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Shape Memory Alloys (SMAs)

Metallic alloys exhibiting two peculiar thermo-mechanical properties:

◮ shape memory effect – allows the material to recover its original geometry
through a heat cycle, after withstanding large deformations;

◮ superelasticity – enables the material to recover from large nonlinear strains
during a mechanical cycle of loading and unloading, while dissipating a
considerable amount of energy through hysteresis.

Five primary alloy families are of interest in civil engineering aplications: the nickel-
titanium family (Nitinol), the iron-magnesium-silicon alloys, two copper-based families,
the cooper-zinc-aluminum-nickel and the copper-aluminium-nickel, and some special
stainless steel formulations.
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Shape memory effect

The sample is deformed (A to B) and unloaded (B to C) at a temperature below Mf.
The residual deformation is restored during heating to a temperature above Af.

(Mf – martensite finish temperature, Af – austenite finish temperature, Mf < Af )
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Shape memory effect - civil engineering applications

Smart prestressing of the bridge carrying

Sherman Road over US-31 [NCHRP-96-IDO29]

Shear cracks on beam stem Heating of SMA rods

Rehabilitation of a concrete structure using

intelligent materials [Soong et al ., 2006]

During loading After heating the crack closes up

Self-repairing performance of concrete elements using superelastic SMA wires, smart
prestressing, RC beams with variable stiffness and strength, health monitoring and
rehabilitation of concrete structures, self actuating fuse for auto-adaptive composite
structures.
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Superelasticity

The sample is strongly deformed at relatively low stresses (A to B) at a temperature
above Af. During subsequent unloading a complete shape recovery occurs (B to C).
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Superelasticity - civil engineering applications

Seismic protection of cultural heritage structures

Basilica of St. Francis of Assisi [Croci, 2001]

S.Giorgio Church Bell-Tower [Indirli et al., 2001]

St. Feliciano Cathedral [Castellano et al., 2000]

Research project:

◮ ISTECH - Shape Memory Alloy

Devices for Seismic Protection of

Cultural Heritage Structures
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Superelasticity - civil engineering applications

Superelastic restrainers and connectors

[Johnson et al., 2008]

[Padgett et al., 2009] [Ocel et al., 2004]

Research projects:

◮ NEES Payload Project - Large-scale
experimental evaluation of shape

memory alloy bridge cable restrainers

◮ MANSIDE - Memory Alloys for New

Seismic Isolation and Energy

Dissipation Devices

◮ SUPERB - Seismic Unseating

Prevention. Elements for Retrofitting

of Bridges
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Superelasticity

σ

εA

D

B

C

Transformations in the crystaline structure:

◮ forward transformation (A → M) – curve ABC

◮ inverse transformation (M → A) – curve CDA

hysteretic cycle null residual deformations
⇓ ⇓

energy dissipation repositioning capability
⇓ ⇓

Vibration control devices based on superelastic SMAs
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SMA - temperature and strain rate independent constitutive models

The constitutive model is characterised by the austenitic elastic modulus, the strain
associated with the transformation process and the starting and final stresses during
the forward and inverse transformations.
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SMA - temperature and strain rate dependent thermo-mechanical models

As the strain rate increases, the SMA wires can no longer expel the internal heat
generated during the loading phase and absord heat from its environment during
the unloading phase and therefore the constitutive model must relate stress, strain,
austenite fraction and the temperature in the material.
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The model couples the constitutive relations, a kinetic law that describes the volume
fraction of austenite and a balance equation that considers the thermal effects on the
material ⇒ reliable constitutive model even for high strain rates.
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SMA - temperature and strain rate dependent thermo-mechanical models

T = 10◦C f = 0.02Hz
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Strain rate analysis using thermo-mechanical model
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Cycling effects - experimental tensile tests

Evolution of:

◮ Cummulative creep deformation;

◮ Critical stress to induce
martensite;

◮ Strain associated to the
transformation.
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Cycling effects - experimental validation of the numerical model
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Superelastic SMA based oscillators
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◮ simple SMA wire

◮ two pre-tensioned wires working in
phase oposition

◮ two pre-tensioned wires with
re-centring element
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Simple SMA wire (T = 20◦C, f = 2 Hz)

Exhibits:

◮ self-recentring

◮ low energy
dissipation
(ζeq ≃ 8%)
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Two pre-tensioned wires working in phase oposition (T = 20◦C, f = 2 Hz)

Exhibits:

◮ good energy
dissipation
(ζeq ≃ 15%)

◮ no
self-recentring
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Two pre-tensioned wires with re-centring element (T = 20◦C, f = 2 Hz)

Exhibits:

◮ good energy
dissipation
(ζeq ≃ 15%)

◮ self-recentring

↓

appealing properties
for seismic control

devices
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Drawbacks of SMA based passive control devices

◮ Re-centring capabiliy implies a third elastic element;

◮ Relaxation can not be avoided, as the use of permanent pre-strained SE wires is
a must in order to obtain competitive damping ratio;

◮ Cumulative creep can be avoided by keeping the strains inside a so called
pseudo-elastic window, which ensures appropriate material behaviour, but this is
a very challenging task when dealing with arbitrary seismic excitations.
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Proposed semi-active device
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General behaviour of the proposed semi-active control system
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São Martinho railway viaduct

Legend: 1. SMA device, 2. Abutment, 3. Transverse girder, 4. Main girder

For the longitudinal analysis, the viaduct is assimilated to a 1DOF dynamic system:
4650 ton mass, 355×103 kN/m stiffness and 5% structural damping.

Two passive control devices are placed at the two ends of the viaduct, one for each
main girder. The devices consist of two sets of 1.0 m SMA wires, each set with a
total area of 1963 mm2 (bars or a set of smaller wires laid parallel in strands, to form
a cable).

C. Cismaşiu & F.P. Amarante dos Santos (C60, 2013) SMAs in Structural Vibration Control 21 / 30



Response of the structure to “El Centro” earthquake
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Response of the structure to “El Centro” earthquake
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Response of the structure to “Kobe” earthquake
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Response of the structure to “Kobe” earthquake
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Experimental prototype
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Experimental prototype under harmonic load
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Experimental prototype under harmonic load
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C. Cismaşiu & F.P. Amarante dos Santos (C60, 2013) SMAs in Structural Vibration Control 28 / 30



Conclusions regarding the proposed semi-active device

◮ The strain accumulation in the wires is a result of the motion of the structure
itself, with no need of external energy input in the system;

◮ With no need of initial pre-strain calibration, the device responds well to virtually
any level of dynamic excitation;

◮ It presents important damping capabilities, is able to confine the strains in the
SE wires inside recoverable limits to minimise the rheological effects related to
cumulative creep, and finally, at the end of the action, is able to recover the SE
wires strain free condition exhibiting efficient re-centring capabilities and
avoiding relaxation problems;

◮ Is able to confine force values throughout the entire duration of the seismic
action, meaning that the force the semi-active device transmits to the structure
can be conveniently bounded.
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