases. With the evolution of the process - cooler temperatures - the probability of 

rejecting a perturbation that increases the objective function is higher.  

The application of this technique firstly requires the choice of a property or set of properties 

that can be numerically expressed based on initial data or on training images derived from, 

for example, conceptual geological models or processed seismic data (Sen et al, 1992). An 

objective function is defined based on the weighted sum of the deviations between the set of 

statistics or a training image and the current state of the simulated image. The optimisation 

procedure consists in minimisation of the objective function in order that the simulated image 

will tend to reproduce the features included in the objective. It is always necessary to 

establish a perturbation mechanism in order to define an easier way to update the objective 

function. For example, in the particular context of the simulation of categorical variables, if 

one intends to impose the variogram as a statistical measure one must include this measure 

in the objective function. 

In order to reproduce the spatial variability of the final shapes, an alternative way is 

proposed that uses the simulated annealing algorithm to perform and control the 

classification of probability maps. 

In this simulated annealing procedure, the perturbation process starts from the highest local 

probability values of the phases Xk, { }    max (x)I c
Sk

and consists in transforming the simulated 

probability values into binary values. One perturbation consists in transformation of a 

probability value into one indicator value. In order to transform all values more quickly the 

usual perturbation based on swapping values was added. This method encompasses the 

following steps and matches the proportion of each phase and the multi-phase variograms 

(Deutsch and Journel, 1992, Deutsch and Cockerham, 1994). 
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i) definition of an objective function: in this particular case, the objective of the annealing 

process is a combination of two positive functions:  

a) the square of the deviation between the theoretical variogram model (target) of  Ik(x)       

(       ) and the experimental variogram of simulated values (      ) after each perturbation; 

b) the modulus of the deviation between the target estimated global proportion of each 

phase Xk and the equivalent statistic after each perturbation.  
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with: 

O - objective function 

K - number of phases 

Nc - number of class distances 

λi - weight of each class distance 

γ - variogram function model 

kSk mandm      - proportions of the phases in experimental data and simulated 

data 

ii) Establishing a perturbation mechanism: following the highest values of probability, 

transition of a probability vector to a binary one (one phase equal to one and others 

equal to zero). The transition is selected by generating a random number p uniformly 

distributed between 0 and 1: for example, for two phases X1 and X2, (x)I c
Si

 is 

classified in X1 if p > (x)I c
Si

, otherwise it is classified in X2. Following the decreasing 

sequence given by the probability values the process is much faster than the usual 

random perturbation; 

iii) Re-calculation of the objective function after the perturbation; 

 

kiO ,
γ ki ,γ
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iv) The perturbation will be accepted if the objective function decreases; otherwise the 

perturbation has a probability of acceptance given by the Gibbs distribution law. This 

process continues until the transformation of all estimated points, i.e., the image is 

completely “cooled”. 
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c - control parameter with analogy to temperature - During the evolution of the 

simulation c decreases slowly in order to avoid the cases leading to an increase of the 

objective function.  

 

Important remarks:  

• The speed of the cooling process increases if the sequence of points follows the 

decreasing order of the probability values, as a result of an initial ranking. This 

sequence is designed in such a way that the shape corresponding to each phase 

grows around several grid nodes (seeds), corresponding to the highest local probability 

values; 

• In the case of a conditional simulation, the initial values of probability are naturally 

transformed into an indicator value; so, in these cases, the annealing process does not 

affect these points, which act as the main seeds for the growing of the shape of each 

phase. 

 

2.4.2. SEQUENTIAL INDICATOR SIMULATION FOR MULTI-PHASE 

STRUCTURES 

2.4.2.1. BACKGROUND DESCRIPTION 

Based on the initial formulation of the sequential algorithm an extension for the sequential 

simulation of multi-phase structures is now explained. The background of the extended 

algorithm for multi-phase structures can be summarised as follows:  
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Consider the joint distribution of N random variables and n experimental and initial 

conditioning data: F(N) = (Z1, Z2, Z3, ...ZN | n). The simulation of F(N) can be performed 

through the Bayes relation in N consecutive steps and applying successive unitary 

increments to the conditioning data: 

i) following a random path in area A, simulation of a value z1 using the cumulative 

distribution function of Z1. Once z1 is simulated, this value is considered an additional 

conditioning data points and is added to the initial set of experimental data; the 

number of conditioning data points increases from n to n+1: n + z1; 

ii) simulation of a new value z2 from the univariate cumulative distribution Z2 based on 

the (n+1) conditioning values. This new simulated value z2 is added to the 

conditioning data, which increases from n+1 to n+2: (n+1) + z2 ; 

iii) repetition of this sequential process until the simulation of all N variables is 

performed. 

 

If it is intended to simulate the same variable, the set of N dependent random variables Z1, 

Z2, Z3, ... ZN can represent the same variable, spatially referenced in N regular grid nodes, 

over an area A. Considering the n initial and conditioning experimental data, the joint 

distribution of N random variables becomes:  

 F(N) = ( Z(x1), Z(x2), Z(x3),... Z(xN) | (n) )      (2.22) 

 

To perform the sequential simulation, it is necessary to know the N random cumulative and 

conditional functions: 

 Prob {Z(x1) < z1 | (n) } 

 Prob {Z(x2) < z2 | (n+1) } 

 Prob {Z(x3) < z3 | (n+2) } 

 ... 

 Prob {Z(xN) < zN | (n+N-1) } 
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Lack of knowledge of these functions in practical cases is the main disadvantage in the 

implementation of this family of methods. Journel and Alabert, 1989, proposed the use of 

geostatistics to estimate these functions in spatial processes, particularly multi-Gaussian 

kriging for sequential Gaussian simulation and indicator kriging for sequential indicator 

simulation.  

Initially, this method in the indicator form was developed for the simulation of binary 

structures. Let us examine in more detail the extension of the sequential indicator simulation 

algorithm for multi-phase structures. The practical implementation of this method can be 

performed using the following sequence of steps: 

i) Select a random path that covers all non-simulated grid nodes; 

ii) In any spatial location, the local probability of a point x belong to a different phase 

can be estimated by: 

 { } )(     |   0 α
α

αλ xInXxprob kk ∑=∈       (2.23) 

using a set of neighbouring samples of point x.  

The weights are calculated according to the solution of the the multi-phase kriging system 

using the multi-phase variogram model or using individual models grouping, or not grouping, 

sets of phases. 

iii) Select randomly a spatial grid node x0 in area A. Using the previous estimator, 

calculate the probability of x0 belonging to the different phases (Xk, k=1,K): 

 { }[ ] [ ]      )(  *
0

*
0 xIXxprob kk =∈       (2.24) 

The use of just one structural model - for example a global multi-phase model - ensures that 

the sum of             is one. In other cases, when using more than one continuity model, a 

renormalisation or other type of correction must be performed to ensure that the probability 

definitions are preserved:  

 { }[ ]   1  
1

*
0 =∈∑

=

K

k
kXxprob        (2.25) 

 

 

[ ] *
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So, the effective estimator of probability in point x0 is given by: 

 [ ] [ ]
[ ]∑

=

= K

k
k

k
k

xI

xIxI

1

* 
0

*
0*

0

)(

 )( )(         (2.26) 

iv) Create one auxiliary variable Ji(x0) that is a cumulative sum of [ ] *
0  )(xIk  

 [ ]∑
=

=
i

j
ii xIxJ

1

*
00  )()(    with i = 1,K      (2.27) 

Use the Monte Carlo method to draw a random number between 0 and 1 with uniform 

distribution. The simulated value              is equal to (see Figure 2.4): 
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Figure 2.4  Simulation of categorical variables: draw a random number between 0 and 1 and 
transform it into a categorical value. 

 
 
 

v) The simulated value        becomes a conditioning data for the next grid node 

simulation. The number of conditioning data increases by one: (n+1)=(n)+{IS(x0)}. 

This process loops until all the grid nodes have been simulated. 

In the literature several advantages and drawbacks of this method are reported. One of the 

most often mentioned advantages is its easy practical implementation. Advantages of this 

method in comparison with morphological simulation are the ability to incorporate or include 

in the same simulation phases with different continuity models and preferential orientations, 

1.0 

0.0 

J1(x0) J2(x0) J3(x0) Ji(x0)

)( 0xI
iS

)( 0xI
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as occur in some case studies, notably of fluvio-deltaic reservoirs. Furthermore, this method 

proves to be the most appropriate stochastic simulation procedure to deal with these 

situations (Soares, 1990, Luís et al, 1997).  

However, some important disadvantages have been pointed out, basically related to the 

increase of conditioning data, which influences the estimation of [ ] *
0  )(xIk . When the number 

of conditioning data increases (near the end of the simulation process), the estimation 

becomes difficult and the result is less precise. The result of a simulation can be an image 

with shapes similar to that obtained by a kriging estimation but different from the 

corresponding theoretical model of continuity. During the simulation it is thus important to 

control the selection of the set of neighbouring conditioning samples. For example, Journel 

(1989) proposes a random selection of n neighbouring samples of the simulated point x0, in 

order to cover a wide range of distances in the neighbouring samples selected. Another 

drawback pointed out regards the difficulty of reproducing the proportions of each phase, 

which is one of the major objectives of the simulation. 

 

2.4.2.2. SEQUENTIAL INDICATOR SIMULATION WITH CORRECTION FOR 

LOCAL PROBABILITIES 

To minimise deviations between the experimental proportions of each phase and the final 

proportions of the simulated indicator values, Soares, 1998, proposed a correction for local 

probabilities. This effect is more significant in phases with smaller proportions and 

represented by variograms with relatively high ranges. During the simulation process, the 

random path can impose a dominant spatial pattern to the first simulated points that can 

seriously bias the experimental proportions of each phase. In this regard, a simple correction 

can be performed as described below, in order to minimise deviations between the simulated 

proportions and the corresponding objective.  

After estimation of { }[ ] [ ] N, i=xIXxprob kk ...1    )(  *
0

*
0 =∈ , at each grid node x0, the basic idea 

is to correct these local probabilities according to the global proportions (marginal 

probabilities) of each phase. Considering the global proportions mk of phase k, it is possible 

to calculate one deviation ek
s between this and the corresponding proportions at a given 

iteration step s of the simulation procedure: 
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 s
kk

s
k pme −=          (2.29) 

where pk
s denotes the marginal probability of lithoclass k in iteration s. 

This calculated deviation ek
s is added to the estimated local probabilities, even when 

normalised: 

 [ ] s
kk

s
k exIxp += *

00 )()(        (2.30) 

Considering the sum of the deviations to be null, the sum of the probabilities for all 

categorical variables is equal to one. 

After this correction, the sequential simulation proceeds as usual, building a cumulative 

function of local probabilities and drawing a random number to simulate a value at point x0. 

The simulated value is added to the conditioning data and the process loops until all grid 

nodes have been visited. 

 

2.4.3. USE OF SIMULATED ANNEALING AS A POST-PROCESSING OR 

SIMULATION TECHNIQUE  

The basis for the implementation of the numerical method of simulated annealing for 

categorical simulations is the definition of an objective function (key parameter). This 

objective function can combine any numerically quantified constraints, usually two-point 

statistics (individual or multi-phase variograms), marginal probabilities (histograms) or multi-

point statistics. In the present case study, simulated annealing was used to match the multi-

phase variograms and the histograms, the objective function being similar to the one 

described above. If the initial image matches the marginal proportions, the objective function 

includes only the deviations of the variograms. 

The perturbation mechanism consists in swapping values from pairs of grid nodes selected 

randomly, excluding the experimental grid nodes (nearest grid nodes matching experimental 

data) if the prior image is simulated conditionally. Another possible perturbation mechanisms 

consists in randomly selecting a grid node and changing its value. This perturbation has the 

disadvantage of changing the marginal proportions, which must, in this particular case, be 

part of the objective function. It is important to emphasise that grid nodes corresponding to 

experimental data values never swap, which guarantees their match.  
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During the process of simulated annealing, recalculation of the objective function is the 

critical step in terms of CPU time. For this reason, it is a good idea to optimise the software 

in this sensitive section of the processing. For example, during recalculation of the deviations 

of the variograms, it is only necessary to use pairs of points that include at least one of the 

swapping grid nodes. The temperature is a parameter that controls the acceptance of 

perturbations that raise the objective function. When applied for post-processing steps, 

simulated annealing can not be started at a high temperature. If it were, the image would be 

randomised before the beginning of the convergence process. In these cases, the proper 

procedure begins with a relative low temperature and decreases quickly, imposing a 

reduction factor for cycles of loops. 

This technique is extremely CPU time-consuming, unless the initial image partially matches 

the desired spatial features. Basically, the use of this method is limited to the final work on 

prior simulated images or small grid nodes. Just to give an idea of the CPU time required, for 

a grid with 124 x 42 x 21 (109368) nodes and 4 lithoclasses, it take about 2 hours on a 

Digital Alpha 600 to perform a complete simulation (transforming a random image of 4 

lithoclasses, respecting the global proportions). This involves about 2.2 million loops (around 

20 times the total number of grid nodes), which is enough to simulate and reproduce the 

required spatial features. 

 

2.5 CASE STUDY OF LITHOCLASS SIMULATION 

2.5.1. DATA PREPARATION  

The data set used in this field study involves cores and logs from 19 wells drilled into the 

formation. As described in section 1.3, 20 different lithoclasses were identified, 

corresponding to different petrophysical characteristics. Despite the large number of 

lithoclasses, in these 25 layers no sets had more than 11 lithoclasses in each layer. 

According to the methodologies outlined above, summarised in the flow chart displayed in 

Figure 2.1, all different simulation procedures for lithoclasses start with classification of the 

geological information (K lithoclasses) into indicator vectors, layer by layer. Final results 

consist of simulated images showing lithoclass distribution by layer. An extract from an 

indicator data file prepared for calculation of basic statistics and multi-phase variograms is 

displayed in Figure 2.5. 



Chapter 2 

40 

 

 

 

 

 

Figure 2.5  Extract from a indicator data file (X, Y, Z, I1, I2,... Ik). 

 

In order to compute spatial variograms and perform stochastic simulations in the 

stratigraphical depositional referential, it was necessary to execute a geometrical 

transformation of the vertical component in the initial coordinates. This single transformation 

consists of recalculating the vertical component (Z) based on the top coordinate and the 

maximum thickness of the layer observed in the wells using the expression:  

{ }),(
),('

YXTHICKMAX
ZYXTOPZ −

=        (2.31) 

 

As a consequence of this transformation, the origin of the vertical component and the 

thickness became the same for all wells. Figure 2.6 shows a graphical sketch of the 

transformation applied to the entire set of wells in one intermediate layer. Regarding this 

transformation, it is important to emphasise the following points: 

i) The goal of this transformation was to calculate horizontal variograms with 

homologous or stratigraphically correlated samples, assuming that the entire layer 

was regularly formed by deposition and the different thicknesses observed in the 

wells derive from secondary geological processes; 

ii) All wells preserve the sequence of lithoclasses as observed and inside each well the 

proportions of lithoclasses were preserved; 

iii) An inverse transformation is performed at the simulated image to restore the initial 

referential. Usually this inverse transformation is calculated directly in the flow 

simulation grid when the top and thickness of each grid node within each layer is 

defined. 

 

34291.328 80067.164     1.000   0 0 0 0 0 0 1 
34291.328 80067.172     2.000   0 0 0 0 0 0 1 
34291.332 80067.180     3.000   0 0 0 0 0 0 1 
34291.332 80067.188     4.000   0 0 0 0 0 0 1 
34291.336 80067.188     5.000   0 0 1 0 0 0 0 
34291.336 80067.195     6.000   0 0 1 0 0 0 0 
34291.336 80067.203     7.000   0 1 0 0 0 0 0 
34291.340 80067.211     8.000   0 1 0 0 0 0 0 
34291.340 80067.219     9.000   0 0 0 0 0 0 1 
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* 

 

 

Figure 2.6  Location of lithoclasses in wells: a) initial coordinates; b) transformed coordinates. 

 

2.5.2. SPATIAL ANALYSIS BY MULTI-PHASE VARIOGRAMS 

In order to identify similar groups of lithoclasses (for the sake of continuity), individual 

variograms were calculated within each layer. Due to the similar continuity in the vertical 

direction observed in most of the lithoclasses in each layer, similarity of characteristics was 

taken into account in the selection of groups only for experimental variograms in the 

horizontal direction. Regarding this evidence, spatial analysis began with computation of 

individual variograms of lithoclasses only in the horizontal direction. 

In the entire field, two distinct groups of lithoclasses were found within each layer: one 

exhibiting a clear continuity with ranges varying from 2000 metres to 8000 meters and a 

complementary group displaying very small ranges. The only exceptions are the first and last 

layer of the field, which exhibit a low spatial continuity in all lithoclasses, even the most 

representative ones. To illustrate the application of these simulation techniques to this 

particular field, an intermediate layer in the Upper Unit of the field (Unit R1, layer 150) was 

selected to detail results. In the selected layer, 124 by 42 by 21 points (total 109368) 

constitute the 3D grid. The spacing between grid nodes in the horizontal direction is 250 

metres and 1 stratigraphical unit (S.U.)1 in the vertical direction. 

In the present layer R1-150, 9 distinct lithoclasses were found: 2, 3, 4, 5, 6, 7, 8, 9 and 15. 

The proportions of each lithoclass in this layer are shown in Table 2.1. Lithoclasses 2 and 9 

are predominant and represent approximately 50% of the geological set. 

 

                                                           
1 One stratigraphical unit is equivalent to 1.0 foot in the larger well. 
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Table 2.1..Proportions of each lithoclass in layer R1-150. 

 
Before coordinate transformation After coordinate transformation Lithoclass 

Samples (#) Mean Samples (#) Mean 
2 54 0.132 155 0.193 
3 14 0.034 32 0.041 
4 20 0.049 54 0.068 
5 24 0.058 36 0.045 
6 36 0.088 64 0.080 
7 34 0.083 57 0.070 
8 52 0.126 92 0.115 
9 114 0.278 237 0.300 

15 62 0.152 71 0.088 

 

Figure 2.7 and Figure 2.8 display a typical representation of individual variograms for 

continuous lithoclasses (2, 4, 8 and 15) and erratic lithoclasses (3, 5, 6, 7 and 9) 

corresponding to this selected layer. Obviously “erratic” should be understood in a spatial 

distribution sense, for a given scale. 

            

            

                 
Figure 2.7  Experimental variograms corresponding to continuous lithoclasses within the selected 
layer: a) lithoclass 2; b) lithoclass 4; c) lithoclass 8; d) lithoclass 15; e) set of erratic lithoclasses. 

a) b) 

c) d) 

e) 
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Figure 2.8  Experimental variograms corresponding to erratic lithoclasses within the selected layer: a) 

lithoclass 3; b) lithoclass 5; c) lithoclass 6; d) lithoclass 7; e) lithoclass 9. 
 

Grouping the set of erratic lithoclasses into one new category (complementary to the 

continuous phases) and calculating the corresponding individual variogram, the results show 

that this “new” category exhibits a continuous variogram like the continuous lithoclasses 2, 4, 

8 and 15 (see figure 2.7). Based on this evidence, a methodological sequence was 

established, starting with the calculation of individual variograms for all lithoclasses, followed 

by the selection of continuous and erratic lithoclasses, and finally grouping the set of erratic 

lithoclasses into one category worked out as a continuous category. 

For each categorical group, multi-phase variograms in both horizontal and vertical directions 

were calculated within each layer. In the horizontal direction only one omni-horizontal 

variogram was inferred due to the small number of wells and of corresponding samples, 

which are not enough to infer directional variograms. The experimental multi-phase 

variograms of the continuous group was fitted using one exponential theoretical model with a 

range of 4000 metres in the horizontal direction and 45 S.U. in the vertical direction. For the 

experimental multi-phase variograms of the erratic group an exponential model was used 

with a range of 500 meters (length of each block in the final flow simulator model) in the 

horizontal direction and 45 S.U. in the vertical direction. In Figure 2.9 and Figure 2.10, the 

models fitting the experimental multi-phase variograms for both the continuous and the 

erratic group along horizontal and vertical directions are shown.  

a) b) 

c) d) 

e) 
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Figure 2.9  Experimental multi-phase variograms for the selected layer (continuous lithoclasses and 
set of erratic lithoclasses): left: horizontal direction; right: vertical direction. 

 

 

      

Figure 2.10  Experimental multi-phase variograms for the selected layer (erratic lithoclasses): left: 
horizontal direction; right: vertical direction. 

 
 
 

2.5.3. SIMULATION OF LITHOCLASSES  

According to the methodology described in the previous sections, a geological model of 

lithoclasses was built for the entire field, based on the theoretical continuity models fitted to 

each individual layer. Since we are dealing with two groups of lithoclasses, the simulations 

must be performed in two steps. The first step consists of simulation of the continuous group 

including one additional category corresponding to the set of erratic lithoclasses for the 

entire layer. The second step consists of simulation of the erratic lithoclasses for the entire 

layer. Finally the two images were merged according to the location of erratic lithoclasses 

simulated in the set of continuous lithoclasses (Figure 2.11). 

 

 

Model: 0.637 Exp ( a = 500 m) Model: 0.637 Exp ( a = 45 S.U.) 

Model: 0.652 Exp (a = 4000 m) Model: 0.652 Exp (a = 45 S.U.) Model: 0.652 Exp (a = 4000 m) Model: 0.652 Exp (a = 45 S.U.) 
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Figure 2.11  Joint simulated images corresponding to continuous and erratic lithoclasses. 

 

In order to compare the different approaches described above, an entropy test was 

performed on a single layer for the continuous group. The main objective of this test is to 

evaluate the lateral conditioning effect in these methods. Thus, for the selected layer 30 

realisations were performed using the following methods:  

i) multi-phase sequential indicator simulation with correction for local probabilities;  

ii) multi-phase morphological simulation: truncated Gaussian simulation with posterior 

conditioning and using the algorithm of classification based on local and global 

probabilities; 

iii) multi-phase morphological simulation: truncated Gaussian simulation with posterior 

conditioning and using the simulated annealing algorithm to transform the probability 

values into indicator values; 

iv) post-processing of an image created using the sequential indicator simulation 

algorithm with simulated annealing. 

 

Lastly a set of simulated images of the lithoclasses with the validation checks corresponding 

to the different methods is displayed. 

Continuous Erratic 

Final image 

+
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2.5.4. TRANSFORMATION OF SIMULATED PROBABILITY MAPS INTO 

MORPHOLOGICAL MAPS USING SIMULATED ANNEALING 

Since the transformation method based on simulated annealing to classify the probability 

maps into morphological maps is a newly proposed method, a sequence of images showing 

partial results (5%, 10%, 25%, 50%, 75% and 100% of classification of the entire image) for 

one intermediate layer is presented below. In this sequence it is possible to compare 

intermediate variograms with the growth of geobodies. For this specific layer of the Upper 

Unit, the growth of the geobodies was followed during the sequence of transformation 

controlled by simulated annealing. During this process, probability values are transformed 

into indicator values following a decreasing order of probability as described in 2.4.1.3. The 

perturbation mechanism consists of both transformation of a probability value into one 

indicator value and a conventional swap of two position values. These two perturbation 

mechanisms, when associated, ensure a more accurate match of the variograms. In Figure 

2.12 through Figure 2.17, one can see the growth of geobodies. 

The corresponding multi-phase variograms and proportions are displayed for a single level 

of one layer. It is important to note that as the process starts, the grid nodes corresponding 

to data locations have probability values of one of belonging to a specific category and zero 

of belonging to the others. Since the beginning of the transformation process these points 

have already been transformed into indicator values, which guarantees the conditioning.  

 

 

 

 

 

 

 
Figure 2.12  Use of simulated annealing as a classifier of simulated probability values into categorical 

values: after transformation of 5% of values. 

 

 

 

Not transformed (prob. values) 
Lith. 2

Lith. 8
Lith. 15
Erratic group 

Lith. 4
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Figure 2.13  Use of simulated annealing as a classifier of simulated probability values into categorical 

values: after transformation of 10% of values. 

 

 

 

 

 

 

 

Figure 2.14  Use of simulated annealing as a classifier of simulated probability values into categorical 
values: after transformation of 10% of values. 

 

 

 

 

 

 

 

Figure 2.15  Use of simulated annealing as a classifier of simulated probability values into categorical 
values: after transformation of 50% of values. 

 

Not transformed (prob. values) 
Lith. 2
Lith. 4
Lith. 8
Lith. 15
Erratic group 

Not transformed (prob. values) 
Lith. 2
Lith. 4
Lith. 8
Lith. 15
Erratic group 

Not transformed (prob. values) 
Lith. 2
Lith. 4
Lith. 8
Lith. 15
Erratic group 
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Figure 2.16 Use of simulated annealing as a classifier of simulated probability values into categorical 
values: after transformation of 75% of values. 

 

 

 

 

 

 

 

Figure 2.17  Use of simulated annealing as a classifier of simulated probability values into categorical 
values: final image. 

 

The proportion of each lithoclass during the transformation process is presented in the 

following table (Table 2.2): 

Table 2.2  Proportion of the transformed values using simulated annealing as a classifier of simulated 
probability values into categorical values. 

 

Categories 5% 10% 25% 50% 75% All values Objective 

2 0.161 0.162 0.162 0.162 0.164 0.193 0.193 

4 0.087 0.086 0.084 0.076 0.067 0.069 0.068 

8 0.211 0.210 0.207 0.192 0.175 0.121 0.115 

15 0.065 0.064 0.064 0.060 0.064 0.088 0.088 

Set of erratic 
lithoclasses 

0.476 0.478 0.483 0.510 0.530 0.529 0.536 

Not transformed (prob. values) 
Lith. 2
Lith. 4
Lith. 8
Lith. 15
Erratic group 

Not transformed (prob. values)
Lith. 2
Lith. 4
Lith. 8
Lith. 15
Erratic group 
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During the transformation, a reduction of the difference between the theoretical model and 

all experimental multi-phase variograms along different directions is observed. Again during 

the transformation, all proportions of all phases are very well matched, and the reported 

differences are very small. It is important to note that all geobodies tend to grow from 

isolated points of high probability (most of them data points) which leads to better 

conditioned images and generally homogeneous patterns. 

In the present example, the transformation follows a decreasing order of probability and 

because the perturbation includes swapping of values, processing time is not a critical issue, 

compared with the traditional simulated annealing applied to post-processing images. In fact, 

to perform a complete transformation which includes about 10 x (total number of grid nodes) 

= 1093680 loops, takes around one hour on an Alpha Station 600 (Digital). In order to 

decrease the processing time only three directions (X, Y and Z) are included in the objective 

function, instead of including diagonal directions. The number of lag distances included in 

the objective functions was reduced to just five in all three directions (the number of grid 

nodes are 124, 42 and 21 in X, Y and Z directions respectively) and this small number of 

lags proved to be enough. Identical weights for all three directions and a decreasing weight 

based on the lag distance (equal to (1/lag)2) within each direction were used. The 

temperature was low at first, decreasing very slowly during the process (it is reduced at each 

set of 109368 loops – total number of grid nodes). Just to give an idea of the initial value of 

the temperature, only around 5% of the perturbations that increase the objective function 

were accepted. This procedure proves to be effective and ensures that all probability points 

were transformed. 

 

2.5.5. ENTROPY ANALYSIS OF THE DIFFERENT OUTPUT IMAGES.  

To characterise the uncertainty reflected by the outputs of each simulation, a set of 30 

realisations was performed using the methods described above: multi-phase sequential 

indicator simulation (using correction for local probabilities) and morphological simulation 

using the two transformed proposed approaches. Also, the images resulting from sequential 

indicator simulation were post-processed using simulated annealing. In this case, the 

objective is to illustrate the conditioning effect introduced by the annealing algorithm 

associated with the improvement in matching the variograms. During the application of the 

annealing algorithm, the temperature begins rise slightly in order to disturb the images while 

maintaining the main patterns. In the following loops the temperature decreases and the 
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system again tends to match the required parameters. During the whole process, 10 x (total 

number of grid nodes) = 1093680 loops were performed.  

The uncertainty measure used is the entropy of the local probability distribution 

(Goovaerts,1997), which can be defined for a set of K phases (whereas pk
*(x) is the average 

of the 30 indicator simulated values in each grid node x): 

     (2.32) 

The entropy is measured between 0 at the sample location (where there is no uncertainty) 

and ln K associated with the uniform distribution pk
*(x) = 1/k . A standardised measure 

valued within interval [0; 1] for this local entropy is given by: 

K
xHxHR ln

)()( =         (2.33) 

For the four sets of 30 images, this standardised entropy measure was calculated. In Figure 

2.18 through Figure 2.21 the distribution of entropy is illustrated for some levels associated 

with the location of wells. 

 

 

 

 

Figure 2.18  Entropy distribution on level 11 - multi-phase sequential indicator simulation with 
correction for local probabilities. 

 

 

 

 

 

 

Figure 2.19  Entropy distribution on level 11 - morphological simulation plus classification using local 
and global probabilities to transform probability values into categorical values. 
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Figure 2.20  Entropy distribution on level 11 - morphological simulation plus classification using 
annealing algorithm to transform probability values into categorical values. 

 

 

 

 

 

Figure 2.21  Entropy distribution on level 11 - post-processing images using annealing algorithm to a 
sequential indicator simulation set of images. 

 

Based on these images it is possible to rank the four geostatistical simulation methods in 

decreasing order using the entropy as follows:  

1) Morphological simulation using the morphological method to transformation probability 

values into morphological categories; 

2) Multi-phase sequential indicator simulation with correction for local probabilities plus 

post-processing by simulated annealing; 

3) Multi-phase sequential indicator simulation with correction for local probabilities; 

4) Morphological simulation using annealing algorithm as transformation method. 

Following this sequence, it is observed that the use of simulated annealing as a post-

processing simulation method reduces the entropy, as observed by comparing the entropy 

Figure 2.18 and the corresponding post-processed image, Figure 2.21. To express these 

differences numerically, the sum of the entropy for the whole area (and the entire depth) and 

for a highly conditioned sub-area (nearby 11 wells) was calculated for each method; see 

Table 2.3. 
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Table 2.3  Sum of the entropy values for the entire layer and for a central area. 

 

Method Entire layer Central area  

Sequential indicator simulation with correction for local 

probabilities 

61613 5021 

Morphological simulation plus morphological 

classification  

72507 6132 

Morphological simulation plus annealing classification 47665 1785 

Sequential indicator simulation with correction for local 

probabilities plus post-processing by simulated annealing 

72050 4058 

 

Results in this table confirm the rank. It is important to note the following points: 

• Post-processing using simulated annealing has a strong conditioning effect comparing 

the sum of entropy in the highly conditioned sub-area. Considering the entire area, 

results were almost identical; 

• Morphological simulation plus annealing transformation proved a highly conditioned 

method especially in conditioned areas, where this conditioning effect is noticeable; 

• By contrast, morphological simulation plus transformation using local and global 

probabilities produces the most variable set of images. However, all realisations 

produced using these methods matched the required parameters (basic statistics and 

variograms) and the experimental data. 

Figure 2.22 shows a set of 3 horizontal views from different layers comparing the four 

different simulations methods for categorical variables. 

2.5.6. VALIDATION OF THE RESULTS 

The validation of stochastic images was ensured through different levels of control, involving 

basically coherence analysis of the simulated images against the experimental data points 

and the conceptual model.  
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To illustrate the coherence of the simulated images using the above methods, a set of 

figures (horizontal views and cross sections) is presented. The figures were obtained using 

the three methods: sequential indicator simulation with correction for local probabilities, and 

morphological simulation using the two proposed transformation methods. In Figure 2.23 

through Figure 2.25 a set of vertical cross-sections of the entire field and using the three 

different methods is illustrated. 

The final check consists of the following: 

• comparison between experimental and simulated proportions of each lithoclass; 

• comparison of the continuity of the lithoclasses in the simulated images and in the 

experimental data; 

• checking whether the simulations honoured the experimental values. 

The comparison of proportions for each lithoclass is presented for one layer. Post- 

processing by annealing when using the iterative swap of values does not alter the initial 

proportions. 

In Table 2.4, the final proportions for each lithoclass for the final simulated images are 

represented and compared with the initial values. 

Table 2.4  Comparison of the lithoclass proportions in the simulated images for the selected layer. 

 

Lithoclass Experimental 
data 

SIS Morphological simulation 
with transformation 

using local and global 
probabilities 

Morphological simulation 
with annealing 
transformation 

2 0.193 0.196 0.193 0.193 

4 0.068 0.068 0.068 0.070 

8 0.115 0.127 0.115 0.121 

15 0.088 0.090 0.088 0.069 

3 0.041 0.039 0.040 0.041 

5 0.045 0.040 0.045 0.046 

6 0.080 0.074 0.083 0.086 

7 0.070 0.071 0.071 0.072 

9 0.300 0.295 0.297 0.302 
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Proportions from images resulting from morphological simulation using morphological 

transformation are matched exactly due to the background of the method. In the present 

case study, this exact match is observed in the continuous phases: 2, 4, 8 and 15. The 

resulting simulated image of the erratic set of lithoclasses also exactly matches the 

experimental proportions. After merging these images with those resulting from the 

continuous set simulation (and the additional phase that reproduces the entire set of erratic 

lithoclasses) the proportions may show some bias. However, due to the erratic nature of 

these images, which imposes local averages in small moving windows equal to the global 

proportions, the bias is reduced, as shown in Table 2.4. The proportions of the simulated 

images coming from sequential indicator simulation using correction for local probabilities 

are generally close to the experimental values, even in the small proportion phases. The 

major difference is observed in lithoclass 5, about 10%, but all the others are very small. The 

morphological simulation method with annealing transformation shows that these proportions 

are well matched. It is important to note that in this method the bias of the proportions is one 

term of the objective function. 
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Figure 2.22  Illustration of 3 horizontal views from the generated stochastic images comparing the 
different methods. 

Realization #1 
Sequential indicator simulation with correction for 
local probabilities 

Sequential indicator simulation with correction for local 
probabilities plus post-processing by simulated annealing 

Morphological simulation plus classification using local and 
global probabilities 

Morphological simulation plus classification using 
simulated annealing 

Realization #2 

Realization #3 

Sequential indicator simulation with correction for 
local probabilities 

Sequential indicator simulation with correction for local 
probabilities plus post-processing by simulated annealing 

Morphological simulation plus classification using local and 
global probabilities 

Morphological simulation plus classification using 
simulated annealing 

Sequential indicator simulation with correction for 
local probabilities 

Sequential indicator simulation with correction for local 
probabilities plus post-processing by simulated annealing 

Morphological simulation plus classification using local and 
global probabilities 

Morphological simulation plus classification using 
simulated annealing 
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Figure 2.23  Cross-sections showing reservoir geological model - multi-phase sequential indicator 
simulation with correction for local probabilities. 
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Figure 2.24  Cross-sections showing reservoir geological model - morphological simulation plus 
classification using local and global probabilities. 
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Figure 2.25  Cross-sections showing reservoir geological model - morphological simulation plus 
classification using simulated annealing algorithm. 
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Variograms of the simulated images are now presented to illustrate the reproduction of the 

continuity models. For the same layer, in Figure 2.26 through Figure 2.29, the experimental 

variograms and theoretical functions of the continuous simulation images are illustrated for 

the three methods plus post-processing by annealing in the three main orthogonal directions 

(X, Y and Z). In Figure 2.30 through Figure 2.32 the corresponding experimental variograms 

for the erratic group are illustrated, for the three methods described above. For the erratic 

group, post-processing by annealing was not applied because this group is already well 

characterised. From these variograms it is possible to conclude that all methods reproduce 

the theoretical models imposed well. However it is possible to observe more accurate 

reproduction in the annealing methods. 

All these methods include in their backgrounds the assumption that the experimental data 

must be matched at sampled locations. The final check for the confirmation that the 

simulations honoured the experimental values is simply a test to verify that the experimental 

procedure was properly conducted. If the samples are translated to the near grid nodes, the 

final images exactly match data values in data locations. Otherwise, and particularly in 

oversampled areas, the nearest grid node could have a different simulated value from the 

corresponding experimental data.  

 

 

 

 

Figure 2.26  Variograms of the continuous group using multi-phase sequential indicator simulation 
with correction for local probabilities. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.27  Variograms of the continuous group using morphological simulation plus classification 
using local and global probabilities. 
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Figure 2.28  Variograms of the continuous group using morphological simulation plus classification 
with annealing algorithm. 

 
 
 
 
 

 

 

Figure 2.29  Variograms of the continuous group using post-processing by simulated annealing to a 
sequential indicator simulation image. 

 

 

 

Figure 2.30  Variograms of the erratic group using multi-phase sequential indicator simulation with 
correction for local probabilities. 

 

 

 

 

Figure 2.31  Variograms of the erratic group using morphological simulation plus classification using 
local and global probabilities. 

 

 

 

 

Figure 2.32  Variograms of the erratic group using morphological simulation plus classification with 
annealing algorithm. 
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2.6 FINAL REMARKS 

The aim of this chapter is to compare 3 algorithms for the simulation of categorical variables 

and an algorithm for post-processing of images, which may be used together or separately 

to characterise the internal morphology of formations, based on a prior classification into 

lithoclasses or rock types. The main goal of stochastic simulation methods is to quantify 

uncertainties as expressed in the analysis of different realisations. The set of equally 

probable images of the geology can be conditioned to the available information for a 

posterior estimation or simulation of petrophysical properties, which are the input of a flow 

simulator (a transfer function). This transfer function produces a spread of production results 

based on extreme and most likely scenarios of flow patterns. Although all realisations have 

the same statistics they may yield different probable predictions in reservoir production and 

performance, which may affect selection of the optimal strategy for field development, 

although all the realisations are equally probable. 

In the formation of this particular study, each layer has a set of lithoclasses, which for the 

sake of continuity are subdivided into continuous and erratic. In this study it was found that a 

lithoclass which is identified as being continuous in one layer is frequently identified as being 

erratic in another, and there appears to be no relation in the way in which the continuity of a 

given lithoclass varies in depth (from layer to layer). Similarly, no link was observed between 

the proportion of each lithoclass in a given layer and its continuity in that layer: there are 

lithoclasses with high proportions and which display erratic behaviour (when greater 

continuity might be expected) as well as other less frequent ones which are concentrated in 

particular areas, which leads them to display continuity. 

After the results of lithoclass simulation involving three algorithms for simulation of 

categorical variables and a post-processing algorithm, some conclusions can be drawn 

about the methods used and the results obtained.  

Any one of the algorithms imposes the following characteristics on the final images: 

experimental proportion of lithoclasses, model of continuity, and values at known points. This 

derives from the theoretical conception of the methods themselves.  

Sequential indicator simulation with correction for local probabilities is an algorithm for the 

simulation of categorical variables, which generates images reproducing the averages of 

each of the phases and the variogram model. For the layer used in the comparative study, 

the total variability of the images obtained is high, the second highest of all the methods 

tested. The images have a fairly regular pattern of distribution of lithoclasses around the 
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wells, its influence being dependent on the continuity models used and the proportions of the 

lithoclasses. Use of this method at the outset makes it possible to use different variogram 

models for each lithoclass, which would suggest a single execution of this algorithm for the 

whole set of phases; continuous and erratic. However, it was seen that simulations involving 

lithoclasses with such different variograms (500 metres < to < 4000 metres) lead to images 

with intermediate variograms for all lithoclasses, which definitively rules out this possibility. 

Morphological simulation (truncated Gaussian simulation plus posterior conditioning) is an 

algorithm which was developed in two versions. After the conditioning phase the result is a 

map of the probability of each point belonging to each simulated lithoclass. The final stage of 

this method is the transformation of probability maps into multi-phase lithoclass maps. This 

stage was implemented in accordance with two classification criteria (a classification based 

on local and global probability values and a classification process based on simulated 

annealing). These two methods of classification produce final results which are completely 

different in terms both of the standards of images and of the conditioning effect. Thus the 

images resulting from classification using the conventional transformation method have a 

weak conditioning effect compared with the results obtained by the other methods under 

study. As a consequence, in circumstances which are the same in terms of variogram model 

and disposition of samples, this is the method which generates simulated images with the 

greatest variability. This is not to be expected, bearing in mind that the conditioning factor is 

the last and should therefore prevail. When conditioning is carried out based on a non-

conditional simulation, one of two things may happen with each sample: either by 

coincidence the non-conditional simulation obtained the correct value for the sample and 

there is no conditioning (no difference between real and simulated data), or it did not obtain 

the correct value and there is a contribution from this sample with a positive difference. 

These differences are estimated for the remaining areas, which means that their values 

gradually disappear as one moves away from the well. A consequence of this fact is the co-

existence of a conditioning effect, which is strong in some cases (illustrated by circles 

around the wells) and very weak in others (different lithoclasses were simulated at a small 

distance from the samples). These two conditioning standards are evident in Figure 2.22. 

The predominance of a number of occurrences of the second conditioning standard means 

that, overall, the images show a high degree of variability. It should also be stressed that in 

non-conditioned areas there is a clear sequential zoning of lithoclasses resulting from the 

process of truncating Gaussian distribution values which, in examples like this in which 

categories have no order relation, introduces an artificial pattern. 
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The influence of the wells in classification using simulated annealing can be observed in the 

patterns of the images around the samples. In fact, simulated annealing, which 

simultaneously includes two types of perturbation - the transformation of probability values 

into categorical values and the spatial permutation of pairs of values - makes the 

conditioning effect the highest of all algorithms tested. The images obtained are fairly similar 

to each other, as can be seen in the measurement of the weak variability between the 

images for different realisations. The images present a standard of marked continuity around 

all wells, with practically no exceptions, with a few pixels showing erratic distribution.  

Simulated annealing as a post-processing of simulated images (in this case, SIS) improves 

approximation to theoretical variogram models, which are reproduced with practically total 

faithfulness. The perturbation used (permutation of values) does not introduce any alteration 

in the proportions of each lithoclass, in the same way that the fact that the blocks containing 

wells are not used in these permutations means that the simulation remains conditional. 

These images also feature some pixels (rather more than in the algorithm referred to above) 

displaying erratic distribution. These pixels represent the visible face of local minima in which 

the objective function falls in its path towards minimisation. In any case, these local minima 

are already in a somewhat low value domain of the objective function. This image obtained 

by post-processing has an angular pattern, due to the fact that the objective function has 

contributions only from orthogonal directions of the variograms. This may be minimised by 

introducing new directions in the objective function. Finally, it was observed that it is 

sufficient to include in the objective function the difference in values of variograms for small 

distances (in the examples described, the objective function was optimised with 5 grid nodes 

in each orthogonal direction). 

Finally, it should be remembered that the simulation took place in a new frame of reference, 

and that it has to be transformed once again to the frame of reference of the formation. One 

of the major disadvantages that may be pointed out in this transformation of coordinates is 

the fact that inverse transformation does not necessarily mean that the proportions of the 

lithoclasses will be respected in the original frame of reference. Indeed, when inverse 

transformation is carried out, the final proportions are variable and only by mere coincidence 

would they turn out to be the same as the original values. In any case, application of the 

transform is absolutely essential to find continuity models in the horizontal direction. 
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3 DESCRIPTION OF PETROPHYSICAL PROPERTIES USING 
ESTIMATION METHODS 

3.1 ESTIMATION OF PROPERTIES 

The basic objective of any reservoir description consists of the generation of a two- or three-

dimensional grid with nodes that spatially characterise the required properties, particularly in 

inter-well areas. Specific features associated with each particular field are the key factor in 

selection of the most appropriate multi-step approach.  

If the main objective is to achieve the uncertainty of the main characteristics of the reservoir, 

simulation methods (see section 2 and 4) are the most appropriate techniques. Once we 

have defined the lithoclasses as homogeneous geological bodies, with regard to their 

internal properties, and we have characterised their spatial dispersion with simulation 

methodologies, we are now able to map the average values of the internal properties inside 

each lithoclass.  

For this purpose, in this section a set of techniques is proposed to achieve the estimation of 

the main descriptive properties in oil fields: porosity, permeability and water saturation. In 

this particular oil field, based on a relationship between petrophysical properties and 

lithoclasses, it is possible to identify two distinct situations:  

• the porosity and permeability values are strongly dependent on the lithoclass 

classification; 

• the water saturation is mainly dependent on physical conditions (capillary pressure) but 

usually shows a correlation with porosity, permeability and capillary pressure. 

These two distinct situations led to the selection of two different approaches in order to 

perform an appropriate spatial characterisation of these properties.  

Regarding porosity and permeability estimation, the proposed method (zonal control 

estimation with ordinary kriging) takes into account the generated images of lithoclasses and 

follows a conditional process of zonal control. Due to the small correlation between porosity 

and permeability, and since the classification into lithoclasses took into account the porosity 

and permeability values, the estimation of both could be independent. Thus, each stochastic 

realisation of lithoclasses produces one estimated map corresponding to each variable. 

Following this methodology, the goal consists in highlighting the heterogeneity between 

lithoclasses, based on the homogeneity inside each lithoclass.  
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By contrast, estimation of the water saturation must take into account the physical rules that 

condition its spatial distribution and variability. Water saturation is a non-stationary variable 

and the estimation methods must take into account this physical tendency. To estimate the 

spatial distribution of this variable, and due to the small correlation with porosity and 

permeability, a simple method is proposed based on a single geometrical transformation and 

using ordinary kriging as an interpolator method. The relation between porosity and 

permeability with saturation is derived by a J function, which consists of a correlation 

function between water saturation, capillary pressure, porosity, and permeability (Archer and 

Wall, 1986). Thus, the objective is to work on a new frame that more easily correlates the 

physics of the phenomena with the selection of neighbouring samples. The main drawback 

that could be associated with this method is that a unique average image of the distribution 

of water saturation is produced, completely independent of lithoclasses and petrophysical 

properties. However, during this study a different approach based on an external drift 

provided by the J function was also tried. Nevertheless, for this particular case study, given 

the small correlation that exists between the water saturation and the theoretical J function, 

the use of kriging with an external drift provided by a J function do not bring any advantage. 

 

3.2 ESTIMATION USING ZONAL CONTROL TECHNIQUE 

3.2.1. CONTEXT OF THE PROBLEM 

Geostatistical estimation of the internal properties of a reservoir must account for the wide 

variations between geological units. Sometimes, internal properties change sharply between 

geological units and smooth transitions are unlikely to occur. Therefore, when this zoning 

effect occurs, as is the most common situation, estimation combining data from different 

geological units will produce an artificial smoothing effect across the geological boundaries 

and transitions. To cope with this, geostatistical estimators must be conditioned throughout a 

zonal control, in order to avoid this false smoothing effect (Almeida et al, 1994, 1997, Soares 

and Almeida, 1995). 

Traditional methods of imposing this zonal control consisted in estimating a point x, which 

belongs to a given phase, by using only data from this phase. The method proposed in this 

work, to estimate the internal properties with zonal control, accounts for the entire spatial 

sampling pattern (all phases) and for the spatial structure (variograms) of each phase. The 

zonal control technique basically consists in the two following fundamental steps:  
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i) Perform, over the entire area A, an estimation of the attributes of all phases based on 

all available data. The estimation consists in a generalisation of the multi-phase 

kriging algorithm to the estimation of attributes in a multi-phase set (Soares, 1992). 

The estimation area is delimited by the boundaries of the entire set of phases; 

ii) Merge the estimated values with the morphology of the multi-phase set - fill these 

areas with the corresponding estimated values.  

 

3.2.2. DEFINITION OF THE MULTI-PHASE SET  

Consider a set of mutually exclusive categories k (rock types, lithoclasses, geological units, 

etc.) where an internal property z(x) is spatially dispersed in all categories and displays 

discontinuous transitions between them, giving rise to a zoning effect.  

Defining the internal attribute z(x) as a random variable located in x in the studied area A 

(with a set of K phases, Xk, k = 1,... K), it is possible to construct the two following vector 

variables, Ik(x) and Yk(x) (see Figure 3.1): 

a) One indicator vector, according to the definition described above in section 2.1. Each 

spatial location x is coded for all phases k = 1,… K as a non-ordered indicator vector 

(Ik(x), k = 1, K), where K represents the number of phases: 
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b) The content of z(x) inside each phase Xk: Yk(x) = Ik(x) . z(x) 
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Figure 3.1  Illustration of the definition of the auxiliary variables in a multi-phase structure (K = 3). 

 

For this auxiliary variable Yk(x) the following two first moments are defined by: 
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3.2.3. SPATIAL CONTINUITY MEASURES: COVARIANCE AND EXPERIMENTAL 

VARIOGRAMS 

For the auxiliary variable Yk(x), k = 1, ... K, the non-centred covariance (a continuity measure 

of z(x) inside each phase k) is defined by:  

{ } { })().(  .  )().()().()( hxIhxzxIxzEhxYxYEhC kkkkYk
++=+=    (3.5) 

and the corresponding variogram can be defined as follows: 
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In most situations the multi-phase set of phases is characterised by an insufficient number of 

experimental data to calculate or estimate individual covariances. In these situations, multi-

phase covariance (a global continuity model) for the entire set of categories is the 

Phase 1 

Phase 2 

Phase 2 

Phase 3 

z(x2) z(x4) 

z(x3) 

z(x1) 

Ik(x2)=1,0,0 

Yk(x2)=z(x2),0,0 

Ik(x1)=0,1,0 

Ik(x4)=0,1,0 

Ik(x3)=0,0,1 

Yk(x4)=0,z(x4),0 

Yk(x3)=0,0,z(x3) 

Yk(x1)=0,z(x1),0 

Ik(x) data file: Yk(x) data file:         X         Y   Z    I1 I2 I3 
 7593.609  5266.334 1.0    1  0  0 
23623.350  5810.718 1.0    0  1  0 
12176.690  4857.042 1.0    0  1  0 
 1269.476  4712.681 1.0    0  1  0 
29675.859  5842.671 1.0    0  0  1 

… 

        X         Y   Z    Y1    Y2    Y3 
 7593.609  5266.334 1.0   7.45    0     0 
23623.350  5810.718 1.0     0   8.21    0 
12176.690  4857.042 1.0     0   2.45    0 
 1269.476  4712.681 1.0     0   1.23    0 
29675.859  5842.671 1.0     0     0  18.91 

… 
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appropriate tool to compute and estimate a continuity model. Thus, the multi-phase 

covariance of Yk(x) is calculated by: 
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Using the above expression, Jk (x, x + h)=Ik (x).Ik (x+h)  is equal to “1” if both extremes of the 

vector h are in the same phase and “0” otherwise.  

Given that             is the covariance of z(x) inside each phase Xk, the multi-phase covariance 

CY(h) can be assumed to be a weighted average of the individual covariances of z(x) inside 

each phase Xk : 
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denoting by Lk(h) the number of pairs of points inside each phase Xk and N(h) the total 

number of pairs of points separated by h.  

Lastly, the corresponding multi-phase variogram of Yk(x) can be defined by: 
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and is directly estimated by: 

[ ]∑ ∑
= =

+−=
K

k

hN

i
ikik hxYxY

hN
h

Y
1

2)(

1
)()(

)(2
1)(γ      (3.10) 

Calculation and modelling of the multi-phase covariances or variograms must account for the 

mixture of two or more different structures. This means that in several cases the multi-phase 

set can be characterised by more than one covariance, grouping a set of homologous 

phases (in terms of continuity).  

)(hC
kY
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3.2.4. SPATIAL INFERENCE OF ATTRIBUTES 

At any spatial location x0 inside area A, one can define the multi-phase kriging estimator of 

Y(x0) based on a set of n neighbourhood samples zi(xα): 
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with k=1,…K   and  α=1,…n 

The set of weights λα are calculated by solving the corresponding ordinary kriging system 

written with multi-phase variogram or covariance models: 
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Thus,                        is the kriging estimator of the content of z(x) inside each phase Xk  in location 

x0. The contribution of the values z(xα) of other phases Xj, j ≠ k to the estimation is revealed 

only by the inclusion of the spatial location of these points in the weighting calculation when 

solving the kriging system.  

Briefly, the zonal control of the estimation of Yk(x0) with x0 belonging to Xk in all area A must 

account for the neighbouring samples of x0, z(xα), xα ∈ Xk, and z(xβ), xβ ∉ Xk, and finally one 

global model of continuity - the multi-phase variogram - or a set of multi-phase variograms 

with similar continuity characteristics. 

Since the estimator               is based on a single multi-phase covariance, the estimation is 

performed just once for all phases Xk due to the independence between the kriging weights 

and the phases Xk. However, when dealing with different covariance models of groups of 

phases, the estimation procedure of z(x) inside each multi-phase set is exactly the same as 

described above, but carried out in steps, according to the number of groups.  

On the other hand, for any phase Xk  the respective proportion in the location x0, based on 

the multi-phase indicator variogram of Ik(x), can be estimated as follows:  

 

[ ] *K )(xY 0

[ ] *K )(xY 0
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It is important to emphasise that since a global model of covariance CI(h) is used, all kriging 

weights are independent of the phases Xk, which means that: 

αααα λ(K)λ...)(λ)(λ ==== 21  

Finally, assuming the independence of variables Ik(x) and Yk(x), the estimator of z(x0) in 

spatial location x0 for each phase is given by: 
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with k = 1,... K. 

 

After the calculation of zk(x0) for all phases, the value z(x0) can be obtained by overlapping 

the morphology: if the point x0 is allocated to a specific phase Xk then: 

[ ] [ ] kk X x  if xzxz ∈= 0
*

0
*

0                      )( )(      (3.15) 

 

The most important advantage of estimation with zonal control is that the spatial location of 

samples of all phases are taken into account whereas, in the classical procedure, only 

samples from the phase which x0 (the point to be estimated) belongs to are taken into 

account.  

The difference between these two procedures can be illustrated in the simple sampling 

examples sketched in Figure 3.2 a) and b). Following these figures, sampling points x1, x2 

and x3 and estimated point x0 belong to phase A and x4 belongs to phase B. 
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Figure 3.2  Sketch to illustrate zonal control estimation effects in two sampling situations. 

 

For the sake of simplicity let us consider an isotropic variogram of Z(x), Y(x) and I(x) and 

equal distances between x1, x2, x3 and x4 and x0. The classical procedure gives for estimated 

value of z(x0) considering that x0 belongs to phase A: 

[ ZA(x0) ] * = 0.50 z(x1) + 0.25 z(x2) + 0.25 z(x3) = 45 

The estimation of x0 using zonal control gives: 

[ YA(x0) ] * = 0.25 Y(x1) + 0.25 Y(x2) + 0.25 Y(x3) + 0.25 Y(x4) = 30 

[ I(x0) ] * = 0.25 I(x1) + 0.25 I(x2) + 0.25 I(x3) + 0.25 I(x4) = 0.75 

Use of equation (3.14) gives: 

[ ZA(x0) ] * = 30 / 0.75 = 40 

Following sampling scheme b), the classical procedure for the estimation of z(x0) gives: 

[ ZA(x0) ] * = 0.50 z(x1) + 0.25 z(x2) + 0.25 z(x3) = 45  

Now, the estimation of x0 using zonal control gives: 

[ YA(x0) ] * = 0.25 Y(x1) + 0.25 Y(x2) + 0.25 Y(x3) + 0.25 Y(x4) = 37.5 

[ I(x0) ] * = 0.25 I(x1) + 0.25 I(x2) + 0.25 I(x3) + 0.25 I(x4) = 0.75 

Phase A 

z(x1) = 60 

Phase B 

z(x4) = 60

Phase A 

z(x2) = 30 

Phase A 

z(x3) = 30

z(x0) = ? 

Phase A 

Phase A 

z(x1) = 30

Phase B 

z(x4) = 30 

Phase A 

z(x2) = 60

Phase A 

z(x3) = 60 

z(x0) = ? 

Phase A 

a) b) 



Description of Petrophysical Properties Using Estimation Methods 

73 

Again, use of equation (3.14) gives in this case: 

[ ZA(x0) ] * = 37.5 / 0.75 = 50 

In summary, estimation with zonal control does not consider Z(x1) as an isolated sample and 

reduces its weight in the estimation compared with the classical procedure, which, 

erroneously, does not consider the spatial location of Z(x4) (which belongs to phase B) and 

consequently overestimates the influence of Z(x1). 

 

3.3 EXAMPLE OF POROSITY ESTIMATION USING A ZONAL CONTROL 

TECHNIQUE 

The porosity of a rock is defined as the fraction of pore volume relative to the total volume of 

rock. Depending on the rock pattern at small scale, porosity can vary from 0% up to 25-30% 

or even more, in some areas of the reservoir (North, 1985). For example, shales usually 

have low porosity, in contrast to sandstone, which usually has the highest values.  

Proper characterisation of porosity is an essential step in the construction of a petrophysical 

model: total oil reserves or oil-in-place depends on porosity (and also on permeability), and 

since non-porous rocks cannot accommodate fluids, they may act as barriers to flow. Usually 

a given rock type is characterised by a low range of porosity values, which justifies the use 

of estimation techniques for mapping this variable.  

The objective of the present case study is accordingly to estimate porosity, which is a 

petrophysical variable dependent on lithoclass types. Porosity is an additive variable 

recorded along the wells through log devices (some wells are cored and logged 

simultaneously), and is estimated using the above-mentioned method of zonal control 

conditioned to the simulated morphology of the lithoclasses. The spatial transitions of 

porosity values between lithoclasses are sometimes not smooth, as can be seen in the 

sequence of values observed in the three wells (Figure 3.3) and in the univariate porosity 

statistics for each lithoclass (Figure 3.4). 
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Figure 3.3  Sequence of porosity values and corresponding lithoclasses in three wells located in one 
upper layer. 

 

 

 

 

 

 

 

Figure 3.4  Univariate statistics for experimental values of porosity in one upper layer – layer 150, R1 - 
by lithoclasses: 2, 3, 4, 5, 6, 7, 8, 9 and 15. 
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Figure 3.4(cont)  Univariate statistics for experimental values of porosity in one upper layer – layer 

150, R1 - by lithoclasses: 2, 3, 4, 5, 6, 7, 8, 9 and 15. 

Lithoclass 4 Lithoclass 5

Lithoclass 6 Lithoclass 7

Lithoclass 8 Lithoclass 9

Lithoclass 15
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3.3.1. DEFINITIONS AND MULTI-PHASE VARIOGRAMS 

The proposed methodology was applied to the entire field, and in this section detailed results 

for a selected layer - layer 150 - are shown. Using the porosity values φ(x) known in 19 

wells, variables Yk(x) and Ik(x) were constructed according to equations 3.1 and 3.2, using 

the porosity values and the lithoclass classification. Within the selected layer, 9 different 

lithoclasses were identified: 2, 3, 4, 5, 6, 7, 8, 9, and 15. Looking at the lithoclass simulation 

study (see section 2.5.2), two groups, one with four lithoclasses plus complementary areas, 

and the other with five lithoclasses, were identified corresponding to continuity models with 

4000 metres and 500 metres of range respectively in the horizontal direction and both with 

45 S.U. in the vertical direction. 

In order to group the phases Yk(x) into homogeneous sets, individual multi-phase variograms 

were calculated for the horizontal direction. In Figure 3.5 a) through Figure 3.5 c) three 

experimental individual variograms corresponding to a continuous set (lithoclasses 4, 8 and 

15) are represented. In Figure 3.6 a) through Figure 3.6 f) the erratic set (lithoclasses 2, 3, 5, 

6, 7 and 9) is represented where it is not possible to identify spatial continuity evidence.  

 

 

 

 

 

 

 

 

 

 

Figure 3.5  Experimental variograms of Yk(x) within lithoclasses classified as continuous: a) lithoclass 
4; b) lithoclass 8; c) lithoclass 15. 

 

 

a) b)

c) 
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Figure 3.6  Experimental variograms of Yk(x) within lithoclasses classified as erratic: a) lithoclass 2; b) 
lithoclass 3; c) lithoclass 5; d) lithoclass 6; e) lithoclass 7; f) lithoclass 9. 

 

In this particular layer, regarding variable Ik(x), lithoclasses 4, 6, 8 and 15 are classified as 

continuous with an average range of 4000 metres and lithoclasses 2, 3, 5, 7, and 9 are 

classified as erratic. As can be observed, only the porosity from lithoclasses 4, 8 and 15 can 

be considered continuous. Lithoclass 2 is continuous, but the variability of porosity within this 

lithoclass is erratic. The entire set of erratic lithoclasses also displays low spatial continuity of 

porosity. 

Multi-phase variograms of Yk(x) were calculated for both groups in the horizontal and vertical 

directions and are shown in Figure 3.7 and Figure 3.8: the horizontal multi-phase variogram 

for the continuous group was fitted with a spherical model with 4000 metres range and 40 

S.U. in the vertical direction, while the non-continuous group or erratic group was fitted with 

a variogram displaying a range of 500 metres in the horizontal direction and 20 S.U. in the 

vertical direction. The horizontal range for the erratic group was adopted based on the 

reasons explained in section 2.5.2: this range corresponds to the smallest distance between 

wells and dimensions of the block for dynamic simulation. 

a) b)

c) d)

e) f)
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Figure 3.7  Experimental multi-phase variograms of the continuous set and theoretical model fitted. 

 

 

 

 

 

 

Figure 3.8  Experimental multi-phase variograms of the erratic set and theoretical model fitted. 

 
 

3.3.2. KRIGING ESTIMATION WITH ZONAL CONTROL TECHNIQUE 

The porosity was estimated with the zonal control methodology explained above based on 

two multi-phase variogram models corresponding to continuous and erratic groups of 

lithoclasses.  

Finally, the estimated porosity values were merged with the stochastic images of lithoclasses 

(in this example, they came from sequential indicator simulation algorithm, see section 2.5) 

and the result consists of an estimated image of porosity conditioned to the simulated image 

of lithoclasses. In Figure 3.9 the estimated porosity values are displayed as well as the 

corresponding image of lithoclasses for a set of levels and sections from one intermediate 

layer. Since each grid node is previously classified as lithoclass k, the porosity distribution 

conditioned to the lithoclasses is finally obtained. 

 

Model: 97.6 Sph (a = 4000 m) Model: 97.6 Sph (a = 40 S.U.) 

Model: 166 Sph (a = 500 m) Model: 166 Sph (a = 20 S.U.) 
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Figure 3.9  Illustration of 3 horizontal views and 2 sections from the generated stochastic images of 
lithoclasses using SIS with correction for local probabilities algorithm and corresponding estimated 

images of porosity using zonal control estimation. 

Simulated Lithoclasses Estimated Porosity 

a) b)

c) 
d)

e) f)

g) 
h)

i) j)
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Table 3.1 compares basic statistics from estimated porosity values and experimental data 

(after geometrical transformation) for the selected layer. In Figure 3.10, the univariate 

statistics for estimated values of porosity within the same layer are displayed. 

Table 3.1  Univariate statistics of experimental and estimated values of porosity. 

 Porosity: experimental data  Porosity: estimated values 

Lithoclass # Samples Mean (%) Variance # Samples Mean (%) Variance 

2 154 10.36 38.27 21422 9.29 9.53 

3 32 17.72 23.01 4269 19.79 29.51 

4 54 5.89 10.58 7422 5.68 9.48 

5 36 11.14 3.14 4313 11.68 4.49 

6 65 12.87 8.10 8120 12.23 4.30 

7 58 18.14 21.22 7762 21.16 36.43 

8 92 18.86 24.11 13897 19.77 13.40 

9 236 18.27 58.38 32350 18.80 9.66 

15 71 25.33 45.78 9813 26.57 26.32 

All 798 15.80 61.04 109368 16.31 47.99 

 

As can be seen in the above table, estimated values display identical statistics, which can be 

considered the first validation of the proposed estimation method. In Figure 3.10, a set of 

sections of porosity values for the entire field using the above-described methodology is 

represented. 

 

 

 

 

 

Figure 3.10  Univariate statistics for estimated values of porosity in one upper layer - layer 150, R1 - 
by lithoclasses: 2, 3, 4, 5, 6, 7, 8, 9 and 15. 
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Figure 3.10(cont)  Univariate statistics for estimated values of porosity in one upper layer - layer 150, 
R1 - by lithoclasses: 2, 3, 4, 5, 6, 7, 8, 9 and 15. 
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Figure 3.11  Cross sections for the entire field showing porosity estimation model using zonal control 
estimation based on a stochastic realization of lithoclasses produced with SIS with correction for local 

probabilities algorithm. 
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It is important to emphasise that this final image is intended to reproduce two aspects 

present in this particular field: the heterogeneity emerging from geological transitions, and 

the major continuity features evidenced by this particular variable within each lithoclass. 

Using this approach, it is clear that one estimated image of porosity (a smooth image) 

corresponds to each simulated image of the geology. Considering the classification of 

samples into homogeneous groups of lithoclasses, the smooth variability of the estimated 

values of porosity and the role of the extreme values are not particularly significant for the 

fluid flow movements. In this regard, the present approach can produce images that provide 

a realistic set of output scenarios for fluid flow simulation. 

 

3.4 EXAMPLE OF CLASSES OF PERMEABILITY ESTIMATION USING ZONAL 

CONTROL TECHNIQUE 

3.4.1. DEFINITION OF PERMEABILITY CLASSES 

One of the most important features in flow simulation scenarios is the ability of fluids to move 

through the field. Fluid movements in a porous medium are governed and quantified by 

Darcy’s Law (Crichlow, 1977, Dake, 1978). According to this law, fluid flow rates are 

dependent on fluid viscosity, pressure gradient and a local constant parameter named 

permeability. This constant is a direct measure of the ability of a fluid to move through a 

rock. Permeability is a characteristic of the rock, which depends on its small-scale internal 

features.  

Permeability values can change quickly over short distances due to the geological 

heterogeneity of the field and to secondary geological processes like cementation or 

dolomitization. In an oil field it is possible to find wide ranges in permeability associated with 

layers (vertical zoning). Layers characterised by low permeability act as vertical barriers and 

can create isolated or compartmentalised areas. In the same way, spatial patterns of high 

and low permeability can create preferential areas for fluid flow circulation and no-flow areas. 

Permeability is one of the most complex petrophysical variables involved in the 

characterisation of reservoirs. In reservoir engineering, the study of the relations between 

fluid flow movements and petrophysical properties is a major subject and these relations 

depend strongly on the existence of extreme values of permeability. As a matter of fact, 

preferential flow patterns in oil fields are highly conditioned by permeability values and 

possible connections between high permeability zones. 
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In this work, the spatial modelling of permeability accounted for two important 

characteristics:  

• Permeability is a tensorial variable, since it depends on the direction of the fluid flow; 

• Preferential flow patterns or barriers are strongly conditioned by the spatial location 

and connectivity of the highest and lowest permeability values within oil reservoirs. 

In order to deal simultaneously with these two major properties, a formalism is proposed 

consisting in the treatment of permeability with probabilistic or non-parametric models (Da 

Costa e Silva et al, 1993, 1997). This kind of model ensures an appropriate representation of 

extreme values (both high and low permeability values) and overcomes the problem of the 

non-additive nature of permeability. 

Combining zonal control methodology with an indicator formalism, the proposed 

methodology basically constitutes an extension of the zonal control method to estimate the 

morphology and permeability values corresponding to several classes of a histogram 

partition (Almeida et al, 1997). The proposed approach produces an image of the internal 

architecture of the permeability distribution within the entire field and has the following 

advantages: 

• It uses all log derived permeability data recorded in the wells; 

• It treats permeability as a categorical variable split into several classes, the extreme 

classes being the most significant for fluid flow models and production forecasting 

purposes. The advantage over methods like direct estimation using kriging is that the 

latter method attenuates the extreme values of the variable and gives a non-realistic 

representation of the field; 

• The zonal control method is based on the estimation of indicator vectors and direct 

conditioning to experimental data via multi-phase kriging, which requires the inference 

of a global model of continuity (multi-phase covariance); 

• Estimation of the permeability classes is independent of the characterisation of 

lithoclass morphology: at each grid node the probability of belonging to a specific 

range of permeability is calculated given that the grid node belongs to a specific 

lithoclass; 

• Lastly, the 3D model of permeability is merged with the simulated images of 

lithoclasses to obtain a final distribution model of permeability. 
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As was stated in section 2, each lithoclass constitutes a geological entity, with specific 

characteristics in terms of porosity, permeability and saturation. At this stage, the basic 

assumption is that the variations of permeability within each geological unit are mainly 

controlled by rock type transitions. Estimation of permeability must thus account for the 

simulated morphology of lithoclasses. 

 

3.4.2. EXTENSION OF ZONAL CONTROL TO ESTIMATE CLASSES OF 

PERMEABILITY 

As permeability can not be considered an additive variable, estimation is performed on 

indicator variables corresponding to the classes in which it was divided. In each grid node, 

what is estimated is not the most probable permeability value (an average value) but the 

most probable class to which the grid node belongs based on the initial histogram and the 

defined classes. 

The methodology used to estimate classes of permeability can be summarised in the 

following sequence of steps: 

i) Definition of a set of nc contiguous permeability classes with cut-offs  1,...1, += ncjz
jc  

that can properly represent the entire spread of permeability values, giving particular 

attention to extreme values and reflecting the major expected variations in the fluid 

flow movement; 

ii) Denoting the permeability by Z(x) and based on the above division into classes, each 

point x0 is coded by an indicator vector )( 0xP ; 

⎪
⎪
⎩

⎪⎪
⎨

⎧ ≤

=
se   otherwi

 z)  < Z(x    if   z

)(xP
j+j cc

j

0

1
10

0   with  j = 1, …nc    (3.16) 

At each point, an indicator vector is created with the value “1” corresponding to the existence 

of the class of the histogram of Z(x0) and (nc–1) “0” values, corresponding to the 

complementary classes. Within the framework of a probability model, Pj(x0) represents the 

probability of a point x0 belonging to the class j of permeability. 
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iii) Construction of the two vectors, )(xIk and )(, xY jk : 
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,    (3.18) 

with k = 1, … K (number of phases) and j=1,… nc (number of classes).  

For example, if a point x0 belongs to phase X1 and to the second permeability class then the 

indicator vector can be expressed as follows: 

[ ]...  0  0  0  0 ... 0  0  0  0 ...  0  0  1  0)( 0, =xY jk  

or if a point x1 belongs to phase X3  and to the first permeability class then: 

[ ]...  0  0  0  1 ... 0  0  0  0 ...  0  0  0  0)( 1, =xY jk  

iv) The estimation of permeability classes is performed according to the methodology 

described above in 3.2, and in the same way: 

[ ] [ ]
[ ] * 

0

* 
0,*

0, )(
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xI
xY

xP
K

jk
jk =       (3.19) 

with i = 1,...K and j = 1,…nc . 

 

v) Transformation of the estimated probability values into indicator values, preserving the 

experimental proportions of each class in each category using the ranking selection 

criterion set out in section 2.4.1.2. 

vi) The last step consists in merging the estimated permeability classes for all lithoclasses 

with the simulated maps of lithoclasses in order to obtain a unique map of permeability 

classes for each simulated map of lithoclasses. 
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3.4.3. CASE STUDY OF ESTIMATION OF PERMEABILITY CLASSES  

The proposed methodology was applied to the entire field, using the permeability values Z(x) 

known in 19 wells (log derived permeability), and results from one specific layer - layer 150 - 

are discussed again in more detail. Variables Yk,j(x) and Ik(x) were constructed according to 

the above expressions (3.17 and 3.18). The permeability values were divided into 14 classes 

covering the entire range of each vertical unit. For the selected layer, the permeability range 

for each class and basic statistics (mean and median) are displayed in Table 3.2. 

Table 3.2  Univariate statistics of the defined permeability classes for the selected layer. 

Permeability 
class 

Range (mD) Frequency (#) Mean (mD) Median (mD) 

1 [0.0; 0.1[ 129 0.06 0.06 

2 [0.1; 0.5[ 117 0.28 0.28 

3 [0.5; 1.0[ 94 0.76 0.78 

4 [1.0; 5.0[ 207 2.41 2.27 

5 [5.0; 10.0[ 96 7.06 6.65 

6 [10.0; 15.0[ 30 12.55 12.51 

7 [15.0; 25.0[ 52 19.35 19.63 

8 [25.0; 50.0[ 38 35.47 34.82 

9 [50.0; 80.0[ 15 59.55 58.5 

10 [80.0; 100.0[ 8 85.59 86.53 

11 [100.0; 130.0[ 6 120.4 127.56 

12 [130.0; 220.0[ 11 169.32 180.34 

13 [220.0; 375.0[ 8 292.5 272.79 

14 [375.0; 1168.01] 2 467.05 467.05 

All [0.0; 1168.0] 798 14.35 1.66 

Individual variograms of Yk,j(x) and Ik(x) were calculated for both horizontal and vertical 

directions (variograms of Ik(x) were calculated in above section). Due to the lack of samples, 

it was not possible to calculate individual variograms for all combinations of Yk,j(x), with k=1, 

…K and j = 1, ….nc. For this variable a variogram for each permeability class, grouping the 

entire set of lithoclasses, was calculated: 

                                                           
1 Maximum value observed in unit R1 
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with  j=1, …14 (number of permeability classes). 

In Figure 3.12 and Figure 3.13 several individual variograms are displayed, reflecting two 

distinct situations: experimental variograms of Yk,j(x) evidencing continuity above 5000 

metres, and erratic experimental variograms. Variograms of these two sets were grouped 

and multi-phase variograms were calculated for each set. The horizontal multi-phase 

variogram for the continuous group was fitted with an exponential model with a range of 

5000 metres and 10 S.U. in the vertical direction (Figure 3.14). The erratic group was fitted 

with an exponential model with a range of 500 metres (small inter-well distances) in the 

horizontal direction and 4 S.U. in the vertical direction (Figure 3.15). 

 

 

 

 

 

 

 

 

Figure 3.12  Experimental variograms for permeability classes classified as continuous: a) class 1; b) 
class 2; c) class 8. 

 

 

 

 

Figure 3.13  Experimental variograms for permeability classes classified as erratic: a) class 3; b) class 
4; c) class 5; d) class 6; e) class 7; f) class 9; g) class 10; h) class 11; i) class 12; j) class 13; k) class 

14. 

 

a) b)

c) 

a) b)
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Figure 3.13(cont)  Experimental variograms for permeability classes classified as erratic: a) class 3; b) 
class 4; c) class 5; d) class 6; e) class 7; f) class 9; g) class 10; h) class 11; i) class 12; j) class 13; k) 

class 14. 

 

c) d)

e) f)

g) h)

i) j)

k) 
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Figure 3.14  Experimental multi-phase variograms for the continuous group of classes of permeability 
in both horizontal and vertical directions. 

 

 

 

 

 

 

 

Figure 3.15  Experimental multi-phase variograms for the erratic group of classes of permeability in 
both horizontal and vertical directions. 

 

The permeability was estimated with the zonal control methodology explained above. In this 

particular case, the morphology was established from previously simulated images of 

lithoclasses. Since each grid node is previously classified as lithoclass k by simulation, the 

final map of permeability classes is obtained by merging these two maps: simulated 

lithoclasses and permeability classes. In Figure 3.16 the estimated classes of permeability in 

a set of horizontal and vertical views of one layer and the corresponding images of 

lithoclasses are presented. 

Table 3.3 and Table 3.4 compare basic statistics from estimated permeability classes and 

experimental data. As shown, the estimated values have approximate basic statistics, which 

validates the use of the proposed estimation method. The transformation of probability 

classes into categorical classes of permeability, using the morphological classification 

method described in section 2.4.1.2, makes the final image match exactly the original 

proportions of each experimental permeability class, which constitutes one of the most 

important advantages of this method. 

Model: 0.295 Exp (a = 5000 m) Model: 0.295 Exp (a = 10 S.U.) 

Model: 0.559 Exp (a = 500 m) Model: 0.559 Exp (a = 4 S.U.) 
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Figure 3.16  Illustration of 3 horizontal views and 2 sections from the generated stochastic images of 
lithoclasses using SIS with correction of local probabilities algorithm and corresponding estimated 

images of permeability classes using zonal control estimation. 
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Table 3.3  Univariate statistics of permeability classes for experimental data. 

 Permeability classes 

Lithoclasses 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

2 0.045 0.041 0.018 0.026 0.031 0 0.010 0 0.005 0.005 0.005 0.006 0 0 

3 0.026 0.003 0.005 0.006 0 0 0 0 0 0 0 0 0 0 

4 0.046 0.015 0.004 0.004 0 0 0 0 0 0 0 0 0 0 

5 0 0.010 0.013 0.024 0 0 0 0 0 0 0 0 0 0 

6 0 0.021 0.033 0.026 0.001 0 0 0 0 0 0 0 0 0 

7 0 0.006 0.015 0.029 0.015 0.004 0.005 0 0 0 0 0 0 0 

8 0 0.005 0.001 0.073 0.036 0 0 0 0 0 0 0 0 0 

9 0.026 0.045 0.032 0.070 0.028 0.026 0.030 0.010 0.007 0 0 0.007 0.010 0.002 

15 0 0 0 0.002 0.008 0.008 0.020 0.038 0.006 0.005 0.002 0 0 0 

All 0.143 0.146 0.121 0.260 0.119 0.038 0.065 0.048 0.018 0.010 0.007 0.013 0.010 0.002 

 

Table 3.4  Univariate statistics of permeability classes for estimated probability values Pk,j(x). 

 Permeability classes 

Lithoclasses 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

2 0.027 0.042 0.007 0.028 0.049 0 0.018 0 0.008 0.007 0.003 0.003 0 0 

3 0.020 0.011 0.004 0.006 0 0 0 0 0 0 0 0 0 0 

4 0.052 0.013 0.001 0.003 0 0 0 0 0 0 0 0 0 0 

5 0 0.008 0.011 0.026 0 0 0 0 0 0 0 0 0 0 

6 0 0.021 0.029 0.030 0.001 0 0 0 0 0 0 0 0 0 

7 0 0.001 0.007 0.040 0.015 0.003 0.004 0 0 0 0 0 0 0 

8 0 0.001 0.001 0.079 0.033 0 0 0 0 0 0 0 0 0 

9 0.038 0.016 0.038 0.134 0.001 0.013 0.013 0.002 0.002 0 0 0.013 0.026 0.003 

15 0 0 0 0.001 0.007 0.004 0.027 0.033 0.004 0.010 0.003 0 0 0 

All 0.137 0.113 0.098 0.347 0.106 0.020 0.062 0.035 0.014 0.017 0.006 0.016 0.026 0.003 

 

Finally, to illustrate the applicability of this method to the entire field and to visualise the 

vertical permeability zoning, in Figure 3.17 the estimated classes of permeability in a set of 

vertical views for the entire field are presented. 
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Figure 3.17  Cross sections for the entire field showing permeability class estimation model using 
zonal control estimation based on a stochastic realization of lithoclasses produced with SIS with 

correction for local probabilities algorithm. 
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3.5 WATER SATURATION MODELLING 

3.5.1. POSITIONING THE PROBLEM 

Unlike porosity and permeability, water saturation distribution is usually smoother even 

between different rock types. Gravity and capillary pressure control fluid distribution in 

porous media. Gravity acts as a density separator: low-density fluids tend to move to the 

upper zones of the reservoir. Capillary forces tend to counterbalance gravitational 

segregation and to move wetting fluids to areas where the non-wetting fluid is dominant, up 

to an equilibrium fluid balance. Usually, water is the wetting fluid relative to oil and gas and 

oil is the wetting fluid relative to gas. This process creates a natural segregation of fluids 

(water, oil and gas) (Dake, 1978, Archer and Wall, 1986). A typical distribution of fluids is 

sketched in Figure 3.18. 

 

 

 

 

 

 

Figure 3.18  Typical distribution of fluids in an oil field: a) aerial view; b) cross-section. 

 

In a rock formation, porous zones are conceptually similar to a tube system. Water will rise 

up a thin capillary tube in response to physical properties, such as surface tension, 

wettability of the tube to water and capillary pressure. Depending on the dimensions of the 

tube, water will rise higher or lower. Since water saturation is the ratio of water volume to the 

total fluid volume, it could range from 0 to 100%. However, in practice the lower limit is not 

0% but tends asymptotically to a limit - irreducible water saturation - the residual water that is 

held by interfacial tension in the pores and that can not be displaced. 

Typically the relation between capillary pressure and water saturation depends strongly on 

the permeability of the medium. For this reason, it is necessary to “normalise” all available 

data in order to establish a relation between saturation and capillary pressure. The best-
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known correlation function applied universally in reservoir engineering is called the J-function 

and was proposed by Leverett (Archer and Wall, 1986). This expression relates water 

saturation and capillary pressure using the petrophysical properties of the rocks and the 

fluids: 

( )
2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

φσ
KPJ c

SW
       (3.21) 

where: 

Pc - Capillary pressure 

σ -  Interfacial tension 

K - Permeability 

φ - Porosity  

Initially the J-function was designed to establish a correlation between all the data involved. 

However, due to the dependence of the correlation on the formation characteristics, it is 

necessary to split all the data into several groups that represent the rock types involved and 

to draw a local correlation in order to reduce the scatter for each correlation.  

In highly heterogeneous reservoirs, such as this one, modelling of the spatial distribution of 

water saturation is not an easy task. Geological heterogeneity and the complex mixture of 

rock types may introduce strong variations in capillary pressure and cause a non-continuous 

vertical distribution of water above the free water level (FWL). Also, in this oil field, the FWL 

surface is not flat, which reflects the impact of rock heterogeneity on capillary pressure 

variations. 

Due to the small uncertainty that usually characterises the distribution of this variable, it is 

usual to construct water saturation models based on estimation methods. In fact, water 

saturation is not a petrophysical variable but a dynamic variable, which is mainly dependent 

on capillary pressure. Estimation models able to tackle this variable must take into account 

that this is a non-stationary variable that tends to 100% when capillary pressure decreases 

(with the depth to FWL). 

To cope with this non-stationary variable, a simple estimation method by ordinary kriging is 

proposed. The first step of this method consists in performing a geometrical transformation 

of the vertical coordinate system in order to use the samples located at the same depth 
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above the FWL for estimation of the water saturation at each grid node. The main drawback 

to this estimate that may be pointed out is that porosity, permeability and rock types are not 

taken into account. In fact, in this particular oil field, due to the high heterogeneity of water 

saturation distribution, the correlation between J-function and water saturation is poor, even 

within rock types (Figure 3.19). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19  Scattergram representing correlation between water saturation and J-function for Upper 
unit R1: a) all rock types; b) mudstones. 

 

Lastly, the main validation procedure of the water saturation model is to check it using a 

cross-validation test based on several wells. 

 

3.5.2. GEOSTATISTICAL ESTIMATION BY ORDINARY KRIGING 

The proposed methodology is based on a geostatistical estimation of water saturation values 

after geometrical transformation of the coordinate system. Several tests to find horizontal 

correlations showed the highest spatial correlation of water saturation measures when 

located at the same distance or height relative to free water level (FWL). Based on this 

single piece of evidence, it is proposed to model the water saturation using a new spatial 

referential in the vertical direction, with the origin in the FWL surface. 
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Another unusual factor related with the characterisation of water saturation is the presence 

of full water saturation in several areas at the top of this oil field. The presence of these 

areas at the top of the field is very difficult to explain and may derive from the geometry of 

several geological formations that act as preferential channels. The existence of these water 

geobodies (volumes with SW = 100%) introduces a new problem in the estimation - kriging 

estimators tends to attenuate extreme values and if one estimates the entire field (above 

FWL) at one dash the volume of these zones is certainly underestimated.  

In order to cope with the above considerations, the following procedure is proposed to create 

a 3D model of water saturation: 

i) Geometrical transformation of the vertical coordinates of the well samples based on 

the heights to the FWL (see Figure 3.20); 

 

 

 

 

 

 

 

 

 

Figure 3.20  Illustration of the transformation of vertical coordinates according to the FWL. 

ii) Estimation of the surface of free water level for the entire area of the field. Below this 

surface, water saturation is considered equal to 100%. 

iii) Above the estimated free water level surface, estimation of the location and shape of 

the water geobodies using a simple indicator kriging approach. Using this approach, 

the maintenance of water geobody volumes is ensured in the same proportion as 

revealed by the experimental samples in wells. This step involves the generation of an 

indicator variable, the calculation of experimental indicator variograms in both 
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horizontal and vertical directions in the domain of the transformed referential, fitting a 

theoretical model, estimating probability maps and transforming the probability maps 

into indicator maps preserving the experimental proportions of these geobodies. 

iv) For water saturation values below 100%, calculation of the experimental variograms in 

the domain of the transformed referential. Estimation by ordinary kriging of water 

saturation values in all the area A not fully filled by water (SW < 100%, according to the 

areas delimited in the previous point) using the samples at the same depth as the free 

water level; 

v) Finally, conversion of the transformed referential to the original geographic referential 

of the field.  

3.5.3. ESTIMATION OF THE SURFACE OF FREE WATER LEVEL (FWL) 

Usually, the FWL is an approximately flat surface for the entire field area; however, local 

variations in the FWL induced by geological heterogeneity and a complex mixture of rock 

types must be accounted for. The depths of the FWL observed in the wells suggest a very 

irregular surface that must be modelled first. This surface was estimated for the entire area 

of the field by kriging using the depths of the contacts observed in the wells and a global 

variogram model, which was a Gaussian model with a range of 4000 metres in the main 

direction of the field and 2000 metres in the perpendicular direction. The estimated map 

representing the FWL is illustrated in the Figure 3.21.  

 

 

 

 

 

 

Figure 3.21  Illustration of the estimated FWL surface in the entire field area. 
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3.5.4. ESTIMATION OF THE SHAPE OF WATER GEOBODIES (SW = 100%) 

LOCATED ABOVE THE FWL 

The first step of the estimation procedure consists of separate estimation of the water 

geobodies (with 100% of water saturation) located above the FWL by using an indicator 

approach. Separate modelling of water saturation above the FWL allows us to deal with 

these local anomalies (SW = 100%) and to treat the complementary area (SW < 100%) in a 

more appropriate way. Any linear estimation with a mixture of these populations would lead 

to underestimation of the water zones. 

To model these areas, the following indicator variable was defined:  

This indicator variable has the following statistics: 

mI = 0.084 

σ2
I = 0.077 

Variograms of this indicator variable give the spatial continuity (or average measure) of 

these water geobodies and allows the most probable morphology of these zones to be 

estimated. Estimation at any grid node xu of the field is provided by estimation of the 

following probability conditioned to a set of n neighbourhood experimental samples: 

 

This probability map is then transformed onto a binary map reproducing the shape of the 

water geobodies. The major advantage of this two-step approach is that the final 

classification step ensures that the percentage of water above the free water level is the 

same as measured from the experimental samples. 

Figure 3.22 represents the experimental variograms of I(x) calculated for the entire field 

along the horizontal and vertical directions. In the horizontal direction, a spherical model with 

a range of 11000 metres was fitted in the main direction of the field and with a range of 5000 

metres in the perpendicular direction. In the vertical direction a two-structure model 

(spherical model) was fitted with ranges of 8 and 30 feet respectively and sills of 0.035 and 

0.025. 
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Figure 3.22  Experimental variograms of the I(x) in the transformed referential for the horizontal and 
vertical directions. 

Figure 3.23 shows in cross-section the estimated water geobodies for the entire area above 

the FWL. 

 

 

 

 

 

 

 

 

 

Figure 3.23  Illustration of water geobodies (SW = 100%) in a cross-section of the entire field. 
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3.5.5. VARIOGRAM MODEL OF WATER SATURATION FOR THE REMAINING 

AREAS (SW < 100%) 

The highest spatial correlation of saturation values in the horizontal direction is observed 

between samples located at the same relative height above the FWL. As explained above, a 

single geometrical transformation of the vertical coordinates based on the heights to the 

FWL is the first step to calculate spatial continuity for the saturation, as revealed by 

experimental variograms. 

After the transformation of all samples, analysis of the spatial continuity of saturation was 

conducted for the entire field. Experimental variograms were calculated using the sample 

values of SW < 100% for all layers in the three main directions of the field and are 

represented in Figure 3.24. A high continuity structure was identified in the main horizontal 

direction of the field and was fitted using a spherical model with a range of 8000 metres. The 

perpendicular direction in the horizontal was fitted with a 3000 metres model and the vertical 

direction with two structures, with ranges 15 and 120 feet and sills of 275 and 62 

respectively. 

 
Figure 3.24 Experimental variograms of water saturation in the transformed referential and theoretical 

model fitted. 

 

 

Model: 900 Sph (a = 8000m) Model: 900 Sph (a = 3000m) 

Model: 275 Sph (a = 15 ft)+625 Sph (120 ft) 
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3.5.6. CROSS-VALIDATION TEST AND ESTIMATION OF WATER SATURATION 

FOR THE REMAINING AREAS (SW < 100%) 

In order to evaluate and validate the proposed method, a cross-validated test was performed 

that tested the ability of the model to reproduce the profile of water saturation in each well 

using only the remaining wells. In other words, water saturation is estimated in the location 

of each well, after removing it, based on the data of the remaining wells. Figure 3.25 a) 

through Figure 3.25 d) show the results of this cross-validation for a set of wells that could 

be considered very satisfactory considering the large distance between the wells used. The 

best matches between real and estimated SW are verified in those wells located in the middle 

of the field (vertically) due to the considerable amount of surrounding information on the 

other wells. In general, the results of this cross-validation are very satisfactory and give us 

confidence to apply this model to the whole field and to cope with the complexity of the 

distribution of water saturation in this oil field and the non-stationarity shown by this variable.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25  Results of the cross-validation test for four wells located in the middle area of the field. 
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In summary, two different estimates were made over the entire field: an estimate of water 

geobodies and an estimate of water saturation values. These two 3D maps must be merged 

and finally, back-transformed to the original geographic referential based on the estimated 

surface of FWL. 

Complete results of the geostatistical water saturation model are shown in Figure 3.26 and 

Figure 3.27 in several levels and sections along the field.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26  Horizontal distribution of the water saturation in two different levels. 
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Figure 3.27  Cross-sections for the entire field showing the complete water saturation estimation 
model. 
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3.6 FINAL REMARKS 

Each lithoclass consists of a geological entity with specific characteristics in terms of 

porosity, permeability and water saturation. The basic assumption at this stage is that the 

permeability and porosity variations within facies are mainly governed by rock type 

transitions. As a consequence the main objective at this stage was to obtain the average 

values of these petrophysical properties rather than their variability. This means that the 

objective was to estimate the average behaviour of porosity and permeability within the 

boundaries of each lithoclass and not to produce simulated images of these properties. 

As described above, the stochastic model of porosity and permeability has accounted for the 

simulated reservoir images of lithoclasses (section 2). To estimate porosity and permeability 

we are taking into account the fact that our intention is to obtain images of average 

distribution of these properties rather than to obtain a set of equally probable scenarios. In 

the resulting images heterogeneity arises almost totally from the variability of the map of 

lithoclasses. The approach designed to fill these properties within the lithoclass images was 

denoted by zonal control estimation. This method should be used when petrophysical 

variables change sharply between rock types and when scarcity of data rules out calculation 

of cross-variograms or individual variograms for each lithoclass.  

 

Estimating by using zonal control has certain clear advantages when the values of the 

variable to be estimated are different for each lithoclass and when there are sharp variations 

between lithoclasses. Thus, when a set of simulated images of lithoclasses is produced, this 

is the ideal method to fill the petrophysical variables in these images: a single estimate 

makes it possible to obtain images of this variable for each lithoclass. It is sufficient simply to 

merge the simulated lithoclass maps and estimated variable maps. 

As permeability can not be considered an additive variable, estimation was performed on 

indicators corresponding to the classes into which they were divided. For this variable the 

objective was to estimate not the most probable value but the most probable class to which 

the grid node belongs. Permeability was estimated using prior division into classes. These 

classes were then estimated using the formalism of the indicator random variables. The 

approach presented here ensures that areas of high and low permeability are not under- or 

over-estimated, as might be expected if the values were estimated as such. In the same 

way, permeability values within the range of a class which does not exist in a lithoclass 

(within a specific layer) will not appear in the final image, as might happen if interpolation 

took into account the values of the variable. Also, this method is certainly more appropriate 

given that permeability is a non-additive variable. The filling-in of permeability values in the 



Chapter 3 

106 

maps of permeability classes may take different forms, such as using the median of each 

class calculated in each layer. Validation of this method may be carried out by observing the 

images of the models presented, which display clear vertical zoning of this reservoir in terms 

of porosity and permeability, as well as the coherence of the model.  

 

Water saturation displays abnormal behaviour in this reservoir. There is a weak correlation 

with lithoclasses or rock types and with figures for porosity and permeability. Thus variations 

are mainly dependent on distance from the FWL. Another type of unusual behaviour 

displayed is the fact that there are areas with 100% water saturation at the top of the 

reservoir. It is therefore necessary to adapt the estimation method to the modelling of this 

particular behaviour variable, which is clearly not stationary and whose variation depends on 

distance from the FWL. Independent estimates of the areas with saturation equal to 100% 

using the indicator formalism avoids under-estimation of these areas and maintains a 

proportion equivalent to that shown by experimental data.  

To create a 3D model of water saturation a single estimation method based on ordinary 

kriging is proposed. The basis of this proposed method is the use of a referential based on 

the surface FWL that proves to be the most appropriate to find horizontal correlation and 

selection of neighbourhood samples used to estimate each grid node (samples at the same 

depth to the FWL). This criterion used to select the set of conditioned samples copes with 

the non-stationary revealed by the water saturation. The final saturation model is 

independent of lithoclasses, porosity and permeability, and is characterised as an attenuated 

map of a variable which normally displays low variability, albeit with spatially anomalous 

behaviour. 
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4 CHARACTERISATION OF SPATIAL UNCERTAINTY OF 
UNDERSAMPLED VARIABLES 

4.1. INTRODUCTION  

When dealing with geostatistical models one of the most important challenges is to 

characterise the spatial uncertainty of petrophysical variables. Spatial uncertainty depends 

on the heterogeneity of the variable and in geostatistical models it is directly related to the 

number of samples, their spatial location and the continuity models of the variable. When 

multi-Gaussian models are used or the indicator formalism is applied to different thresholds, 

the resulting uncertainty is characterised by the cumulative distribution function obtained with 

the simulated images in each grid node. In other words, characterisation of uncertainty is 

merely local. However, in a large number of applications, notably in the area of reservoirs, 

we need to characterise the global uncertainty in the total area where the reservoir is 

defined, i.e., uncertainty associated with images is worked as a whole and not point by point. 

The use of geostatistical models thus enables us to characterise spatial uncertainty, which is 

modelled by generating a set of equally probable realisations or images of the studied 

variables in space - stochastic simulations (Deutsch and Journel, 1992, Goovaerts, 1997). 

These images can now be used to transfer functions, such as fluid flow simulators, that lead 

to a set of alternative and equally probable production responses, based on uncertainty 

provided by the entire set of grid nodes. 

Preferential flow patterns and dynamic behaviour of the field are mostly conditioned by the 

permeability spatial pattern. Regarding this, the present section presents an approach 

towards creating simulated images of permeability distribution that combines all available 

permeability data: core data with horizontal measures of permeability, and log derived data. 

This approach combines sequential indicator simulation (SIS) and p-field simulation to 

produce spatial images of permeability values using these two data sources. 

At this stage, a geological model showing the internal distribution of lithoclasses was 

produced using categorical simulation algorithms such as SIS. These images reproduce the 

heterogeneity observed between lithoclasses. The objective of this section is now to fill these 

lithoclasses by producing stochastic realisations of permeability values, conditioned to 

lithoclass morphology and incorporating the two sources of permeability data.  
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A more general objective of the proposed methodology is the spatial simulation of 

undersampled variables (Almeida and Guerreiro, 1997, Guerreiro et al, 1998). Permeability 

is usually measured in a few cores and is inferred for the remainder set using linear 

regressions with porosity (Archer and Wall, 1986) or exploring the non-linear relations 

between variables. Various non-linear regression models, like neural networks, may be 

applied based on the following methodological sequence: i) inference of a regression law 

between core permeability and log data at the few core data locations; ii) classification of 

remaining log data into permeability values according to the regression obtained in i). The 

results can be displayed as numerical values of permeability (soft data) or as a probability of 

belonging to a specific range of permeability. For example, deriving the permeability using 

probability neural networks (PNN) leads to each non-core data point being classified into a 

probability vector, which represents the probability of belonging to a set of continuous ranges 

of permeability (Pereira et al, 1995, L. Soares et al, 1996).  

The proposed method is able to use two sources of permeability data with a different 

uncertainty attached (core permeability and log derived permeability - soft data), and can be 

summarised in the following main steps:  

a) Definition of a set of classes to divide the entire range of permeability values. These 

permeability classes should have a consistent physical meaning; 

b) For each data location, calculation (inference or classification) of the probability of 

belonging to each permeability class, for instance by using the PNN formalism; 

c) Stochastic simulation of classes over the entire simulated area using a categorical 

simulation method (for instance, SIS with correction for local probabilities) conditioned 

to the simulated images of rock types; 

d) Calculation of a conditional cumulative distribution function, ccdf, in each grid node, 

based on the simulated lithoclass and permeability class; 

e) Generate n  (n – number of realisations) probability fields P(x) with uniform distribution 

reproducing the covariance model for permeability indicator values;  

f) Simulation of the permeability values zs(x) on each grid node: draw a realisation from 

the local ccdf using the local value of the probability field p(x). 

This method was applied to characterisation of the permeability in this particular field, where 

the core permeability is undersampled relative to the entire set of wells.  



Characterisation of Spatial Uncertainty of Undersampled Variables 

109 

The simulation of classes of permeability was performed for a single layer – layer 150 - and 

was based on 30 simulated images of lithoclasses, obtained using the SIS method (see 

section 2). In this case study, for each simulated image of lithoclasses three realisations of 

permeability are simulated. In total, 90 simulated images of permeability classes were 

produced. This large set of images certainly reproduces all of the heterogeneity that comes 

from the variability between lithoclasses and within each lithoclasses.  

4.2. PROPOSED METHODOLOGICAL FRAMEWORK 

Let us consider the variable PxZ ,...1),( =αα  sampled at a restricted number of points P and 

the variable NxY ,...1),( =αα  known in all samples N >> P. 

First of all, taking into account the range of values of Z(x), a definition of a set of nc 

contiguous classes with thresholds 1,1, += cc njz
j

 is required. The selection criteria for these 

thresholds must take into account the number of data in each class, in particular the extreme 

values. 

Dividing Z(x) in nc classes, for N sampled points, the probability of )( αxZ  belonging to each 

class [ [1, +clcl zz , conditioned to the known variable value )( αxY  for nc classes in which the 

range of Z(x) was divided (conditional probabilities for all nc classes) is calculated as follows: 

[[{ } ,ncwith clxYzzxZprobclxP clclZcl
1       )(,)( );( 1 =∈= + ααα   (4.1) 

Usually, this probability is computed based on a regression between variables Z(x) and Y(x) 

using the sub-set of samples P where the values of Z(x) and Y(x) are known, or using 

classification methods based on neural networks, particularly PNN. Based on the pre-

defined permeability classes, each known point Z(x0) is coded by an indicator vector 
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It is thus possible to classify all the samples with a probability of belonging to a specific class 

cl of the Y(x): 

, nc=   cl,N        ;cl),a(xP aclZ 1  1=       (4.3) 
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In a second step, the probability values )( uclZ xP are simulated for all grid nodes xu within 

area A. The probability of each point xu belonging to each permeability class can be 

interpreted as a categorical variable. Thus a stochastic simulation method like SIS or 

truncated Gaussian plus conditioning could be used (see section 2). In the present case 

study, SIS with correction for local probabilities was used to generate images of permeability 

classes conditioned to the proportions of the samples within each rock type. 

 

The implementation of the proposed simulation algorithm for undersampled variables can be 

summarised in the following sequence of steps: 

I) Statistical description of )( αxP clZ  

Mean: proportion of each class cl in all area A: 

{ } , nc cl=          )(xPEm clZcl 1α=      (4.4) 

Variance: 

{ } { } , ncl =          cm)(xPE)(xP clclZclZcl 1 varvar 2−== αα   (4.5) 

II) Spatial continuity model of )( αxP clZ  

In the same way, individual variograms can be defined for each class:  

{ }2)()()( hxPxPEh clZclZP cl
+−= ααγ      (4.6) 

and the corresponding multi-phase variogram, grouping sets of similar classes of the 

variable Z(x): 

[ ]{ }∑∑
==

+−==
nc

cl
clZclZ

nc

cl
clPP hxPxPEh

Z
1

2

1
  )()( )( ααγγ    (4.7) 

The variogram of        represents  a  continuity measure of the whole set of the 

undersampled variable in all classes of the variable Z(x). 

 

 

)(h
ZPγ
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III) Multi-phase simulation of permeability classes, conditioned to the simulated 
images of lithoclasses 

The multi-phase sequential indicator simulation algorithm with correction for local 

probabilities described above in section 2 was used to produce stochastic images of 

permeability classes (Soares, 1998). This simulation method was modified in estimating the 

local conditional cumulative distribution function: the estimation of this local ccdf only takes 

into account the samples and grid nodes belonging to the same lithoclass. Instead of 

performing different simulated images of permeability classes (one for each lithoclass), and 

merging all the final maps (lithoclasses and permeability classes, one for each lithoclass) the 

original SIS program code was changed to perform a single simulation taking into account 

the geometry of lithoclasses: 

a) Select at random a grid node xu not yet simulated in area A. Identify the 

corresponding simulated lithoclass k(xu); 

b) Build the local probability distribution of permeability classes. This entails estimating 

by kriging the probability of grid node xu belonging to each class [ ] * )( uZ xP
cl

, cl=1,nc 

using the continuity model (4.7): 

[ ] ∑=
α

ααλ )( )( * xPxP
clcl ZuZ       (4.8) 

The weights      were calculated taking account only of the neighbouring samples that 

belong to the same lithoclass k(xu). 

c) Correction of local probabilities, in order to impose the experimental proportions 

revealed by the samples within each lithoclass. These local deviations are 

independent for each lithoclass, and the correction in each grid node xu  takes into 

account only the deviation corresponding to the lithoclass k(xu). Thus, the goal of this 

independent correction is to minimise the differences between global probabilities 

shown by the samples and those of the simulated image in each lithoclass. 

d) Calculation of the cumulative distribution function: 

[ ] [ ]∑
=

=
cl

i
uZucl xPxF

i
1

**  )()(       (4.9) 

 

αλ
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e) Draw a random number p from a uniform distribution defined in the range [0; 1]. The 

grid node xu will be allocated to class cl  if: 

[ ] [ ] *
ucl

*
uclu )(xFp)(xF if        cl        x   class 1 <=<∈ −  

f) Treat this simulated value as initial hard data and loop back to step a) until all grid 

nodes are simulated. 

IV) Calculation of the cumulative distribution function for each grid node xu  

For each permeability class cl of each lithoclass, the global cumulative distribution function 

was inferred using only core permeability data.  

Fcl,k(x), cl=1, nc (nc is the number of permeability classes) and k = 1, K (K is the number of 

lithoclasses). 

Thus, each global cumulative distribution function was allocated to the corresponding grid 

node xu . 

V) Finally, permeability values Z(x) are simulated at each grid node xu using the     
p-field simulation approach 

The cumulative distribution function corresponding to the class cl in each grid node xu was 

calculated at each grid node xu: 

{ }  nc        1,=cl , | )(),( clczxZprobcxF uuZ =<=    (4.10) 

Finally the simulated values of permeability )( us xz  were generated from the local probability 

distribution functions )( αxP clZ  by using the p-field simulation approach (Srivastava, 1992, 

Froidevaux, 1993). A probability field P(x) is simulated for the entire area A, the simulated 

value of permeability )( us xz is equal to: 

)(      e      wher),,()( 1
uuzus xPppcxFxZ == −    (4.11) 

To generate a probability field P(x) over the entire area A it is assumed that the multi-phase 

variogram 
ZPγ  is representative of the continuity of ),( cxF uz  within each class. 

The use of this simulation method is particularly appropriate whenever two types of 

information co-exist with different sampling densities. In the case of this study, there are two 

variables with different characteristics indicating permeability. One is an indirect measure of 
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permeability - soft values - which is inferred from logs by multi-variable correlation and is 

available for all wells. The second variable is effective permeability, measured in a laboratory 

using cores, but this is characterised by low sampling density.  

The main difference between this proposed method (which combines SIS and p-field) and 

running only a sequential simulation method is that the cumulative distribution function in 

each grid node is estimated independently of the simulation process. Thus, this process 

offers greater flexibility in combining densely sampled soft information with poor sampled 

hard information (Soares, 1995, Da Costa e Silva et al, 1996). In fact, when the p-field 

simulation approach is applied, each simulated image of lithoclasses and permeability 

classes acts as soft information and the permeability measured in cores acts as hard 

information. The cumulative distribution function at each grid node is estimated taking into 

account only the cumulative histograms of experimental core data. 

 

4.3. EXAMPLE OF SPATIAL PERMEABILITY SIMULATION  

4.3.1 AVAILABLE DATA 

This methodology was applied to the studied field and results for a middle layer - layer 150 - 

are presented in more detail. As described above, the proposed approach for this field is a 

rock type based model. It starts by creating a stochastic model of the spatial distribution of 

lithoclasses (geological model) using categorical simulation algorithms and conditioning the 

generation of permeability and porosity values to the previous simulated images of 

lithoclasses. In the present section, the objective is to produce simulated images of 

permeability values, conditioned to the simulated images of lithoclasses. These images 

should incorporate all available sources of permeability data: core measures of permeability 

in the horizontal direction (accurate, but scarce) and log derived measures of permeability, 

available in all wells, 0.5 foot spaced (less accurate - soft variable). 

Lack of accuracy in the acquisition and processing of the data can lead to a less 

representative reservoir model. This is a common problem with permeability data. Core 

measures are expensive and time-consuming and as a consequence the costs associated 

with this sampling task are always minimised. However, it is the permeability derived from 

core analysis that ensures high accuracy for reservoir characterisation. 

In the selected layer, the proportion of cored wells to the entire set of samples is about 25%. 

In order to apply the proposed approach, the entire range of permeability was sub-divided 
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into 7 adjacent classes (µD): [0; 0.5[; [0.5; 5.0[; [5.0; 15.0[; [15.0; 50.0[; [50.0; 100.0[; [100.0; 

220.0[ and ≥ 220. All experimental samples are classified into an indicator vector based on 

the limits of these classes: 

⎪
⎩

⎪
⎨

⎧ <≤

=
+

otherwise      0

z  )Z(x  z   if      1
)(

1clcl α

αxP clZ      (4.12) 

Following the proposed methodology, cumulative histograms of permeability by lithoclass 

and permeability class are computed: 

Fcl,k(x), with cl=1, 7 (number of permeability classes) and k = 1, 9 (number of lithoclasses 

observed in the selected layer:  2,3,4,5,6,7,8,9, and 15) 

To summarise, initial data is made up of: 

• a set of 3D grids representing simulated images of lithoclasses for the whole of area A. 

In this study, these images were constructed using a SIS approach, see section 2; 

• the probability of each sample (cored or not) belonging to each permeability class;  

• cumulative histograms of permeability, by lithoclass and permeability class; 

• core permeability data in cored samples. 

 

For the studied layer, Table 4.1 shows the proportions of each lithoclass in all experimental 

data and in three simulated images. As is shown, all proportions calculated in the simulated 

images using the SIS simulation method with correction for local probabilities give a good 

match for the proportions of experimental data. In the selected layer, and based on the 

experimental variograms calculated for the horizontal direction, lithoclasses 2, 4, 8 and 15 

were grouped and modelled together with a long-range - 4000 metres - multi-phase 

variogram (fitted by an exponential model). The complementary set of lithoclasses was 

classified as erratic in terms of spatial continuity. In the vertical direction these two groups of 

lithoclasses were modelled with exponential models with 25 S.U. and 15 S.U., respectively 

(see section 2). 
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Table 4.1  Proportion of each lithoclass in the experimental dataset and in three simulated images. 

Realisations Lithoclass Experimental data 
proportions 

#1 #2 #3 

2 0.193 0.192 0.194 0.192 

3 0.040 0.041 0.041 0.040 

4 0.068 0.070 0.069 0.068 

5 0.045 0.047 0.043 0.045 

6 0.080 0.078 0.077 0.080 

7 0.070 0.066 0.067 0.067 

8 0.115 0.118 0.120 0.121 

9 0.301 0.295 0.296 0.294 

15 0.088 0.093 0.088 0.093 

 

4.3.2 STOCHASTIC SIMULATION OF PERMEABILITY CLASSES CONDITIONED 

TO SIMULATED IMAGES OF LITHOCLASSES 

In the selected layer, 124 x 42 x 21 points (total 109368) constitute the 3D grid. Again, 

spacing between nodes is 250 metres in the horizontal direction and 1 S.U. in the vertical 

direction. 

Experimental omnidirectional variograms were calculated for each permeability class using 

the set of samples available for the selected layer. Classes 1 and 4 display a long-range 

variogram (about 4000 metres), unlike the complementary classes, which are more erratic. 

Thus, two multi-phase variograms were calculated, one grouping classes 1 and 4 and the 

other the complementary phases. For the continuous group of classes, the model fitted is an 

exponential model with 4000 metres range in the horizontal direction and 20 S.U. in the 

vertical direction. For the erratic group, an exponential model was fitted with 500 range (flow 

simulator block model) was fitted in the horizontal direction and 10 S.U. in the vertical 

direction. Figure 4.1 and Figure 4.2 show corresponding experimental omnidirectional 

variograms and theoretical models fitted. 
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Figure 4.1  Experimental multi-phase variograms of the continuous set of permeability classes and 
theoretical models fitted: left) horizontal direction; right) vertical direction. 

 

 

 

 

 
 
 
 

Figure 4.2  Experimental multi-phase variograms of the erratic set of permeability classes and 
theoretical models fitted: left) horizontal direction; right) vertical direction. 

 

Permeability classes were simulated over the entire area A as categorical variables 

conditioned to the simulated images of lithoclasses. Instead of performing one independent 

simulation by lithoclass and merging the simulated images of permeability classes 

conditioned to the lithoclasses, the simulation was performed in a single step, after changing 

the original SIS code from GSLIB software (Deutsch and Journel, 1992). The advantage is 

the imposition of the proportions of the classes in the area occupied by each lithoclass. 

When a grid node xu in area A is selected randomly, the lithoclass previously simulated in 

this grid node is identified. Thus, estimation of the probability of belonging to each 

permeability class follows a search strategy including only the samples and grid nodes that 

belong to the same lithoclass. Also, corrections for local probabilities are made taking into 

account the proportions shown by each permeability class in the simulated lithoclass. The 

result of the simulation consists of the allocation of each grid node xu to one permeability 

class cl, in the case of the point xu belonging to the k lithoclass: [ ] s
uZ )|k (xP

cl
 . 

 

Model: 0.31 Exp (a = 4000 m) Model: 0.31 Exp (a = 20 s.u.) 

Model: 0.44 Exp (a = 500 m) Model: 0.44 Exp (a = 10 s.u.) 
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In Table 4.2, experimental marginal frequencies of each permeability class inside each 

lithoclass are displayed. In  

Table 4.3 through Table 4.5, marginal frequencies of each permeability class inside each 

lithoclass corresponding to 3 different simulated images of permeability classes are 

displayed (values for each lithoclass were calculated for 100%). As can be observed, all 

experimental proportions are matched approximately in the simulated images. Figure 4.3 

shows a set of simulated images of lithoclasses (left) and the corresponding simulated 

images of permeability classes (right).  

Table 4.2  Experimental proportions )( αxP clZ  by lithoclass and permeability class (samples). 

Lithoclass  1 2 3 4 5 6 7 

2 0.449 0.227 0.162 0.052 0.052 0.058 0.000 

3 0.719 0.281 0.000 0.000 0.000 0.000 0.000 

4 0.889 0.111 0.000 0.000 0.000 0.000 0.000 

5 0.222 0.778 0.000 0.000 0.000 0.000 0.000 

6 0.261 0.723 0.016 0.000 0.000 0.000 0.000 

7 0.086 0.586 0.259 0.069 0.000 0.000 0.000 

8 0.044 0.641 0.315 0.000 0.000 0.000 0.000 

9 0.242 0.344 0.186 0.136 0.025 0.025 0.042 

15 0.000 0.128 0.169 0.548 0.127 0.028 0.000 

 

Table 4.3  Simulated proportions )( αxP clZ  by lithoclass and permeability class (REALIZATION #1). 

Lithoclass  1 2 3 4 5 6 7 

2 0.444 0.253 0.150 0.064 0.043 0.046 0.000 

3 0.624 0.376 0.000 0.000 0.000 0.000 0.000 

4 0.824 0.176 0.000 0.000 0.000 0.000 0.000 

5 0.268 0.732 0.000 0.000 0.000 0.000 0.000 

6 0.289 0.630 0.081 0.000 0.000 0.000 0.000 

7 0.193 0.501 0.217 0.089 0.000 0.000 0.000 

8 0.119 0.580 0.301 0.000 0.000 0.000 0.000 

9 0.276 0.358 0.169 0.116 0.026 0.022 0.032 

15 0.000 0.126 0.152 0.581 0.112 0.029 0.000 
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Table 4.4  Simulated proportions )( αxP clZ  by lithoclass and permeability class (REALIZATION #2). 

Lithoclass  1 2 3 4 5 6 7 

2 0.439 0.256 0.148 0.065 0.040 0.051 0.000 

3 0.614 0.386 0.000 0.000 0.000 0.000 0.000 

4 0.825 0.175 0.000 0.000 0.000 0.000 0.000 

5 0.281 0.719 0.000 0.000 0.000 0.000 0.000 

6 0.292 0.623 0.084 0.000 0.000 0.000 0.000 

7 0.201 0.495 0.210 0.095 0.000 0.000 0.000 

8 0.123 0.578 0.299 0.000 0.000 0.000 0.000 

9 0.271 0.359 0.175 0.114 0.025 0.023 0.033 

15 0.000 0.136 0.147 0.576 0.113 0.028 0.000 

 

Table 4.5  Simulated proportions )( αxP clZ  by lithoclass and permeability class (REALIZATION #3). 

 
Lithoclass  1 2 3 4 5 6 7 

2 0.442 0.251 0.154 0.061 0.040 0.051 0.000 

3 0.627 0.373 0.000 0.000 0.000 0.000 0.000 

4 0.829 0.171 0.000 0.000 0.000 0.000 0.000 

5 0.270 0.730 0.000 0.000 0.000 0.000 0.000 

6 0.283 0.633 0.084 0.000 0.000 0.000 0.000 

7 0.196 0.488 0.222 0.093 0.000 0.000 0.000 

8 0.127 0.583 0.290 0.000 0.000 0.000 0.000 

9 0.274 0.353 0.172 0.117 0.027 0.025 0.031 

15 0.000 0.141 0.143 0.576 0.112 0.028 0.000 
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Figure 4.3  Illustration of 3 horizontal views and 2 cross-sections from the generated stochastic 
images of lithoclasses using SIS algorithm and corresponding simulated images of permeability 

classes. 
 
 

Simulated Lithoclasses Simulated Permeability classes

a) b)

c) d)

e) f)

g) h)

i) j)
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4.3.3 TRANSFORMATION OF IMAGES OF PERMEABILITY CLASSES INTO 

NUMERICAL IMAGES OF PERMEABILITY 

The final step of the proposed methodology consists of transforming permeability classes 

(categorical maps) into numerical values of permeability. The aim of this step is to simulate 

probability values based on the local ccdf by using the p-field simulation approach. Thus, for 

the field area A, 9 plus 9 independent probability fields were simulated [ ]suk xp )(  (one by 

lithoclass and for the continuous and erratic sets) using the permeability classes (
clZP ) 

variogram model (see Figure 4.1 and Figure 4.2). Simulation of a probability field with 

uniform distribution can be obtained via a sequential Gaussian simulation. After ranking the 

entire set of Gaussian values in increasing order, each grid node is transformed according to 

the following relation: pi / N, where pi is the position order of the node xu in rank vector and N 

represents the total number of grid nodes. 

 

Finally, in each point xu a permeability value ZS(xu) is drawn with the local ccdf and the 

simulated probability field [ ]suk xp )( : 

))(,,()( 1
uuus xpzxFxz −=       (4.13) 

An additional step is required to ensure a match between the simulated permeability maps 

and the core data samples. For this purpose, the experimental values of permeability were 

directly allocated to the nearest grid node. This single step guarantees that the simulated 

values match the core data samples.  

The practical application of this final step - the transformation of permeability classes into 

permeability values using the probability field values - is presented in the flow chart in Figure 

4.4. 
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Figure 4.4  Flow chart representing: a) building local ccdf(x) for the entire grid area; b) drawing 
permeability values from the local ccdf(x), using a probability field and a Monte Carlo approach. 

 

4.3.4 VALIDATION OF RESULTS 

Figure 4.5 shows a sequence of cross-sections representing one realisation of permeability 

values.  

In Figure 4.5 the basic statistics of z(x) (each one by lithoclass) for the samples (left images) 

and for one simulated realisation of permeability (right image) are displayed. As the figures 

show, the match between the two types of data is excellent. This means that the 

methodology used is an appropriate tool to describe heterogeneous reservoirs like this 

carbonate field which involve dealing with under-sampled variables like permeability. 

Build local ccdf(x) 
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Figure 4.5  Cross-sections for the selected layer showing the vertical distribution of permeability 
values. 

Y = 8000m 

Y = 750m

Y = 2500m 

Y = 4500m 

Y = 6250m 

Y = 10000m 



Characterisation of Spatial Uncertainty of Undersampled Variables 

123 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.6  Univariate statistics illustrating distribution of permeability by lithoclass: left) core data; 
right) simulated values. 
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Figure 4.6(cont)  Univariate statistics illustrating distribution of permeability by lithoclass: left) core 
data; right) simulated values. 
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Figure 4.6(cont)  Univariate statistics illustrating distribution of permeability by lithoclass: left) core 
data; right) simulated values. 

 

Finally, to evaluate the contribution of the conditioning effect of the samples on the different 

images involved in the sequence presented in this section (initial images of lithoclasses, 

filling of simulation of permeability classes and filling of permeability values), an entropy 

analysis through these different images is performed. Thus the entropy measurement was 

calculated (expressions 2.32 and 2.33, see section 2.5) for the set of simulated lithoclass 

images and for the set of permeability classes images. As has already been stated, this is a 

measure (varying between 0 and 1) of the variability of sets of images that represent a 

categorical variable. Figure 4.7 contains illustrated images of entropy with reference to a 

level selected from layer 150 for the lithoclass images and for the corresponding image of 

permeability classes. 

In the entropy image related to the simulated images of lithoclass, there is a gradual 

increase in variability, which is smooth around some wells and sharp around others. These 

differences in variability transitions depend on the type of lithoclass sampled in the well and 

the respective continuity model: there is a significant increase in variability around wells of 

erratic lithoclasses.  

Regarding the entropy of the simulated images of permeability classes, there is a significant 

increase in variability around wells of continuous lithoclasses due to the fact that there are 

erratically distributed permeability classes in continuous lithoclasses. Overall, the entropy 

measurement is lower in the images of permeability classes, due to the concentration of 

permeability values in two classes (1 and 2), one of which is classified spatially as 

continuous. 

Lithoclass 15
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Figure 4.7  Upper image: entropy distribution on level 1 of the lithoclass image set; Lower image: 
entropy distribution on level 1 of the permeability class image set. 

In order to be able to check whether the number of simulations was considered sufficient (30 

lithoclass simulations and 90 permeability classes simulations – 3 for each lithoclass image), 

entropies were calculated taken at each point of the whole grid of points for different sets of 

realisations, varying between 2 and the total number of realisations. These results are 

represented graphically in Figure 4.8. Observing the graphs, it can be seen that the number 

of simulations may be considered sufficient given that the rate of increase of total entropy 

diminishes greatly as the number of realisations considered increases. 

 

 

 

 

 

 
 

Figure 4.8  Left: variability of the sum of the entropy with increasing number of realisations for 
stochastic images of lithoclasses; Right: variability of the sum of the entropy with increasing number of 

realisations for stochastic images of permeability classes. 
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For the simulated images of permeability, the variance of values at each grid node was used 

as a measure of the variability of the images. The variance obtained varies from 0 (in the 

sample locations) to approximately 688. Figure 4.9 shows images of the variance relating to 

a selected level of layer 150 for the image of permeability figures. Figure 4.10 shows the 

total variances for all simulated nodes for different sets of realisations. Based on these 

figures, it can also be observed that that the number of realisations may be considered 

satisfactory given that the increase in variability stabilises. It should also be pointed out that 

the criterion used was based on the sum of local measures of entropy or on local variances 

to measure the variability of a set of simulated images. It should therefore be borne in mind 

that the use of this criterion is based on local measures of the variability of simulated values 

at each node of the grid and not on the variability of the whole set. 

 

 

 

 

 

 

Figure 4.9  Variance distribution on level 1 for the entire set of 90 simulated images of permeability 
values. 

 

 

 

 

 

 

 

Figure 4.10  Variability of the sum of the variance with increasing number of realisations for the 
stochastic images of permeability values. 
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4.4. FINAL REMARKS 

This case study illustrates a methodology for the characterisation of under-sampled 

variables, which is a common situation in most oil reservoirs, regarding permeability data. 

Permeability is usually estimated by correlation based on a small amount of core data and 

detailed log measurements. The method described in this section is able to produce 

simulated images of permeability combining core data (more accurate) and additional soft 

data (less accurate). The advantage of this proposed method consists in the ability to 

integrate two types of information that carry different levels of accuracy. 

The permeability simulation must reflect the high level of heterogeneity usually associated 

with this variable and must preserve the extreme values. Great care was taken in the 

permeability simulation in view of the complexity involved in the methodology. It is important 

that the variability shown in the permeability core histogram is preserved and reproduced 

through the stochastic model. As the dynamic simulator must be fed with numerical values of 

petrophysical properties, such as permeability, it was necessary to develop a process for 

transforming the permeability classes into data values. This process accounts for the 

heterogeneity of permeability values found in the field, preserving the spatial structure and, 

perhaps most importantly, it reproduces the extreme values. In a field like the one presented 

in the case study, where the permeability is either very low or very high, it is important that 

the stochastic model reproduces the patterns of high and low fluids flow paths. 
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5 RESERVOIR INTERFACE DESCRIPTION/RESERVOIR FLUID 
FLOW SIMULATION 

5.1. SCREENING OF DIFFERENT STOCHASTIC REALIZATIONS: GEOBODY 

ANALYSIS 

In reservoirs for which only a small amount of information exists, the range of geostatistical 

techniques for producing conditional simulations can be used to generate several equally 

probable realisations of the internal distribution of rock types and properties. This set of 

images honours the data points, basic statistics and continuity models, and is a tool to 

quantify uncertainties in forecasting studies associated with reservoir fluid flow performance 

and depletion. Geostatistical models based on simulation techniques have been devised to 

account for small-scale variability, ensuring adequate representation of extreme values. 

Each realisation is unique, because the random component influence is proportional to the 

distance between wells and inversely proportional to the spatial continuity revealed by the 

variogram tool. In areas where well spacing decreases and spatial correlation increases, the 

different stochastic realisations become more alike. Furthermore, the presence of geological 

heterogeneities conditions the drainage mechanism of oil and affects fluid flow. For example, 

low permeability geobodies act as barriers to fluid flow, unlike high permeability connections, 

which are preferential fluid flow channels. 

Following the use of geostatistical stochastic simulations to generate equally probable 

reservoir descriptions, the set of output images of permeability, porosity and fluid saturation 

conditioned to lithoclass morphology constitutes the main input datasets for the fluid flow 

simulators. The importance of having different realisations for this particular complex 

reservoir is that they provide an assessment of uncertainty in space. Comparison between 

realisations helps us to identify critical uncertainties and perform risk analysis, and 

constitutes a guideline for future steps on data gathering programmes (Da Costa e Silva, 

1992). The final objective is to obtain the range of uncertainty of the parameters that can 

affect reservoir performance. To transform the uncertainty of the simulated images into 

reservoir performance forecasting one needs to run the fluid flow simulator using the entire 

range of images. In order to process all simulated images in a fluid flow simulator, even after 

a change of scale, a previous selection of the more representative stochastic images is 

proposed.  

In this approach, the selection of a few images is based on the extreme behaviour of internal 

characteristics (permeability) of the reservoir. The basic tool to classify all the simulated 
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images is a measure of the continuity and connexity of geobodies of high and low 

permeability. The application of this screening tool can be summarised in the following steps:  

i) Define a threshold, the permeability being classified as high if it is above the 

threshold, otherwise it is considered low or medium. To provide better screening 

between realisations, the threshold should correspond to a value that creates a 

considerable volume of high and low permeability areas; 

Thus, for the entire set of simulated images: 

ii) Transform all permeability images into binary images, using the threshold defined 

above; 

iii) Identify of all geobodies in the binary image and calculate the volumes of all individual 

geobodies; 

iv) Represent on a single histogram the frequency of different volume geobodies for 

each realisation; 

v) Visually select the extreme situations: the realisation with highest percentage of high 

volume geobodies; the realisation with highest frequency of low volume geobodies. 

 

The main drawback of the proposed selection algorithm is that the spatial location of the 

wells is not taken into account. In other words, a classification based on the volumes of 

individual geobodies does not take into account the location of these same geobodies. 

Another approach derived from this is to calculate the volume of high or low permeability 

areas that contact a specific well or set of wells and comparison of volumes between 

simulations. A major feature of these tools is that the scanning of each realisation is 

performed in 3D space, which enables for a detailed and complete analysis of continuity 

characteristics. 

To illustrate the performance of the proposed measuring tools, 90 simulated images of 

permeability produced using the simulation methodology for undersampled variables were 

used and compared (see section 5). The threshold used to define high permeability 

geobodies was 15mD, corresponding to the 0.85 percentile. Otherwise, to define low 

permeability geobodies, the threshold used was 0.1mD, corresponding to the 0.2 percentile. 

In Figure 5.1, the histogram of the geobodies volume is shown. 
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Figure 5.1  a) Histogram of volumes for geobodies of high permeability for the set of realisations; b) 
Representation of the index volume of geobodies (high permeability) for the set of realisations. 

 

To produce this histogram, data from the first class corresponding to the smallest geobody 

volumes was removed because this class has a very high frequency for all simulations (over 

than 1500 occurrences compared with the second class, between 2 and 27 occurrences) 

and this difference of occurrences would undoubtedly mask the analysis.  

To summarise each of these lines into a value which can be compared to others, an index 

based on the frequency of each class weighted by volume was computed for each 

realisation #r using the expression: 
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where n is the number of classes of volumes, if  is the number of occurrences of geobodies 

with class of volume i, and iλ  represents the weight of class of volume i - ( 1−= iiλ ) in this 

application. 

The results are given in Figure 5.1 b). Looking at this chart, it is easy to select low and high 

continuity realisations or even middle situations based on the defined criteria. 

In Figure 5.2 a) the histogram of the volume of low permeability geobodies is displayed. In 

Figure 5.2 b) the corresponding representation of the index based on the frequency of each 

class weighted by volume is also displayed. Extreme and middle situations based on the 

defined criteria can be easily selected. 
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Figure 5.2  a) Histogram of volumes for geobodies of low permeability for the set of realisations; b) 
Representation of the index volume of geobodies (low permeability) for the set of realisations. 

 

The second objective is to rank the realisations based on a measure of volumes of high 

permeability that contact a set of wells. For illustrative purposes, the selection includes 11 

wells located in the middle of the field (see Figure 2.12 through Figure 2.16). Figure 5.3 

represents the number of blocks (volumes) of high and low permeability that contact the 

selected central wells. 

 

 

 

 

 

 

Figure 5.3  Volumes of geobodies that contact the selected 11 central wells: left: high permeability 
geobodies; right: low permeability geobodies. 
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simulations enable us to pick the most representative scenarios of extreme behaviours in 

terms of fluid flow. 

 

5.2. UPSCALING OF PROPERTIES 

5.2.1 INTRODUCTION 

In the present work a conditional and iterative approach of upscaling of permeability is 

proposed based on the formulation of mass balance equations and Darcy’s Law (Archer and 

Wall, 1986). In the classic approach, the effective permeability in a particular set of blocks is 

derived from the application of a pressure gradient between two opposite boundaries and 

the imposition of a no-flow condition in the others. Based on the pressure solver technique, 

the idea is to improve the quality of upscaling by including in the calculation of the equivalent 

permeability of each large-scale block (macroblock) the influence of the permeability values 

in the set of neighboring small-scale blocks (microblocks) as well as the interdependence 

between the scale-up values of previously transformed macroblocks (Gomez-Hernandez 

and Journel, 1990, 1994, Almeida et al, 1996). These concepts led to the proposed 

interactive method: in each iteration corresponding to the upscaling of one macroblock, the 

solutions are ranked according to a criterion based on a flow test and expressed in one 

objective function. In the second step, the macroblock corresponding to the minimum value 

of the objective function is selected. The process continues until all blocks are scaled up. 

This method guarantees that the solutions are successively conditioned to initial permeability 

values and/or to scale-up values obtained in previous iterations. 

The performance of this method is illustrated (in comparison with the classic approach) by 

comparing the waterflood shape in a flow test using two opposite wells located in the small-

scale blocks and the large-scale blocks using the flow simulator ECLIPSE 100.  

5.2.2 THE PROBLEM OF UPSCALING PERMEABILITY 

The use of geostatistical simulation methods (e.q. sequential Gaussian simulation and 

sequential indicator simulation) in oil reservoirs to describe the petrophysical properties 

between wells (namely lithofacies, permeability and porosity), leads to equally probable 

images of the spatial distribution of these properties (Journel and Alabert, 1988, Journel and 

Gomez-Hernandez, 1994, Da Costa e Silva et al, 1993). Each of these images contains 

several hundred thousand values and constitutes a valuable tool in interpretation of the 

morphological and petrophysical structure of the reservoir. For instance, the studied 
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reservoir illustrated in this work was sub-divided into 4 million small-scale blocks. Each set of 

values is also used as input into dynamic simulation studies, which determine the flow 

between adjacent wells.  

Running flow simulations on computers is a complex task and consequently the operations 

tend to be slow, which restricts the number of blocks and layers that can be used 

simultaneously. These restrictions that in most cases the scale of the simulated blocks must 

be changed, in order to come up with just one value for a set of adjacent blocks with a 

particular fixed geometry. The solution lies in the use of a correct scale-up or upscaling (or 

grossing up) technique coupled with a preliminary dynamic assessment and validation of the 

model.  

Since the permeability in a porous medium is a non-additive variable with tensor 

characteristics, calculation of one equivalent value for a set of blocks can not be performed 

using any type of averages (with exceptions for very simple geometrical configurations). 

Also, of all petrophysical properties, permeability makes the greatest contribution to 

formulation of the equations associated with fluid flow in porous media, namely Darcy’s Law. 

Several methodologies have been proposed for calculating the equivalent permeability, 

which are more or less complex depending on the simplifications imposed on the upscaling, 

the geometry of the grid, and the heterogeneity of the field. The question of upscaling has 

been approached from several standpoints, such as using techniques based on the stream 

tube concept (Haldorsen and Lake, 1982), study of tortuosity in porous media - application of 

the renormalisation technique (King, 1989, Abu-Elbashar, 1990), use of means of power n, 

or the formulation of the equations of mass transfer based on mass balance and Darcy’s 

Law (Gomez-Hernandez and Journel, 1990, Rummy, 1990, Malick and Hewett, 1994). 

Consider the following example, which illustrates the applicability of techniques based on 

different averages and renormalization: for a set of blocks in a serial sequence (1 by 1 by n), 

the equivalent permeability in the longitudinal direction is given by the harmonic mean; for 

the same set of blocks in the perpendicular direction the equivalent permeability is given by 

the arithmetic mean of permeability values. Using renormalization, it is possible to calculate 

the equivalent permeability (the two orthogonal components of the permeability tensor Kx 

and Ky) for a set of blocks based on a geometry of 2 by 2, or with simplifications for other 2D 

geometry (this implies recursive calculations). But considering a set of 2 by 2 by n blocks, 

calculation of the equivalent permeability for each orthogonal direction cannot be done using 

a single mean or combination of means. Thus, more complex upscaling methods based on 

the formulation of transfer equations between blocks when a pressure gradient is applied 
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can be considered. The solutions provided by these methods are the set of pressures in 

each block, which leads to the computation of the equivalent permeability, according to 

Darcy’s Law. 

In the present work a new technique of upscaling is proposed derived from these 

formulations. The objective is to improve the quality of upscaling by including in the 

calculation of the equivalent permeability of each large-scale block (macroblock) the 

influence of the permeability values in the set of neighbouring small-scale blocks 

(microblocks). The application of this principle has led to an iterative method. Each iteration 

corresponds to the upscaling of one macroblock and the derived solutions are successively 

conditioned to initial permeability values and/or scale-up values obtained in previous 

iterations.  

The performance of this method is compared with the classic approach, corresponding to the 

formulation of the system of equations for each macroblock, when considered separately.  

In this case study, one flow test was performed to evaluate the performance of the proposed 

method. This test consists in the evaluation of the performance over the entire grid and is a 

comparison of the shape of the waterflood in a flow test using two opposite wells located in 

the small-scale blocks and the large-scale blocks and using the flow simulator ECLIPSE 

100.  

 

5.2.3 CALCULATION OF EFFECTIVE PERMEABILITY USING THE PRESSURE 

SOLVER TECHNIQUE  

Figure 5.4 represents a partial set of microblocks extracted from reservoir grid blocks, each 

with dimensions ∆x, ∆y and ∆z, and a known permeability value on each grid block.  

Given that permeability is a tensorial variable, in each block orthogonal components are 

assumed to be known. In this case, the same value is allocated to the three components of 

the permeability tensor Kx = Ky = Kz = K. 

For simplification, consider this explanation of upscaling using the pressure solver technique 

in two dimensions. The objective is to calculate the effective components of permeability for 

each macroblock (set of nx by ny microblocks), respectively Kx and Ky (Figure 5.4), that 

summarise the initial isotropic values. 
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Figure 5.4  Upscaling of permeability: representation of microblocks and corresponding macroblocks. 

 

In each set of microblocks that corresponds to a macroblock, two flow situations are created 

(Figure 5.5), parallel to the axes of the block coordinates, and derived from a pressure 

gradient imposed under no-flow boundary conditions. Boundary conditions are imposed to 

ensure that the system of equation resulting from the application of mass balance and 

Darcy’s Law can be solved. To calculate the component Kx of equivalent permeability, a flow 

is simulated parallel to the X direction, under the following conditions: 

i) Blocks belonging to the first column have a constant pressure, Pinp; 

ii) Blocks belonging to column nx have a pressure lower than Pinp ; Pout  results from the 

application of a pressure gradient equal to Pinp-Pout; 

iii) Blocks in boundaries have null transmissivity, i.e. no flow in the Y direction. 

 

Consider the flow Q of an incompressible fluid; the equations for the microblock of indices 

(i,j), resulting from the mass balance due to steady-state conditions are: 
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where indices (i+1/2, j), (i-1/2, j), (i,j-1/2) and (i,j+1/2) represent respectively the interface of 

the block (i, j) with its neighbouring blocks, namely (i+1,j), (i-1,j), (i,j+1) and (i,j-1). 
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Figure 5.5  Two-flow design conditions for the determination of the effective permeability for each 
macroblock aggregating a set of 3 by 3 microblocks. 

Suppose that only a single fluid is considered and the flow is under Darcy’s Law conditions: 
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where 
jixK

,2/1−
 and 

jixK
,2/1+

 represent respectively the permeability in the interface between 

the blocks (i-1,j) with (i,j) and (i,j) with (i+1,j); 
2/1, −jiyK  and 

2/1, +jiyK  represent respectively the 

mean permeability in the interface between the blocks (i,j-1) with (i,j) and (i,j) with (i,j+1). 

These permeability values in the interface between the blocks can be estimated using the 

harmonic average of each two adjacent blocks: 
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Arranging equations (5.1) through (5.4) gives: 
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This expression (5.7) is simplified when multiplied by )(
z
yx
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The formulation of this mass balance equation for all blocks leads to one nx.ny system of 

equations (one equation for each block) in this general form: 

  01,,1,,,1,,1,,, =−−−− +−+− jijijijijijijijijiji PEPDPCPBPA    (5.9) 

This equation system can be solved using iterative techniques. For example, in Matax and 

Dalton (1990, pp. 146-151) several common iterative methods used in the solution of this 

particular type of equation system are described. The approach used in this case study (and 

implemented FORTRAN-77 code, Almeidab, 1996) is based on point relaxation. In each 

iteration, for the block i,j a new pressure value is calculated, using the following expression: 
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where: 

ω is the relaxation parameter, with an optimal value (which leads to a smaller number of 

iterations) between 1 and 2. In our example, after some attempts and comparisons based 

on the number of final iterations, the value 1.8 was used, 
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The solutions of this system of equations are the pressure values Pi,j in the centre of each 

block (i,j), conditioned to the boundary conditions imposed by the flow. 

Taking the flow in the X direction to obtain the permeability tensor component in the same 

direction, and making use of the Darcy’s Law and mass balance, leads to the following: 
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Given that Qinp = Qout , using expressions (5.2) and (5.12) or (5.13): 
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which leads finally to: 
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Similarly, taking a flow parallel to the Y direction, one has the solution: 
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5.2.4 IMPROVEMENT OF THE PRESSURE SOLVER TECHNIQUE FOR A 

CONDITIONAL UPSCALING APPROACH OF PERMEABILITY 

In the previous chapter the calculation of the equivalent components of the permeability 

tensors is illustrated based on the pressure solver technique, Kx and Ky using expressions 

(5.15) and (5.16) respectively. This approach assumes a flow parallel to the coordinate axis 

with no-flow boundary conditions to solve the equation system. The upscaling of different 

blocks is considered independently of each other. Thus the permeability and consequent 

flow in the neighbourhood of a given block are not taken into account. The permeability 

values in neighbouring blocks and sets may result in different flow patterns from the 

assumed orthogonal X and Y directions. 

In this study a new approach is proposed based on one iterative and optimal calculation of 

the tensor permeability components for each macroblock; these are conditioned to the 

permeability values of the neighbouring microblocks and to the values that result from this 

upscaling approach in previous iterations. 

This proposed algorithm can be summarised in the following steps (Figure 5.6): 

1) For each set of microblocks to come up with one value, calculate a variability measure, 

for instance the range of values.  

2) Rank these values in increasing order.  

3) For the first selected set of microblocks, the effective permeability (tensor components Kx 

and Ky) is calculated using the pressure solver approach described above. Each of these 

components is the solution of the system of equations resulting from the mass balance in 

a flow test as illustrated in Figure 5.7 a), which in this particular case, shows the 

determination of the component Kx. 

In the first stage, the amount of flow Q1
inp that occurs in the conditions illustrated in Figure 5.7 

a) is calculated. This flow is calculated taking the pressure calculated in the centre of each 

microblock (assuming steady-state flow conditions) resulting from a pressure gradient to be 

equal to (Pinp-Pout) applied to the blocks of both extremities and corresponding 

transmissivities in the interface between these microblocks. The pressure on the centre of 

each microblock is calculated by solving a system of equations similar to the (5.9). In this 

system of equations, null transmissivity between microblocks (to come up with one value) in 

the Y direction is imposed to ensure a single solution in the calculation of equivalent Kx. 
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Figure 5.6  Steps of the proposed conditional upscaling approach. 

 

Given the calculated values of pressure in all microblocks Pi,j and transmissivities in the 

interface of blocks           , the flow Q1
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In the second stage, the value Kx equivalent is calculated to be assigned to the macroblock 

(see example illustrated in Figure 5.7 b), with the condition Q2
inp=Q1

inp, when the same 

pressure gradient is applied. 
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Figure 5.7  Flow test for the formulation of the system of equations in order to calculate the equivalent 
permeability Kx: a) first stage: calculation of the flow Q1

inp ; b) second stage: calculation of the 
equivalent permeability Kx based on the condition Q2

inp=Q1
inp, when the same pressure gradient is 

applied. 

 

Following this sketch, if a given permeability K’x is greater than Kx, this means that: 

 )(K Q > )f(K'Q xinp
2

xinp
2 =       (5.17) 

This condition suggests that the calculation of Kx can be performed iteratively using a 

suitable optimisation procedure.  

The calculation of Ky follows a similar scheme, in this case generating a flow parallel to Y 

and imposing a no-flow boundary condition on the X direction.  
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4) Test if microblock exist. If there are more small blocks, return to step 3, which means 

triggering a new iteration. The process continues until all small blocks are upscaled.  

During this upscaling process, the calculation of the equivalent permeability components Kx 

and Ky takes into account the upscaled blocks given by previous iterations. Figure 5.8 

illustrates the flow scheme used to calculate the Kx and Ky in one iteration step of the 

upscaling procedure by using microblocks together with macroblocks already upscaled in 

previous steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8  Calculation of flow ratios and equivalent permeability in one step of upscaling. 
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5.3. VALIDATION OF THE PROPOSED UPSCALING METHODS FOR 

PERMEABILITY 

To evaluate the quality of the upscaling a single test is proposed that consists in the 

observation of the waterflood front advance in a flow simulation using the simulation 

package ECLIPSE 100. This dynamic simulation test involves comparison of the shape of a 

waterflood front when a full set of blocks is submitted to injection of water. 

The first part of the test consists of a dynamic flow test, using initial microblock geometry and 

two wells: one is used to inject water and the other, in the opposite corner, is used to 

produce oil, assuming initial pressure, water saturation, and porosity constant for all 

microblocks. Time steps of reports and total simulation time were chosen in order to observe 

the advance of the waterflood front over the entire field and when water arrives at the 

producing well. The second part of the test consists of a similar dynamic flow test, at using 

this time the upscaled macroblock geometry and corresponding permeability components Kx 

and Ky. Thus, for the same time period of simulation the waterflood front advance was 

compared in both situations (after and before upscaling), particularly in critical regions, 

where the amount of heterogeneity in permeability values leads to a more irregular and 

winding flow. 

The initial permeability map is obtained by stochastic simulation, see section 5. This test was 

conducted for a selected level of the entire 3D model. In this set of values (120 by 40 by 1 

blocks) it is possible to observe some spatial heterogeneity of the values, and more or less 

tortuous connections of the highest and lowest values (Figure 5.11, upper image). 

 

 

 

 

 

Figure 5.9  Initial permeability map. 

In this example the performance of the proposed approach is illustrated when applied to the 

upscaling of 2 by 2 blocks and 4 by 4 sets of blocks using the proposed test. 
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• 2 by 2 single upscaling grid 

The upscaling of 2 by 2 grid nodes was conducted using a set of 4 neighbouring microblocks 

to condition the solution. 

For illustrative purposes only, the permeability components Kx and Ky resulting from the 

conditional upscaling approach are illustrated in Figure 5.10. 

 

 

 

 

 

 

 

 

 

 

Figure 5.10  Equivalent permeability components Kx and Ky resulting from a conditional upscaling 
approach. 

 

Relative to this grid, the results of the advance of the waterflood front are illustrated in a 

sequence of 3 time steps, Figure 5.11 through Figure 5.13. Following this sequence of 

images an improved match of the waterflood front is observed when the permeability values 

coming from the conditional proposed approach are considered. These improvements are 

highlighted in the selected images of the waterfront advance. 

Looking at Figure 5.13, a slight retardation of the waterfront near the produced well is 

observed when the permeability values coming from the non-conditional approach are 

considered. Again, results from this dynamic study show that the conditional approach 

produces large-scale permeability maps that attenuate the differences between flow 

movements at both scales. 
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Figure 5.11  Waterflood front advance in a first time step (2 by 2 upscaling grid): upper image - flow 
simulation using initial microblocks; central image - flow simulation using permeability values from the 
conditional approach; lower image - flow simulation using permeability values from the non-conditional 

approach. 

 

 

 

 

 

 

 

 

 

 

Figure 5.12  Waterflood front advance in a second time step (2 by 2 upscaling grid): upper image - 
flow simulation using initial microblocks; central image - flow simulation using permeability values from 

the conditional approach; lower image - flow simulation using permeability values from the non-
conditional approach. 
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Figure 5.13  Waterflood front advance in a third time step (2 by 2 upscaling grid): upper image - flow 

simulation using initial microblocks; central image – flow simulation using permeability values from the 
conditional approach; lower image - flow simulation using permeability values from the non-conditional 

approach. 
 

• 4 by 4 single upscaling grid 

Relative to this grid, the upscaled permeability values and results of the different tests can 

be seen in the sequence of Figure 5.14 through Figure 5.16. 

 

 

 

 

 

 

 

 

 

 
Figure 5.14  Equivalent permeability components Kx and Ky resulting from a conditional upscaling 

approach. 
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Figure 5.15  Waterflood front advance in a first time step (4 by 4 upscaling grid): upper image - flow 
simulation using initial microblocks; central image - flow simulation using permeability values from the 
conditional approach; lower image - flow simulation using permeability values from the non-conditional 

approach. 

 

 

 

 

 

 

 

 

 

 

Figure 5.16  Waterflood front advance in a second time step (4 by 4 upscaling grid): upper image - 
flow simulation using initial microblocks; central image - flow simulation using permeability values from 

the conditional approach; lower image - flow simulation using permeability values from the non-
conditional approach. 
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The upscaling of 4 by 4 grid nodes was conducted using a set of 8 neighbouring microblocks 

to condition the solution. 

Again, looking at the results from this dynamic study it is possible to conclude that the 

conditional approach produces large-scale permeability maps that attenuate the differences 

between flow movements at both scales. 

 

5.4. FINAL REMARKS 

The selection of a particular upscaling methodology should be related to the major or minor 

heterogeneities of the initial permeability values and the number of blocks to be aggregated 

and represented by one value. If the set of values is homogeneous the conventional 

pressure solver approach with isolated sets of blocks provides a good solution. For 

heterogeneous block grids this study shows that the use of a more elaborate method 

increases the quality of the reproduction of the flow shape in tests with the simulation 

package. 

With these results it is possible to conclude that the reproduction of the flow shape over the 

upscaled blocks is more accurate when using the proposed conditional methodology of 

upscaling. This improvement is evident in both upscaled grids used, 2 by 2 and 4 by 4. In 

Figure 5.11 through Figure 5.13 and Figure 5.15 and Figure 5.16 the advantage of using this 

type of upscaling versus the conventional pressure solver is demonstrated. 

This approach can easily be generalised to three-dimensional grids. It is necessary to 

emphasise that all tests in this case study are performed in two dimensions to simplify the 

presentation. The disadvantage of this method is that it is extremely time-consuming, 

especially when using three-dimensional grids. One possible way to avoid this problem is to 

combine this method with the simple pressure solver approach. Thus, in small 

heterogeneous sets of blocks, upscaling could be performed successfully using the simple 

pressure solver. Otherwise, in more heterogeneous sets of blocks, the optimisation method 

proposed should be used. 
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6 CONCLUSIONS 

At this final stage it is useful to emphasise the main steps of the proposed methodology for 

the spatial characterisation of heterogeneous reservoirs. Regarding this, the following 

paragraphs synthesise the new developments and the main remarks concerning to the 

proposed set of methods. 

This integrated methodology of characterisation is based on a multi-step approach and 

encompasses the construction of a geological model of lithoclasses, a petrophysical model, 

constrained to the previous geological model, and the interface between geostatistical 

models and the input to the fluid flow simulator. The geological model of lithoclasses is 

intended to reproduce the heterogeneity observed between lithoclasses. The conditional 

petrophysical model is responsible for displaying the heterogeneity within each lithoclass, 

rather than between lithoclasses. 

This multi-step methodology was implemented and adapted to the particular specifications of 

the reservoir studied - a highly heterogeneous carbonate reservoir.  

The simulation of lithoclasses was performed using alternative methods of simulation of 

categorical variables that enable a comparative study to be performed. Regarding this 

comparative study, it is important to highlight the following points: 

a) All approaches used generate sets of equally probable images of lithoclasses that 

reproduces spatial continuity models, the proportions of each lithoclass and experimental 

data. However, each of them produces typical spatial patterns of lithoclass distribution, 

which were compared exhaustively. 

b) The theoretical background of all simulation approaches implemented in the 

characterisation of the spatial geometry of lithoclasses is based on the multi-phase 

concept. This concept and the corresponding multi-phase continuity measure tool, 

proved throughout along this study to be one of the most suitable to characterise the 

spatial continuity of categorical variables (for example, lithologies or rock types) rather 

than the usual alternative methods. 

c) The improvement of correction for local probabilities in SIS shows accurate reproduction 

of the proportions of each lithoclass in the final simulated images, maintaining the 

reproduction of the variograms. 
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The characterisation of petrophysical properties was conducted following the estimation of 

the properties of porosity, permeability and water saturation. Permeability, due to its 

particular characteristics, was also modelled using stochastic simulation. 

a) Regarding porosity and permeability, estimation models were built using zonal control 

estimation (with ordinary kriging) taking into account the previously generated images of 

lithoclasses. 

b) One of the most important advantages of estimation with zonal control is that the spatial 

location of samples of all phases are accounted for while, in the classical procedure, only 

samples from the phase which x0 (point to be estimated) belongs to are taken into 

account. 

c) Given that permeability is a variable which displays a tensorial nature and strong 

variability in space, it was always coded in different classes and treated as a multi-phase 

set (or categorical set) in the general framework of the stochastic model. 

d) The resulting stochastic model of permeability enables the occurrence of extreme values 

of permeability to be handled and mapped, which is of great importance in modelling 

fluid flows in the reservoir, since low and high permeability values define flow barriers 

and preferential paths.  

e) Estimation of water saturation must take into account the physical rules that condition its 

spatial distribution and variability, rather than the distribution of lithoclasses. The 

construction of a 3D model of water saturation was performed by ordinary kriging 

estimation. The basis of this method is the use of a spatial referential based on the 

surface free water level (FWL) that proves to be the most suitable to find the horizontal 

correlation and to select the neighbouring samples used to estimate each grid node 

(samples at the same depth from the FWL).  

f) Permeability is a variable that mainly conditions the preferential flow patterns and 

dynamic behaviour of the field, and consequently the characterisation of its spatial 

uncertainty is a key point of the study. Regarding this, a combined approach is presented 

able to produce several equally probable simulated images of permeability. Major 

advantages of this approach are the combination of two types of information with 

different sampling densities, the integration of the undersampled variable (in this 

particular permeability) using a probabilistic formalism, and the reproduction of continuity 

models and histograms by the simulated images.  
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Due to the difficulty of using all simulated images in flow simulation studies, it is important to 

rank the set of images based on some criteria easily and rapidly implemented criterion that 

will select the more representative stochastic images. Concerning permeability realisations, 

this study illustrates the application of one simple classification tool based on measure of 

volumes of geobodies of high and low permeability and their connectivity with selected wells.  

Finally, this characterisation study presents a new technique of permeability upscaling 

derived from pressure solver methods. The objective is to improve the quality of upscaling by 

including in the calculation of the equivalent permeability the influence of permeability values 

in neighbouring blocks. This work illustrates that this method produces coarse images that 

more accurately reproduce the patterns of flow observed at small scale.  

 

Finally, it is important to point out that all stochastic methods presented in this work belong 

to a more general set of geostatistics methods that are currently used in numerous 

applications of earth and environmental sciences. Thus, the methods presented here are not 

exclusively for application to reservoirs, but can be generalised to many different 

applications. 
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