Actas do XVI Congresso Anual da SPE

Alguns resultados adicionais sobre a variância de um estimador de viés reduzido do índice de cauda

Frederico Caeiro DM e CMA, Universidade Nova de Lisboa - fac@fct.unl.pt

M. Ivette Gomes

DEIO e CEAUL, Universidade de Lisboa - ivette.gomes@fc.ul.pt

Dinis Pestana

DEIO e CEAUL, Universidade de Lisboa - dinis.pestana@fc.ul.pt

Resumo: Muitos dos estimadores clássicos do índice de cauda positivo γ , como por exemplo o estimador de Hill, são muito sensíveis à escolha do número de observações de topo, k. Nos estimadores de segunda ordem, de variância mínima e de viés reduzido (MVRB), a estimação dos parâmetros de segunda ordem do viés é usualmente feita num nível k_1 , de ordem superior ao nível k usado para estimar o índice de cauda. Deste modo, os estimadores MVRB mantêm a variância do estimador de Hill, nos níveis k onde podemos assegurar a normalidade assintótica do estimador de Hill. Contudo, para atingirmos o erro quadrático médio mínimo, dos estimadores MVRB, devemos utilizar níveis k e k_1 da mesma ordem. Neste trabalho apresentamos um estudo de simulação de Monte-Carlo de uma possível escolha de $k e k_1$, bem como do comportamento de um estimador MVRB, como função de k, para essa escolha de k_1 .

Palavras–chave: Estatística de Extremos, Índice de cauda, Estimação semi-paramétrica de viés reduzido, Simulação de Monte-Carlo.

Abstract: Classical tail index estimators, like the Hill estimator, are known to be quite sensitive to the number of top order statistics k used in the estimation. In the recent minimum-variance reduced-bias (MVRB) tail index estimators, the estimation of the second order parameters in the bias has been performed at a level k_1 of a larger order than that of the level k at which we compute the tail index estimators. Such a procedure enables us to keep the asymptotic variance of the new estimators equal to the asymptotic variance of the Hill estimator, for all k at which we can guarantee the asymptotic normality of the Hill statistics. To reach the minimal mean squared error of these MVRB estimators, we need to work with levels k and k_1 of the same order. In this paper perform a Monte-Carlo simulation study of a possible choice of k and k_1 , as well as the behaviour of a MVRB-estimator, as a function of k, for such a choice of k_1 .

Keywords: Statistic of Extremes, Tail Index, Semi-parametric estimation, Monte-Carlo simulation.

1 Introdução

Dizemos que a função de distribuição F tem cauda pesada, se a função cauda $\overline{F} = 1 - F$ é de variação regular de índice $-1/\gamma$ (Gnedenko, 1943), e usamos a notação $\overline{F} \in RV_{-1/\gamma}$ onde RV_{α} representa a classe de funções de variação regular de índice α . O parâmetro γ (> 0) é o índice de cauda, o parâmetro a estimar. Se considerarmos a função quantil $U(t) := F^{\leftarrow}(1 - 1/t), t > 1$ em que F^{\leftarrow} representa a função inversa generalizada de F, definida por $F^{\leftarrow}(x) := \inf\{y : F(y) \geq x\}$, então dizermos que F tem cauda pesada é equivalente a admitirmos que

$$\lim_{t \to \infty} \frac{U(tx)}{U(t)} = x^{\gamma}, \qquad \forall x > 0, \tag{1}$$

isto é, $U \in RV_{\gamma}$.

Para obtermos a distribuição assintótica de muitos dos estimadores semiparamétricos do índice de cauda, necessitamos uma condição de segunda ordem. Neste trabalho vamos considerar a seguinte condição de segunda ordem:

$$\lim_{t \to \infty} \frac{\ln U(tx) - \ln U(t) - \gamma \ln x}{A(t)} = \frac{x^{\rho} - 1}{\rho}, \quad \forall x > 0,$$
(2)

onde $\rho \leq 0$ é um parâmetro de segunda ordem que mede a velocidade de convergência de U(tx)/U(t) para x^{γ} e $|A| \in RV_{\rho}$ (Geluk and de Haan, 1987). De modo a obter informação sobre o termo dominante de viés dos estimadores de variância mínima e viés reduzido (MVRB), precisamos de assumir a seguinte condição de terceira ordem,

$$\lim_{t \to \infty} \frac{\frac{\ln U(tx) - \ln U(t) - \gamma \ln x}{A(t)} - \frac{x^{\rho} - 1}{\rho}}{B(t)} = \frac{x^{\rho + \rho'} - 1}{\rho + \rho'}, \qquad \forall x > 0,$$
(3)

onde $\rho' \leq 0$ é um parâmetro de terceira ordem e $|B| \in RV_{\rho'}$. Iremos também admitir que a condição anterior é válida com:

$$A(t) = \gamma \beta t^{\rho}, \quad B(t) = \beta' t^{\rho'}, \quad \beta, \beta' \neq 0, \quad \rho, \rho' < 0.$$
(4)

As condições (2), (3) e (4) são válidas para muitos dos modelos de cauda pesada, como por exemplo o Fréchet, o Burr, o Generalizado de Pareto e o t de Student.

Baseando a inferência nas k estatísticas ordinais de topo e admitindo que k é uma sucessão intermédia, isto é, uma sucessão de valores inteiros $k = k_n \in [1, n[$, verificando

$$k = k_n \to \infty$$
 e $k_n/n \to 0$, quando $n \to \infty$, (5)

vamos considerar os log-excessos, acima de um nível elevado, isto é,

$$V_{ik} := \ln X_{n-i+1:n} - \ln X_{n-k:n}, \quad 1 \le i \le k < n$$

Actas do XVI Congresso Anual da SPE

e os log espaçamentos escalados,

$$W_i := i\{\ln X_{n-i+1:n} - \ln X_{n-i:n}\}, \quad 1 \le i < n,$$

onde $X_{i:n}$, $1 \leq i \leq n$, representa a *i*-ésima estatística ordinal ascendente associada à amostra aleatória (X_1, X_2, \ldots, X_n) . Para modelos de cauda pesada, Hill (1975), propôs o seguinte estimador semi-paramétrico do índice de cauda,

$$H(k) = \hat{\gamma}_n^H(k) := \frac{1}{k} \sum_{i=1}^k V_{ik} = \frac{1}{k} \sum_{i=1}^k W_i,$$
(6)

consistente para a estimação do índice de cauda, sob a validade da condição de primeira ordem (1) e k intermédia. Sob a condição de segunda ordem, (2), e para k intermédia, podemos assegurar a representação assintótica:

$$H(k) \stackrel{d}{=} \gamma + \frac{\gamma}{\sqrt{k}} Z_k + \frac{A(n/k)}{1-\rho} (1+o_p(1)),$$

onde Z_k é uma variável aleatória com distribuição normal padrão. Se A(t) verificar a representação indicada em (4), o nível k "óptimo", isto é, o nível k que minimiza o erro quadrático médio é

$$k_0^H = \left(\frac{(1-\rho)n^{-\rho}}{\beta\sqrt{-2\rho}}\right)^{2/(1-2\rho)}.$$
(7)

O mais simples estimador MVRB do índice de cauda, é o estimador de Hill "corrigido" (Caeiro *et al.*, 2005), com expressão funcional,

$$\overline{H}_{\hat{\beta},\hat{\rho}}(k) := H(k) \left(1 - \frac{\hat{\beta}}{1 - \hat{\rho}} (n/k)^{\hat{\rho}} \right), \tag{8}$$

onde H(k) representa o estimador de Hill e $(\hat{\beta}, \hat{\rho})$ estimadores adequados dos parâmetros de segunda ordem (β, ρ) . Para garantirmos a consistência de $(\hat{\beta}, \hat{\rho})$, precisamos de usar k_1 estatísticas ordinais de topo, tais que $\sqrt{k_1}A(n/k_1) \to \infty$.

Na Secção 2 apresentamos o comportamento assintótico do estimador MVRB em (8), trabalhando com níveis tais que $k = o(k_1)$, e indicamos algumas condições que nos permitem manter a sua variância assintótica igual a γ^2 . Fazemos ainda uma revisão dos estimadores dos parâmetros de forma e escala, $\rho \in \beta$, respectivamente, e apresentamos o comportamento assintótico de $\sqrt{k(H_{\hat{\beta},\hat{\rho}}(k) - \gamma)}$, quando $\hat{\beta} \in \hat{\rho}$ são os estimadores dos parâmetros de segunda ordem calculados num nível "óptimo" $k_1 = k_1^{opt}$ e a estimação do índice de cauda é feita num nível k, da mesma ordem de k_1 . Finalmente, na Secção 3, apresentamos um estudo, através de simulação de Monte-Carlo, duma possível escolha de $k \in k_1$, bem como do comportamento do estimador MVRB em (8) como função de k, para essa escolha de k_1 .

2 Propriedades assintóticas

Apresentamos a seguir uma generalização do Teorema 3.1 de Caeiro $et\ al.$ (2005).

Teorema 1 (Gomes et al., 2009). Para a classe de modelos verificando (3), com A e B escolhidas conforme indicado em (4), k intermédia, e admitindo que conhecemos o valor dos parâmetros de segunda ordem $\beta \in \rho$,

$$\overline{H}_{\beta,\rho}(k) \stackrel{d}{=} \gamma + \frac{\gamma}{\sqrt{k}} Z_k - A(n/k) \left(\frac{A(n/k)}{\gamma(1-\rho)^2} - \frac{B(n/k)}{1-\rho-\rho'} + O_p\left(\frac{1}{\sqrt{k}}\right) \right) (1+o_p(1)).$$

Se escolhermos k intermédia tal que $\sqrt{k}A(n/k) \to \infty$, $\sqrt{k}A^2(n/k) \to \lambda_A$ e $\sqrt{k}A(n/k)B(n/k) \to \lambda_B$, com λ_A e λ_B finitos,

$$\sqrt{k}(\overline{H}_{\beta,\rho}(k)-\gamma) \xrightarrow[n\to\infty]{d} Normal(b_{\overline{H}},\gamma^2),$$

com

$$b_{\overline{H}} = b_{\overline{H}}(\gamma, \rho, \rho') = -\frac{\lambda_A}{\gamma(1-\rho)^2} + \frac{\lambda_B}{1-\rho-\rho'} =: \lambda_A u_{\overline{H}} + \lambda_B v_{\overline{H}}.$$
 (9)

Sejam $(\hat{\beta}, \hat{\rho})$ estimadores consistentes dos parâmetros de segunda ordem (β, ρ) . Se $\hat{\rho} - \rho = o_p(1/\ln n)$, quando $n \to \infty$, então,

$$\overline{H}_{\hat{\beta},\hat{\rho}}(k) - \overline{H}_{\beta,\rho}(k) \stackrel{p}{\sim} -\frac{A(n/k)}{1-\rho} \Big\{ \frac{\hat{\beta}-\beta}{\beta} + (\hat{\rho}-\rho) \left(\ln(n/k) + \frac{1}{1-\rho} \right) \Big\}.$$
(10)

 $\begin{array}{l} Consequentemente, \ \sqrt{k}(\overline{H}_{\hat{\beta},\hat{\rho}}(k)-\gamma) \ \acute{e} \ assintoticamente \ normal \ com \ valor \ m\acute{e}-dio \ nulo \ e \ variancia \ \gamma^2, \ não \ s\acute{o} \ quando \ \sqrt{k}A(n/k) \rightarrow 0, \ mas \ também \ quando \ \sqrt{k}A(n/k) \rightarrow \lambda, \ finito. \ O \ mesmo \ resultado \ mantém-se \ válido \ para \ níveis \ tais \ que \ \sqrt{k}A(n/k) \rightarrow \infty, \ desde \ que \ também \ se \ verifique, \ \sqrt{k}A(n/k)B(n/k) \rightarrow 0, \ \sqrt{k}A^2(n/k) \rightarrow 0, \ \hat{\beta}-\beta = o_p \left(1/(\sqrt{k}A(n/k))\right) \ e \ (\hat{\rho}-\rho) \ln n = o_p \left(1/(\sqrt{k}A(n/k))\right). \end{array}$

2.1 Estimadores dos parâmetros de segunda ordem

A estimação do parâmetro de segunda ordem, ρ será feita através da classe de estimadores de ρ (Fraga Alves *et al.*, 2003),

$$\hat{\rho}_{\tau}(k) := - \left| \frac{3(T_n^{(\tau)}(k) - 1)}{T_n^{(\tau)}(k) - 3} \right|, \quad T_n^{(\tau)}(k) := \frac{\left(M_n^{(1)}(k)\right)^{\tau} - \left(M_n^{(2)}(k)/2\right)^{\tau/2}}{\left(M_n^{(2)}(k)/2\right)^{\tau/2} - \left(M_n^{(3)}(k)/6\right)^{\tau/3}}, \quad (11)$$

Actas do XVI Congresso Anual da SPE

para $\tau \neq 0$, com o usual prolongamento por continuidade para $\tau = 0$, e com $M_n^{(\alpha)}(k) := \frac{1}{k} \sum_{i=1}^k V_{ik}^{\alpha}$. Consideramos também o estimador de β introduzido em Gomes e Martins (2002), baseado nos log espaçamentos, W_i ,

$$\hat{\beta}(k;\hat{\rho}) := \frac{1}{n^{\hat{\rho}}} \frac{\left(\sum_{i=1}^{k} i^{-\hat{\rho}}\right) \left(\sum_{i=1}^{k} W_{i}\right) - k\left(\sum_{i=1}^{k} i^{-\hat{\rho}} W_{i}\right)}{\left(\sum_{i=1}^{k} i^{-\hat{\rho}}\right) \left(\sum_{i=1}^{k} i^{-\hat{\rho}} W_{i}\right) - k\left(\sum_{i=1}^{k} i^{-2\hat{\rho}} W_{i}\right)}.$$
(12)

Apresentamos a seguir alguns resultados, referentes ao comportamento assintótico destes estimadores dos parâmetros de segunda ordem.

Teorema 2 (Fraga Alves et al., 2003). Admitindo válida a condição de segunda ordem (2), com $\rho < 0$, k intermédia, isto é, verifica-se (5) e $\sqrt{k} A(n/k) \rightarrow \infty$, então $\hat{\rho}_{\tau}(k)$ em (11) converge em probabilidade para ρ , quando $n \rightarrow \infty$. Sob a condição de terceira ordem em (3),

$$\hat{\rho}_{\tau}(k) - \rho \stackrel{d}{=} \frac{\gamma \sigma_{\rho} W_k^{\rho}}{\sqrt{k} A(n/k)} + (u_{\rho,\tau} A(n/k) + v_{\rho,\rho'} B(n/k))(1 + o_p(1)), \quad (13)$$

 $com \; W_k^\rho \; variável \; aleatória \; com \; distribuição \; assintótica \; normal \; padrão, \; \sigma_\rho = \frac{(1-\rho)^3}{\rho} \sqrt{(2\rho^2-2\rho+1)}, \; e$

$$u_{\rho,\tau} = \frac{\rho \left[\tau (1-2\rho)^2 (3-\rho)(3-2\rho) + 6\rho \left(4(2-\rho)(1-\rho)^2 - 1 \right) \right]}{12\gamma (1-\rho)^2 (1-2\rho)^2}, \quad v_{\rho,\rho'} = \frac{\rho'(\rho+\rho')(1-\rho)^3}{\rho (1-\rho-\rho')^3}.$$
 (14)

Consequentemente, se $\sqrt{k} A^2(n/k) \rightarrow \lambda_A$ e $\sqrt{k} A(n/k)B(n/k) \rightarrow \lambda_B$, finitos, então $\sqrt{k}A(n/k)(\hat{\rho}_{\tau}(k)-\rho)$ é assintoticamente normal com valor médio $\lambda_A u_{\rho,\tau} + \lambda_B v_{\rho,\rho'}$ e variância σ_{ρ}^2 .

Vamos agora considerar $k_1 = k_1^{opt}$, um nível "óptimo" para estimação de ρ . Então, $\sqrt{k_1} A^2(n/k_1) \rightarrow \lambda_{A_1} \in \sqrt{k_1} A(n/k_1)B(n/k_1) \rightarrow \lambda_{B_1}$, também finitos, sendo pelo menos um deles não nulo. Então, $k_1 = O(n^{-2(\rho+\rho')/(1-2(\rho+\rho'))}) \in \hat{\rho}_{\tau}(k_1) - \rho$ é em probabilidade da ordem $1/(\sqrt{k_1}A(n/k_1)) = O(n^{\rho'/(1-2(\rho+\rho'))}) = o(1/\ln n)$, uma condição fundamental do Teorema 1.

Baseando-nos no Teorema 3 de Gomes *et al.*, (2008) podemos assegurar o seguinte: Admitindo válida a condição de segunda ordem (2), com $\rho < 0$, k intermédia, $A(t) = \gamma \beta t^{\rho}$, $\rho < 0$, $\sqrt{k}A(n/k) \to \infty$, $e \ln(n/k) = o(\sqrt{k}A(n/k))$ então, $\hat{\beta}(k; \hat{\rho})$ é consistente para a estimação de β . Se também se verificar $\sqrt{k}A^2(n/k) \to \lambda_A$ e $\sqrt{k}A(n/k)B(n/k) \to \lambda_B$ para $\hat{\rho}_{\tau}(k)$, podemos garantir que

$$\hat{\beta}_{\hat{\rho}}(k) - \beta \stackrel{p}{\sim} -\beta \ln(n/k)(\hat{\rho}_{\tau}(k) - \rho).$$
(15)

2.2 Estimadores MVRB

Seja $k_1=k_1^{opt}$ o nível óptimo para a estimação d
e ρ e defina-se para qualquer τ real,

$$H_{\tau}(k,k_1) := \overline{H}_{\hat{\beta}(k_1;\hat{\rho}_{\tau}(k_1)),\hat{\rho}_{\tau}(k_1))}(k).$$
(16)

com $\overline{H}_{\hat{\beta},\hat{\rho}}(k)$, $\hat{\rho}_{\tau}(k) \in \hat{\beta}(k;\hat{\rho})$ definidos em (8), (11) e (12), respectivamente. Com base nos Teoremas anteriores, podemos apresentar os seguintes resultados:

Teorema 3. Para a classe de modelos verificando (3), com A e B escolhidas conforme indicado em (4) e se considerarmos $k_1 = k_1^{opt}$, óptimo para a estimação de ρ , podemos assegurar os seguintes resultados:

- 1. Se $k = o(k_1), \sqrt{k}(\widetilde{H}_{\tau}(k,k_1) \gamma)$ é assintoticamente normal com valor médio nulo e variância igual a γ^2 .
- 2. Considere agora que $\sqrt{k}A(n/k) \to \infty$ e com λ_A e λ_B finitos, $\sqrt{k}A^2(n/k) \to \lambda_A$ e $\sqrt{k}A(n/k)B(n/k) \to \lambda_B$. Então $k/k_1 \to q > 0$, finito, e

$$\sqrt{k}(\widetilde{H}_{\tau}(k,k_1)-\gamma) \xrightarrow[n\to\infty]{d} Normal(b_q,\sigma_q^2),$$

com

$$b_q = \lambda_A \left(u_{\overline{H}} + u_{\rho,\tau} q^{\rho} a_{\overline{H}} (\ln q - a_{\overline{H}}) \right) + \lambda_B \left(v_{\overline{H}} + v_{\rho,\rho'} q^{\rho'} a_{\overline{H}} (\ln q - a_{\overline{H}}) \right),$$

e

$$\sigma_q^2 = \gamma^2 \left(1 + q^{1-2\rho} (\ln q + 1/(1-\rho))^2 (1-\rho)^4 (2\rho^2 - 2\rho + 1)/\rho^2 \right)$$

 $com \ a_{\overline{H}} = -1/(1-\rho), \ (u_{\overline{H}}, v_{\overline{H}}) \ e \ (u_{\rho,\tau}, v_{\rho,\rho'}) \ definidos \ em \ (9) \ e \ (14),$ respectivamente. Obtemos assim a mesma velocidade de convergência, da ordem $1/\sqrt{k}$, para $\widetilde{H}_{\tau}(k, k_1) \ com \ viés \ não \ nulo \ e \ variância \ assintótica$ dependente de q. A variância assintótica, σ_q^2 , é igual a γ^2 para q = 0 e $q = q_0 = \exp(-1/(1-\rho)), \ com \ e^{-1} < q_0 < 1, \ e \ e \ uma \ função \ estritamente$ crescente para $q > q_0$.

Observação 1. O comportamento de σ_q^2 , enquanto função de q, não depende de (γ, ρ) , e está ilustrado na Figura 1, para $(\gamma, \rho) = (1, -1)$. Quando $q \to 0, \sigma_q^2$ converge para γ^2 . A variância começa por aumentar até um valor ligeiramente superior a γ^2 , depois decresce novamente para γ^2 em $q_0 = \exp(-1/(1-\rho))$, e finalmente aumenta rapidamente a partir de q_0 , tomando o valor $\sigma_1^2 = \gamma^2(1 + ((1-\rho)/\rho)^2 - 2(1-\rho)^3/\rho)$ para q = 1.

Figura 1: Padrão de $\sigma^2(q;\gamma,\rho),$ enquanto função de q, para $(\gamma,\rho)=(1,-1).$

3 Estudo de simulação

Na prática, o Teorema 1 e a primeira parte do Teorema 3 são muito mais relevantes do que a segunda parte do Teorema 3. É mais fácil trabalhar com $k = o(k_1)$, com k_1 não necessariamente óptimo, mas verificando $(\hat{\rho}(k_1) - \rho) =$ $o_p(1/\ln n)$ e estimar o índice de cauda, γ num nível que pode eventualmente ser a estimativa de k_0^H em (7), ou um nível ligeiramente superior, mas da mesma ordem. Do ponto de vista teórico, a segunda parte do Teorema 3 é mais interessante, pois permite-nos reduzir o erro quadrático médio do estimador MVRB. Precisamos apenas de conseguir estimar o nível óptimo $k_1 = k_1^{opt}$ do estimador do parâmetro de segunda ordem ρ . Depois com a estimativa \hat{k}_1 de k_1 e $\hat{\rho}$ de ρ , calculamos a estimava do índice de cauda, γ , usando o estimador \overline{H} , no nível,

$$\hat{k} = \hat{k}_1^{opt} \times \exp\left(-1/(1-\hat{\rho})\right). \tag{17}$$

Observação 2. A escolha do nível k_1 não é crucial para estimarmos os parâmetros de segunda ordem (β, ρ) . Devido à elevada estabilidade de $\hat{\rho}_{\tau}(k)$, junto ao valor de ρ , para k elevado e τ convenientemente escolhido, podemos estimar o parâmetro de segunda ordem ρ num nível de ordem $k_1^{(\epsilon)} = n^{1-\epsilon}$, com ϵ pequeno. Os resultados teóricos e de simulação em Fraga Alves et al. (2003), e a utilização de $\hat{\rho}$ em Caeiro and Gomes (2008), levaram-nos a considerar $\epsilon = 0.05$, isto $\hat{\epsilon}$,

$$k_1^{(0.05)} = n^{0.995},$$

e a utilizar os parâmetros de controlo $\tau = 0$ para $\rho \ge -1$ e $\tau = 1$ para $\rho < -1$.

Uma vez que não conseguimos ainda estimar convenientemente k_1 , mas sabemos que para muitos dos modelos de cauda pesada, $\rho = \rho' e k_1 é da$ ordem $n^{-4\rho/(1-4\rho)}$, decidimos ignorar o factor de escala em $k_1 = C n^{-4\rho/(1-4\rho)}$ e considerar a estimação do índice de cauda em

$$\hat{k} = n^{-4\hat{\rho}/(1-4\hat{\rho})} \times \exp\left(-1/(1-\hat{\rho})\right), \quad \text{com} \quad \hat{\rho} = \hat{\rho}_{\tau}(k_1^{(0.05)}).$$
 (18)

Realizámos um estudo de simulação, através do método de Monte Carlo, para as seguintes distribuições com $\rho = \rho'$:

1. t de student com ν graus de liberdade com função de distribuição

$$F(x) = \frac{\Gamma((\nu+1)/2}{\Gamma(\nu/2)\sqrt{\pi\nu}} \int_{-\infty}^{x} (1+z^2/\nu)^{-(\nu+1)/2} dz, \quad x \in \mathbb{R},$$

onde Γ é a função Gama. Neste modelo $\gamma=1/\nu,$ e $\rho=\rho'=-2/\nu.$

2. Burr, parametrizada em função de $\gamma e \rho$, isto é, com função de distribuição

$$F(x) = 1 - (1 + x^{-\rho/\gamma})^{1/\rho}, \quad x > 0.$$

Também simulámos a distribuição de valores extremos com função de distribuição,

$$F(x) = \exp(-(1+\gamma x))^{-1\gamma}, \ x \ge -1/\gamma, \ \text{com } \gamma = 0.75.$$

Para este valor do índice de cauda temos $\rho=-\gamma=-0.75$ e $\rho'=\gamma-1=-0.25\neq\rho.$

Para cada valor da dimensão da amostra $n \in \{100, 200, 500, 1000, 2000, 5000, 10000, 20000\}$, gerámos 10 × 5000 amostras de cada modelo. Depois calculámos as estimativas de $(\hat{\beta}, \hat{\rho}) = (\hat{\beta}(k_1^{(0.05)}, \hat{\rho}_{\tau}(k_1^{(0.05)})), \hat{\rho}_{\tau}(k_1^{(0.05)}))$ de (β, ρ) e simulámos o comportamento dos seguintes estimadores:

$$H(k), \qquad \overline{H}_{\hat{\beta},\hat{\rho}}(k), \qquad H(\hat{k}_0^H), \qquad \overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}_0^H), \qquad \overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k})$$

com H(k), $\overline{H}_{\hat{\beta},\hat{\rho}}(k)$, $k_0^H \in \hat{k}$ definidos em (6), (8), (7) e (18) respectivamente.

3.1 Valores médios e erros quadráticos médios como função de k

Apresentamos, para os modelos em estudo, os padrões de valores médios e erros quadráticos médios simulados de $H(k) \in \overline{H}_{\hat{\beta},\hat{\rho}}(k)$ em (6) e (8), respectivamente, como função de k. Os resultados são apresentados nas Figuras 2, 3, 4 e 5, para n = 1000. Concluímos que o estimador \overline{H} apresenta para qualquer nível k, viés e erro quadrático médio inferior aos respectivos valores do estimador de Hill.

Figura 2: Valor médio e raiz quadrada do erro quadrático médio simulado, para amostras de dimensão n = 1000 do modelo Burr com $(\gamma, \rho) = (1, -1)$.

3.2 Valores médios e indicadores de eficiência dos estimadores adaptativos

Nas Tabelas 1 e 2 apresentamos os valores médios simulados (E), e o indicador de eficiência relativa (REFF) dos estimadores, $\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}_0^H) \in \overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k})$, relativamente a $H(\hat{k}_0^H)$. O indicador de eficiência de $\hat{\gamma}_1$ relativamente a $\hat{\gamma}_2$ é definido por:

$$REFF_{\hat{\gamma}_1|\hat{\gamma}_2} = \sqrt{MSE(\hat{\gamma}_2)/MSE(\hat{\gamma}_1)}.$$

Quanto maior que 1 for o valor do indicador REFF, melhor será o desempenho de $\hat{\gamma}_1$, relativamente a $\hat{\gamma}_2$.

Observação 3. Os resultados apresentados permitem-nos fazer os seguintes comentários:

- Nos modelos e dimensões de amostra considerados, os valores médios simulados de H
 _{β,ρ}(k
 ^H) e H
 _{β,ρ}(k
) estão muito mais próximos do verdadeiro valor de γ, do que o valor médio simulado de H(k
 ^H₀). Se analisarmos apenas o valor médio do estimador H, concluímos que |Viés(H
 _{β,ρ}(k
 ^H₀))| < |Viés(H
 _{β,ρ}(k))|, um resultado natural que é justificado por k
 ^H₀ = o(k).
- 2. Verificamos que o indicador de eficiência relativa é sempre superior a 1, em todos os modelos simulados. Isto significa que \overline{H} nos níveis $\hat{k}_0 e \hat{k}$ é mais eficiente do que o estimador de Hill no seu nível óptimo. O estimador $\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k})$ é o que apresenta maior eficiência, para amostras de dimensão maior ou igual a 1000 dos modelos t_2 , Burr e EV.

Figura 3: Valor médio e raiz quadrada do erro quadrático médio simulado, para amostras de dimensão n = 1000 do modelo t_1 .

Figura 4: Valor médio e raiz quadrada do erro quadrático médio simulado, para amostras de dimensão n = 1000 do modelo t_2 .

Figura 5: Valor médio e raiz quadrada do erro quadrático médio simulado, para amostras de dimensão n = 1000 do modelo EV com $\gamma = 0.75$.

R	100	200	500	1000	2000	5000	10000	20000				
	${f t}_1 \ ({f Cauchy}): \ \gamma = 1, \ \ ho = -2, \ \ ho' = -2$											
$H(\hat{k}_0^H)$	1.201	1.141	1.093	1.069	1.052	1.036	1.027	1.020				
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}_0^H)$	1.092	1.061	1.040	1.029	1.022	1.015	1.011	1.009				
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k})$	1.067	1.053	1.043	1.036	1.031	1.025	1.021	1.018				
	$\mathbf{t}_2: \ \gamma = 0.5, \ \ \rho = -1, \ \ \rho' = -1$											
$H(\hat{k}_0^H)$	0.633	0.592	0.560	0.543	0.532	0.522	0.517	0.513				
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}_0^H)$	0.497	0.488	0.484	0.484	0.485	0.486	0.488	0.490				
$\overline{H}_{\hat{\beta},\hat{ ho}}(\hat{k})$	0.491	0.486	0.484	0.484	0.484	0.485	0.486	0.487				
	${f t}_4$: $\gamma=0.25, \ \ ho=-0.5, \ \ ho'=-0.5$											
$H(\hat{k}_0^H)$	0.464	0.415	0.372	0.348	0.331	0.313	0.303	0.294				
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}_0^H)$	0.359	0.337	0.318	0.307	0.299	0.290	0.284	0.280				
$\overline{H}_{\hat{\beta},\hat{ ho}}(\hat{k})$	0.343	0.330	0.318	0.310	0.304	0.297	0.293	0.289				
	Burr: $\gamma = 1$, $\rho = -0.75$, $\rho' = -0.75$											
$H(\hat{k}_0^H)$	1.237	1.184	1.134	1.107	1.086	1.064	1.052	1.042				
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}_0^H)$	1.032	1.025	1.019	1.016	1.014	1.011	1.010	1.008				
$\overline{H}_{\hat{\beta},\hat{ ho}}(\hat{k})$	1.027	1.023	1.020	1.019	1.017	1.014	1.013	1.012				
	EV: $\gamma = 0.75, \rho = -0.75, \rho' = -0.25$											
$H(\hat{k}_0^H)$	0.935	0.890	0.850	0.828	0.812	0.797	0.787	0.780				
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}_0^H)$	0.758	0.753	0.751	0.751	0.751	0.751	0.751	0.751				
$\overline{H}_{\hat{\beta}}_{\hat{\beta}}(\hat{k})$	0.753	0.752	0.751	0.751	0.752	0.752	0.752	0.752				

Tabela 1: Valores médios simulados.

Tabela 2: Indicator de eficiência (REFF).

REFF	100	200	500	1000	2000	5000	10000	20000			
	${f t}_1 \ ({ m Cauchy}): \ \gamma = 1, \ \ ho = -2, \ \ ho' = -2$										
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}_0^H) H(\hat{k}_0^H)$	1.310	1.277	1.260	1.250	1.246	1.240	1.236	1.236			
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}) H(\hat{k}_0^H)$	1.322	1.284	1.262	1.252	1.237	1.218	1.194	1.158			
	$\mathbf{t_2:} \ \gamma = 0.5, \ \ \rho = -1, \ \ \rho' = -1$										
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}_0^H) H(\hat{k}_0^H)$	1.559	1.434	1.319	1.246	1.189	1.130	1.096	1.067			
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}) H(\hat{k}_0^H)$	1.390	1.337	1.312	1.302	1.297	1.292	1.286	1.262			
	$\mathbf{t}_4: \ \gamma = 0.25, \ \ \rho = -0.5, \ \ \rho' = -0.5$										
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}_0^H) H(\hat{k}_0^H)$	1.693	1.645	1.585	1.547	1.509	1.466	1.437	1.412			
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}) H(\hat{k}_0^H)$	1.766	1.691	1.588	1.508	1.426	1.323	1.244	1.164			
	Burr: $\gamma = 1$, $\rho = -0.75$, $\rho' = -0.75$										
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}_0^H) H(\hat{k}_0^H)$	1.518	1.481	1.451	1.436	1.425	1.415	1.417	1.411			
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}) H(\hat{k}_0^H)$	1.430	1.451	1.506	1.552	1.609	1.683	1.758	1.817			
	EV: $\gamma = 0.75, \rho = -0.75, \rho' = -0.25$										
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}_0^H) H(\hat{k}_0^H)$	1.488	1.443	1.395	1.369	1.352	1.339	1.334	1.327			
$\overline{H}_{\hat{\beta},\hat{\rho}}(\hat{k}) H(\hat{k}_0^H)$	1.360	1.371	1.406	1.446	1.496	1.577	1.651	1.737			

Referências

- Caeiro, F. and Gomes, M.I. (2008). Minimum-variance reduced-bias tail index and high quantile estimation. Revstat 6(1), 1-20.
- [2] Caeiro, F., Gomes, M.I. and Pestana, D.D. (2005). Direct reduction of bias of the classical Hill estimator. Revstat 3(2), 113-136.
- [3] Fraga Alves, M. I., Gomes, M. I. and de Haan, L. (2003). A new class of semiparametric estimators of the second order parameter. *Portugaliae Mathematica* 60(1), 193-213.
- [4] Geluk, J. and de Haan, L. (1987). Regular Variation, Extensions and Tauberian Theorems. Tech. Report CWI Tract 40, Centre for Mathematics and Computer Science, Amsterdam, Netherlands.
- [5] Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math. 44, 423-453.
- [6] Gomes, M.I., and Martins, M. J. (2002). "Asymptotically unbiased" estimators of the tail index based on external estimation of the second order. Extremes 5(1), 5-31.
- [7] Gomes, M.I., Pestana, D.D. and Caeiro, F. (2009). A Note on the Asymptotic Variance at Optimal Levels of a Bias-Corrected Hill Estimator. *Statistics and Probability Letters*, 79(3), 295-303.
- [8] Gomes, M.I., de Haan, L. and Henriques Rodrigues, L. (2008). Tail index estimation for heavy heavy-tailed models: Accomodation of bias in the weighted log-excesses. *Journal of Royal Statistical Society* B70(1), 31-52.
- [9] Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution. Ann. Statist. 3, 1163-1174.