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Abstract: Photoplethysmography (PPG) is widely used in wearable devices due to its conveniency
and cost-effective nature. From this signal, several biomarkers can be collected, such as heart and
respiration rate. For the usual acquisition scenarios, PPG is an artefact-ridden signal, which mandates
the need for the designated classification algorithms to be able to reduce the noise component effect
on the classification. Within the selected classification algorithm, the hyperparameters’ adjustment
is of utmost importance. This study aimed to develop a deep learning model for robust PPG wave
detection, which includes finding each beat’s temporal limits, from which the peak can be determined.
A study database consisting of 1100 records was created from experimental PPG measurements
performed in 47 participants. Different deep learning models were implemented to classify the PPG:
Long Short-Term Memory (LSTM), Bidirectional LSTM, and Convolutional Neural Network (CNN).
The Bidirectional LSTM and the CNN-LSTM were investigated, using the PPG Synchrosqueezed
Fourier Transform (SSFT) as the models’ input. Accuracy, precision, recall, and F1-score were
evaluated for all models. The CNN-LSTM algorithm, with an SSFT input, was the best performing
model with accuracy, precision, and recall of 0.894, 0.923, and 0.914, respectively. This model has
shown to be competent in PPG detection and delineation tasks, under noise-corrupted signals, which
justifies the use of this innovative approach.

Keywords: PPG; biomedical signal processing; deep learning; neural networks; RNN; CNN; LSTM

1. Introduction

Photoplethysmography (PPG) is a non-invasive technique that is used to detect blood
volume variations through an infrared light sensor placed on the surface of the skin [1,2].
Correct identification of the PPG waveform and its main features is essential in order to
extract several biomarkers, such as heart rate, blood pressure, cardiac output, and blood
oxygen saturation, when the red and infrared light are used simultaneously [1,3]. The
PPG sensors are usually placed on the distal parts of the human body, such as the arms,
fingers, feet, or ears. For this reason, motion artifacts are a main contributor to PPG
signal degradation.

Multiple algorithms based on digital filters [4], adaptive thresholds [5], and wavelet
transform [6] have been proposed to identify PPG features. However, most studies involve
low noise data recordings for which algorithms’ robustness to artefacts’ contamination
cannot be properly evaluated [7]. Since one of the main drawbacks of the PPG signal is its
high susceptibility to noise contamination [8], it is crucial to develop an algorithm that is
able to overcome this limitation [9].
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Related Work

Deep learning algorithms have been applied in diagnosis, classification, and waveform
segmentation on different biomedical signals, such as the electrocardiogram (ECG) and
PPG. Ribeiro et al. [10] used a Deep Neural Network for automatic diagnosis with a 12-
lead ECG signal as an input. The model achieved an F1 score above 80% and specificity
over 99%. Hannun et al. [11] developed a similar model that had a receiver operating
characteristic curve of 0.97, and its average F1 score was higher than the cardiologist score
average. Using the PPG as a model input, Soltane et al. [12] used an Artificial Neural
Network to categorize the signal into two classes: healthy and pathologic. A correct
classification rate of 94.7% for data set testing was achieved. Liu et al. [13] classified the
PPG quality in three categories using a Deep Convolution Neural Network. The best
performing algorithm had a 92.5% accuracy. Yen et al. [14] classified hypertension stages,
based on PPG signals, using a Deep Residual Network, Convolutional Neural Network,
and Bidirectional Long Short-Term Memory model. An accuracy of 76% was achieved in
the testing data. Song et al. [15] estimated the heart rate using two different PPG datasets.
The optimized Deep Learning model achieved a mean absolute error of 6.02 beats per
minute. Alessandrini et al. [16] studied Recurrent Neural Networks to recognize human
activity based on PPG and accelerometer data. The developed model achieved a 95%
accuracy. Li et al. [17] estimated real-time blood pressure with a Deep Learning model,
using the PPG as the input data. A mean error of 4.638 and 3.155 mmHg was achieved for
the systolic and diastolic blood pressure, respectively.

Other studies have focused on signal waveform delineation. Laitala et al. [18] pro-
posed a Long Short-Term Memory (LSTM) network to detect R peaks in the ECG. The
R peaks are points in the ECG waveform, located in the ventricular depolarization inter-
val, representing in most cases the maximum absolute value in that segment. A double
Bidirectional LSTM and Dense layers were chosen, where the best achieved precision was
100%. However, this study used a small subject group (n < 15). Kim et al. [19] studied
ECG-based biometrics identification and classification. A bidirectional LSTM model was
applied to two ECG databases and an overall precision of 100% was achieved in the best
performing architecture. Malali et al. [20] segmented the ECG in the P-wave, QRS-complex,
and T-wave. The proposed Convolutional-LSTM architecture achieved an accuracy of
94.87%, 96.66%, and 92.73% for the P-wave, QRS-complex, and T-wave, respectively.

The main objective of this work was to develop a robust Artificial Intelligent (AI)
detector, in Matlab® and Python code, able to accurately detect each PPG beat time limits.
This operation, usually referred to as wave delineation or segmentation, allows for PPG
peak determination. The PPG peak location along with its time limits are needed for the
calculation of the clinical features that this signal provides for diagnosis and research, such
as systolic and diastolic points and heart rate variation. The accuracy of these features will
impact on the test and validation of machine learning algorithms. In real-life situations,
the PPG signal is contaminated with noise, namely movement artifacts, specifically when
wearable devices are used, either in clinical or research environments.

Although successful automatic ECG delineation algorithms can be found in the lit-
erature, there is a scarcity of similar methodologies applied to the PPG. The herein pre-
sented work intends to be a contribution in this respect. Frequency features derived from
biomedical signals, such as the ECG or the electroencephalogram (EEG), have been widely
used for classification purposes [21,22]. In this work, time-frequency-derived features
were obtained using a synchrosqueezed transform, given the non-stationary nature of
the PPG signals. Time-frequency representation is established as a reference method for
non-stationary signal analysis [23,24], from which features can be derived for classification
purposes [21,22,25]. Feeding these time-frequency features to the herein deep learning PPG
delineation process can be considered an innovative procedure, along with a sample-by-
sample classification method applied to one of the selected models under study.
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2. Materials and Methods
2.1. Data Acquisition and Pre-Processing

A total of 47 volunteers of both genders, aged from 18 to 66 years old, participated
in the study. All subjects were healthy and had signed an informed consent for study
participation. The working database was anonymized. The signals were recorded with
a sampling frequency of 2000 Hz from the right index finger by a PPG sensor, model
SS4LA, connected to the MP35 equipment of BIOPAC® Systems Inc., Goleta, CA, USA. The
recording interval varied between 5 and 7 min.

After recording, pre-processing steps were applied to the signal. A bandpass filter
between 0 and 4 Hz [26,27] and a down-sampling to 500 Hz were applied to the PPG
data [27]. The signals were then divided into 20 s segments [28].

A total of 1100 signal segments were accounted for in this study. During manual expert
labeling, each of the PPG samples was classified as “true” or “false”, which corresponded
to areas identified as true PPG or noise, respectively. The noise category included the
signal minimums and noisy signal segments. Signal minimums are important for use in
projects that include PPG segmentation. For coding purposes, the label class “true” was
assigned a value of 1 while the class “false” was replaced by a value of 0. The PPG data
and corresponding labels were equally sized matrices (1100 × 10,000). All the previously
mentioned pre-processing steps were performed in MATLAB®, version 2020b.

In the initial exploratory analysis of the experimental data, an imbalance of the
two labels was detected. A histogram is presented in Figure 1, where label 1, which
represents the PPG, corresponds to 74% of the data pool, with label 0 corresponding to
noise, 26%. In order to overcome this issue, the parameter sample_weights was included in
some models. In this transformation, the samples with the labels 0 and 1 were given a 1.85
and 0.68 weight, respectively. These values were established after an observational study
involving weights’ tuning.
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2.2. Feature Extraction Using Time-Frequency Analysis

Besides using the PPG data as model input, time-frequency features were also ex-
tracted for classification. Both methodologies were compared regarding model perfor-
mance. The non-stationary nature of the PPG was the motivation to use time-frequency-
extracted features, given its time-varying frequency content [23,29].

For each PPG segment, a Synchrosqueezed Fourier Transform (SSFT) [29,30] with a
Kaiser window of 250 samples was applied. The synchrosqueezing [31] application to the
short time Fourier transform resulted in an instantaneous frequency-increased resolution
in the time frequency plane [32].
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The multicomponent input signal of the SSFT can be defined as [29]:

f (t) = ∑K
k=1 fk(t) = ∑K

k=1 ak(t)ej2xφk(t), (1)

where k is finite, ak(t) > 0 is a continuously differentiable function, φk(t) is a two times con-
tinuously differentiable function, and fk is a mode of f . The short-time Fourier transform
of the f function, using the spectral window g, is given by [29]:

Vg f (t, η) =
∫ ∞

−∞
f (x)g(x − t)e−j2xη(x−t)dx, (2)

where ej2xηt is a modulation factor. The synchrosqueezed transform is given by [29]:

Tg f (t, ω) =
∫ ∞

−∞
Vg f (t, η)δ

(
ω − Ωg f (t, η)

)
dη, (3)

where Ωg is given by:

Ωg =
1

j2π

∂
∂t Vg f (t, η)

Vg f (t, η)
, (4)

To illustrate the SSFT concept, Figure 2 shows a segment of a noisy PPG (top) and
the respective SSFT (bottom), where a color code indicates the energy content along the
time axis. Significant noisy components are found around 4, 11, and 16 s, extending
to a frequency above 10 Hz. These features are important inputs for the classification
process. The real and imaginary parts of the SSFT were divided into two different features
for classification.

Computers 2021, 10, x FOR PEER REVIEW 4 of 16 
 

The multicomponent input signal of the SSFT can be defined as [29]: ݂(ݐ) =  ∑ ௞݂(ݐ) =௄௞ୀଵ ∑ ܽ௞(ݐ)݁௝ଶ௫థೖ(௧)௄௞ୀଵ , (1)

where ݇  is finite, ܽ௞(ݐ) > 0  is a continuously differentiable function, ߶௞(ݐ)  is a two 
times continuously differentiable function, and ௞݂ is a mode of ݂. The short-time Fourier 
transform of the ݂ function, using the spectral window ݃, is given by [29]: 

௚ܸ݂(ݐ, (ߟ = ׬  ݔ)݃(ݔ)݂ − ஶିஶݔ݀௝ଶ௫ఎ(௫ି௧)ି݁(ݐ , (2)

where ݁௝ଶ௫ఎ௧ is a modulation factor. The synchrosqueezed transform is given by [29]: 

௚݂ܶ(ݐ, ߱) = ׬  ௚ܸ݂(ݐ, ߱)ߜ(ߟ − Ω௚݂(ݐ, ஶିஶߟ݀((ߟ , (3)

where Ω௚ is given by: 

Ω௚ = ݐ߲߲ ߨ1݆2 ௚ܸ݂(ݐ, ,ݐ)௚ܸ݂(ߟ (ߟ  , (4)

To illustrate the SSFT concept, Figure 2 shows a segment of a noisy PPG (top) and 
the respective SSFT (bottom), where a color code indicates the energy content along the 
time axis. Significant noisy components are found around 4, 11, and 16 s, extending to a 
frequency above 10 Hz. These features are important inputs for the classification process. 
The real and imaginary parts of the SSFT were divided into two different features for clas-
sification. 

 
Figure 2. A signal excerpt of a noisy PPG (top) and its time-frequency representation using the SSFT 
(bottom). Higher frequency energy is present around 4, 11, and 16 s. 

2.3. Proposed Models 
Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) 

have been used in different studies [33,34] for time-series processing and classification. 
Long Short-Time Memory (LSTM) and bidirectional LSTM (BiLSTM) belong to the RNN 
class, usually applied to time-series data processing and prediction [35,36]. CNNs have 
also been able to extract deep and time-independent features, while being highly noise-
resistant models [37]. Due to these models’ established good performance with time-series 
data, the LSTM, BiLSTM, and CNN were evaluated for PPG waveform detection [33,34]. 

Dropout layers are widely used as a regularization method [38], where some units of 
the layers are excluded from activation and weight updates, which will reduce the over-
fitting effect and improve the model performance. A dropout rate of 0.4 was used in all 
studied models after each LSTM/BiLSTM layer [39]. 

Figure 2. A signal excerpt of a noisy PPG (top) and its time-frequency representation using the SSFT
(bottom). Higher frequency energy is present around 4, 11, and 16 s.

2.3. Proposed Models

Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs)
have been used in different studies [33,34] for time-series processing and classification.
Long Short-Time Memory (LSTM) and bidirectional LSTM (BiLSTM) belong to the RNN
class, usually applied to time-series data processing and prediction [35,36]. CNNs have also
been able to extract deep and time-independent features, while being highly noise-resistant
models [37]. Due to these models’ established good performance with time-series data, the
LSTM, BiLSTM, and CNN were evaluated for PPG waveform detection [33,34].
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Dropout layers are widely used as a regularization method [38], where some units
of the layers are excluded from activation and weight updates, which will reduce the
overfitting effect and improve the model performance. A dropout rate of 0.4 was used in
all studied models after each LSTM/BiLSTM layer [39].

Time distributed layers were used in the evaluated models since it allows the appli-
cation of the dense layer to every timestep of an, at least, three-dimensional array [40].
Instead of the typical whole signal segment processing, a sample-by-sample classifica-
tion procedure was herein selected. Despite this method being computationally more
demanding, it provides the prospective users the possibility of using the validated model
parameters on a signal, independently of its length, within the computational capability of
the used platform. Consequently, data windowing would not be necessary, thus precluding
the segment length selection step, typically a key project stage.

The data was divided into two sets: 70% for training and 30% for testing. A validation
set of 20% was selected. Table 1 summarizes the model parameters that were implemented.

Table 1. Studied model parameters.

Parameters Value

Loss Function Categorical-cross entropy
Optimizer Adam and SGD 1

Hidden Activation Function Sigmoid and Tanh
Dropout Rate 0.4
Learning Rate 10−2, 10−3, 10−4, 10−5 and 10−6

1 SGD: Stochastic Gradient Descent.

For the RNN models, the data was reshaped. The PPG was flattened into a single
column and the SSFT was flattened into two columns, corresponding to the real and
imaginary part of the spectrum. A sample-by-sample classification approach was selected.
For the RNN model, the input was a signal vector, whereas for the CNN case, the data input
was the segments’ matrix. Figure 3 represents a summary of the implemented methodology.
The Deep Learning algorithms were implemented in Python, version 3.7.
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2.4. Evaluated Metrics

Evaluation of the deep learning algorithm is essential to assess the network learning
process evolution and the need for model parameter adjustments. The confusion matrix,
represented in Figure 4, describes the complete performance of the model, integrating the
number of predictions for each class and their true values.
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From the confusion matrix, it is possible to extract other metrics, by evaluating differ-
ent relations between predicted and actual classes. Four different metrics were evaluated
in this study:

1. Accuracy [41]: measures the correct number of predictions over N, the total number:

Accuracy =
TN + TP

N
, (5)

2. Precision [41]: measures the number of true positives over all positive predictions:

Precision = TP/(TP + FP), (6)

3. Recall [41]: measures the proportion of true positives that are correctly predicted
as positive:

Recall = TP/(TP + FN), (7)

4. F1-Score [42]: measures the weighted average of the precision and recall:

F1 Score = 2 · (Precision) · (Recall)
Precision + Recall

, (8)

3. Results

For the purpose of this study, several RNN and CNN models were tested. Various
parameters were manipulated to evaluate the model performance, such as the number
of epochs, batch, number of neurons and layers, activation function, learning rate, and
optimizer. The Adam optimizer [43] was used in the output layer. The output of the studied
models was activated by the Softmax function [44], where each point corresponded to a set
of two values between 0 and 1, representing the probability of a given point being classified
as PPG or noise. To get the best overall metrics performance, a new variable threshold
was created to adjust the probability of each point being considered in the evaluated class.
Accuracy, precision, recall, and the F1-score of test data were computed in order to compare
the different models.

3.1. LSTM and BiLSTM with PPG Input

The first approach included LSTM models (Table 2). The MinMaxScaler function
applied in this section scaled the data to be in the range between −1 and 1. The Adam
optimizer and the Sigmoid function for the hidden layers were selected. The training
accuracy reached a stable value after five iteration epochs. The accuracy and precision
maximum values of 0.749 for both cases were achieved when the threshold was adjusted.
However, despite these apparently good results, the confusion matrix revealed that the
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model was biased in the sense that every signal point was classified as PPG. A possible
explanation for this behavior is the imbalance of PPG and noise classes. Lowering the
threshold value reduced the accuracy and precision but increased the correct number of
identified zeros in the classes (Table 2).

Table 2. LSTM and BiLSTM models with time distributed, dense, and Softmax layers for PPG input.

Model

Number of Neurons in
Each Layer Epochs Batch-Size Accuracy Precision Recall F1-Score

1st 2nd

L-D-S 32 - 50 10,000 0.719 0.743 0.947 0.833
L-TD(D)-S 50 - 50 40,000 0.709 0.759 0.897 0.822
L-TD(D)-S 200 - 50 40,000 0.719 0.757 0.919 0.830

L-L-TD(D)-S 8 16 50 40,000 0.724 0.755 0.934 0.835
L-L-TD(D)-S 16 32 50 40,000 0.718 0.758 0.917 0.830
L-L-TD(D)-S 32 64 50 40,000 0.720 0.757 0.922 0.831
L-L-TD(D)-S 32 64 50 20,000 0.712 0.766 0.886 0.822
L-L-TD(D)-S 256 128 100 70,000 0.733 0.760 0.940 0.840
B-TD(D)-S 50 - 50 40,000 0.744 0.751 0.982 0.851
B-TD(D)-S 200 - 50 40,000 0.730 0.756 0.965 0.848

B-B-TD(D)-S 8 16 50 40,000 0.744 0.750 0.986 0.852
B-B-TD(D)-S 16 32 50 40,000 0.740 0.751 0.976 0.849
B-B-TD(D)-S 32 64 50 40,000 0.729 0.755 0.945 0.839
B-B-TD(D)-S 32 64 50 20,000 0.739 0.752 0.973 0.848
B-B-TD(D)-S 256 128 100 70,000 0.744 0.756 0.971 0.850

L: LSTM; B: Bidirectional LSTM; TD: Time Distributed; D: Dense; S: Softmax.

The second applied method was the BiLSTM (Table 2), which provided better results
than the LSTM. The most complex models under study, with two layers of 256 and 128 neu-
rons, provided an accuracy of 0.733 and 0.744 for the LSTM and BiLSTM, respectively.

Testing and Improvements

The results presented in Table 2 demonstrate that investing in parameter adjustment
to achieve better metric outcomes is viable.

To improve the previous results, multiple approaches were tested. Firstly, a validation
split was implemented. In this way, a portion of the training data was separated, called the
validation dataset, to evaluate the model performance in each epoch. Due to the PPG data
bias, sample weighting was introduced to minimize its effects. For weight balancing, the
variable sample_weights was used.

The chosen optimizer on the previously presented models was Adam’s, with a
0.001 learning rate. For improvement purposes, a Stochastic Gradient Descent (SGD)
optimizer and variable learning rates of 10−3, 10−4, 10−5, and 10−6 were tested (Table 3).

Additionally, the results in Table 3 reflect a scaling range adjustment using the Min-
MaxScaler, with the parameter values ranging between 0 and 1, instead of −1 and 1
(Table 2). In an overall analysis, it was found that this scaling range adjustment did not
improve the general scoring results. Sample weighing has proven to balance the classes.
However, the model still failed to correctly identify noisy signal segments, as was found
upon on a detailed inspection of random signal cases. Changing the optimizer to SGD
and decreasing the learning rate slightly changed the model performance. Finally, for the
learning rate’s tested values, the model’s accuracy showed substantial differences. Given
that for the same conditions the model’s accuracy decreased, this may can be explained
by the lower learning rate value applied to the same number of epochs. Clearly, there
is an infinite degree of freedom regarding the hyperparameter selection for the models’
evaluation. Tables 2 and 3 show just a limited sample of those possibilities. The selected
criteria for the hyperparameters’ range for these tables were based on the literature and a
trial-and-error procedure. From these tables’ results, the following model hyperparameters
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were selected: the Adam optimizer and a 10−2 learning rate. The main deciding factor was
the accuracy value.

Table 3. Improved LSTM models with validation split (0.2), different optimizers, and learning rates for PPG input.

Model
Optimizer Number of Neurons

in Each Layer Weights Epochs Batch-Size Accuracy Precision Recall F1-Score
Opt. LR 1st 2nd 3rd

L-L-TD(D)-S A 10−3 16 32 - - 20 40,000 0.627 0.771 0.715 0.742
L-L-TD(D)-S A 10−3 16 32 - SW 20 40,000 0.551 0.796 0.539 0.643
L-L-TD(D)-S A 10−3 16 32 - SW 20 8000 0.574 0.796 0.581 0.672
L-L-TD(D)-S A 10−3 16 32 - SW 200 1000 0.612 0.788 0.659 0.718
L-L-TD(D)-S SGD 10−4 32 64 - SW 50 40,000 0.749 0.749 1.000 0.856
L-L-TD(D)-S SGD 10−5 32 64 - SW 20 40,000 0.749 0.749 1.000 0.856
L-L-TD(D)-S SGD 10−5 32 64 - SW 50 40,000 0.614 0.741 0.745 0.743
L-L-TD(D)-S SGD 10−6 32 64 - SW 50 40,000 0.749 0.749 1.000 0.856

L-L-L-TD(D)-S A 10−3 16 32 16 - 20 20,000 0.749 0.749 1.000 0.856
L-L-L-TD(D)-S A 10−3 32 64 32 - 20 20,000 0.749 0.749 1.000 0.856
L-L-L-TD(D)-S A 10−3 64 128 64 - 20 20,000 0.749 0.749 1.000 0.856
L-L-L-TD(D)-S SGD 10−4 32 64 32 SW 50 40,000 0.730 0.754 0.949 0.840
L-L-L-TD(D)-S SGD 10−5 32 64 32 SW 50 20,000 0.563 0.738 0.647 0.690
L-L-L-TD(D)-S SGD 10−5 32 64 32 SW 50 40,000 0.603 0.728 0.750 0.739
L-L-L-TD(D)-S SGD 10−6 32 64 32 SW 50 40,000 0.668 0.741 0.855 0.794

L: LSTM; TD: Time Distributed; D: Dense; S: Softmax; SW: sample_weights; LR: Learning Rate; A: Adam; SGD: Stochastic Gradient Descent.

The next step was to select the activation function of the hidden layers, comparing the
models’ results. The activation functions under study were the Tanh and Sigmoid. Table 4
shows the results for the BiLSTM models. An improvement of the accuracy (0.744 to 0.745)
and precision (0.756 to 0.757) was obtained between Tables 2 and 4, respectively. Therefore,
the selected hidden activation function was Tanh for the PPG input models.

Table 4. Improved BiLSTM models with a validation split of 0.2 and different hidden activation functions for PPG input.

Model
Hidden

Activation
Function

Number of Neurons in
Each Layer Weights Epochs Batch-Size Accuracy Precision Recall F1-Score

1st 2nd 3rd

B-B-TD(D)-S Sigmoid 50 - - SW 100 40,000 0.737 0.753 0.966 0.846
B-B-TD(D)-S Sigmoid 200 - - SW 100 40,000 0.691 0.762 0.854 0.805
B-B-TD(D)-S Sigmoid 16 32 - SW 100 40,000 0.717 0.766 0.896 0.826
B-B-TD(D)-S Sigmoid 16 32 - - 10 40,000 0.683 0.744 0.881 0.807
B-B-TD(D)-S Tanh 16 32 - - 5 40,000 0.691 0.745 0.894 0.813
B-B-TD(D)-S Tanh 16 32 - - 10 40,000 0.731 0.749 0.964 0.843
B-B-TD(D)-S Tanh 16 32 - SW 20 20,000 0.737 0.752 0.969 0.847
B-B-TD(D)-S Tanh 16 32 - SW 10 40,000 0.713 0.759 0.903 0.825
B-B-TD(D)-S Sigmoid 32 64 - SW 100 40,000 0.730 0.761 0.931 0.837
B-B-TD(D)-S Sigmoid 32 64 - - 10 40,000 0.703 0.746 0.913 0.821
B-B-TD(D)-S Tanh 32 64 - - 10 40,000 0.599 0.765 0.671 0.715
B-B-TD(D)-S Tanh 32 64 - SW 40 40,000 0.727 0.756 0.939 0.838
B-B-TD(D)-S Tanh 64 128 - SW 100 20,000 0.739 0.758 0.957 0.846

B-B-B-TD(D)-S Tanh 16 32 16 SW 40 20,000 0.708 0.766 0.878 0.818
B-B-B-TD(D)-S Tanh 16 32 16 - 100 15,000 0.749 0.749 1.000 0.856
B-B-B-TD(D)-S Tanh 16 32 16 SW 100 15,000 0.729 0.762 0.928 0.837
B-B-B-TD(D)-S Tanh 64 128 64 SW 100 20,000 0.745 0.757 0.965 0.848
B-B-B-TD(D)-S Sigmoid 64 128 64 SW 100 20,000 0.733 0.754 0.955 0.843
B-B-B-TD(D)-S Sigmoid 64 128 64 - 100 20,000 0.743 0.757 0.968 0.850

B: Bidirectional LSTM; TD: Time Distributed; D: Dense; S: Softmax; SW: sample_weights.

A classification example from the best performing BiLSTM model is presented in
Figure 5. Two different subject cases are shown on the left Figure 5a and right Figure 5b. On
the top plot, the blue and red sample points represent expert classified valid PPG and noise
values, respectively. On the bottom plot, blue and red sample points stand for the model-
predicted PPG and noise, respectively. The model was able to identify signal minimums in
the PPG waveform with and without noise (bottom plots Figure 5a,b). However, for the
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portrayed signal, the model could not detect the noise portions, as shown in Figure 5b. It
should be noted that red sample points may not be visible due to sample clustering.
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3.2. BiLSTM with SSFT Input

An SSFT approach was also considered in this work, as mentioned in Section 2.2.
Table 5 shows the different BiLSTM models that were tested with an SSFT input. The Adam
optimizer and a 10−2 learning rate were selected. The evaluated parameters included the
hidden activation function and the number of layers, likewise, as shown in Table 4. Sample
weighting was applied to all models. The best performance for accuracy and precision
were 0.736 and 0.764, respectively, for the BiLSTM with three layers and the Tanh hidden
activation function. The PPG input best performance case (Table 4) outperformed the SSFT
input accuracy, with 0.745 and 0.736, respectively.

Table 5. BiLSTM models with an SSFT input, validation split of 0.2, sample weighting, and different activation functions.

Model
Hidden

Activation
Function

Number of Neurons in
Each Layer Epochs Batch-Size Accuracy Precision Recall F1-Score

1st 2nd 3rd

B-B-TD(D)-S Sigmoid 16 32 - 100 40,000 0.723 0.742 0.961 0.837
B-B-TD(D)-S Tanh 16 32 - 100 40,000 0.734 0.770 0.847 0.807
B-B-TD(D)-S Sigmoid 32 64 - 100 20,000 0.713 0.791 0.762 0.776
B-B-TD(D)-S Tanh 32 64 - 100 20,000 0.713 0.791 0.763 0.777
B-B-TD(D)-S Tanh 256 512 - 10 20,000 0.735 0.767 0.855 0.809

B-B-B-TD(D)-S Sigmoid 16 32 16 100 20,000 0.724 0.784 0.798 0.791
B-B-B-TD(D)-S Tanh 16 32 16 100 20,000 0.735 0.768 0.855 0.809
B-B-B-TD(D)-S Sigmoid 32 64 32 100 20,000 0.734 0.769 0.849 0.807
B-B-B-TD(D)-S Tanh 32 64 32 100 20,000 0.736 0.764 0.862 0.810
B-B-B-TD(D)-S Tanh 256 512 256 10 20,000 0.732 0.772 0.846 0.807

B: Bidirectional LSTM; TD: Time Distributed; D: Dense; S: Softmax.

Figure 6 represents an example of true and predicted labeling with the best performing
BiLSTM model with an SSFT input. Regarding the color code and figure organization,
please refer to Figure 5. The model was able to identify signal minimums in Figure 6a,b
despite red dots not always being visible due to sample clustering. In Figure 6a, the signal
was correctly classified as PPG except for four short segments. All the signal minimums
were correctly detected (better verifiable in Figure 6). In Figure 6b, the expert labeled noise
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(top) was not completely classified as such by the algorithm (bottom), despite the overall
acceptable noise classification.
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3.3. CNN-LSTM with PPG Input

A model with one 1D convolution layer followed by a MaxPool1D [45], a Bidirectional
LSTM layer, and a LSTM layer was tested against the previous RNN models (Table 6). The
used structure was similar to the one described in Azar et al. [34]. On the convolutional,
BiLSTM, and LSTM layers, the Tanh and Softmax activation were used in the hidden and
output layers, respectively. The Adam optimizer was used with a learning rate of 10−2.
Categorical cross-entropy was also tested as the loss function and compared with the
Mean Squared Error (MSE), following the methodology applied in [34]. The MinMaxScaler
function applied in this section scaled the data between 0 and 1.

Table 6. CNN-LSTM models with a PPG input, validation split of 0.2, Sample Weighting, Tanh activation function, and
different loss functions.

Model Loss
Function

Number of Neurons in
Each Layer Epochs Batch-Size Accuracy Precision Recall F1-Score

1st 2nd 3rd

C-MP-B-L-TD(D) MSE 16 8 4 10 60 0.669 0.742 0.857 0.795
C-MP-B-L-TD(D) MSE 32 16 8 10 60 0.646 0.740 0.813 0.775
C-MP-B-L-TD(D) Categorical 16 8 4 10 60 0.619 0.741 0.756 0.748
C-MP-B-L-TD(D) Categorical 32 16 8 10 60 0.670 0.742 0.856 0.795
C-MP-B-L-TD(D) MSE 16 8 4 30 60 0.719 0.749 0.939 0.833
C-MP-B-L-TD(D) MSE 32 16 8 30 60 0.679 0.745 0.870 0.803
C-MP-B-L-TD(D) Categorical 16 8 4 30 60 0.675 0.744 0.864 0.800
C-MP-B-L-TD(D) Categorical 32 16 8 30 60 0.657 0.742 0.831 0.784

C: Conv1D; MP: MaxPool1D; L: LSTM; B: Bidirectional LSTM; TD: Time Distributed; D: Dense; MSE: Mean Squared Error.

The best performing model had a 0.719 accuracy, which is lower than the previously
achieved results described in Table 4. Figure 7 shows the model classification in the PPG
signal. Regarding the color code, figure organization, and clarifications, please refer to
Figure 5.
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This model amplified the signal minimums, as shown in Figure 7a, but was not able to
detect PPG noise portions, as shown in Figure 7b. Note that the sixth PPG beat was expert
classified as noise (Figure 7a) because it contained two peaks in the maximum interval
region. This is not visible in the figure due to sample clustering. This could be visible by
zooming in on the figure.

3.4. CNN-LSTM with SSFT Input

Another approach tested a CNN-LSTM network with an SSFT input (Table 7). The
structure was similar to the one described in Section 3.2, with different neuron numbers
in each layer. The time distributed output layer was followed by a dense layer with two
neurons. The hidden layers had a Tanh activation function, and the output activation
function was Softmax since the labels were in a categorical format. The loss function used
was categorical cross-entropy.

Table 7. CNN-LSTM models with an SSFT input, validation split of 0.2, and Tanh activation function.

Model

Number of Neurons in
Each Layer Weights Epochs Batch-Size Accuracy Precision Recall F1-Score

1st 2nd 3rd

C-MP-B-L-TD(D) 32 64 32 - 20 30 0.800 0.801 0.907 0.851
C-MP-B-L-TD(D) 32 64 32 SW 20 30 0.752 0.792 0.841 0.816
C-MP-B-L-TD(D) 32 64 32 - 50 100 0.771 0.788 0.889 0.835
C-MP-B-L-TD(D) 32 64 32 - 100 50 0.804 0.805 0.925 0.861
C-MP-B-L-TD(D) 64 128 64 - 200 50 0.894 0.923 0.914 0.918
C-MP-B-L-TD(D) 256 64 48 - 20 30 0.800 0.810 0.907 0.856
C-MP-B-L-TD(D) 256 128 64 SW 20 30 0.787 0.813 0.877 0.844

C: Conv1D; MP: MaxPool1D; L: LSTM; B: Bidirectional LSTM; TD: Time Distributed; D: Dense; SW: sample_weights.

From Table 7, it is deduced that the best accuracy result was achieved for the model
with hyperparameters represented in the fifth line. It turns out that this was the best
performing model among all the ones presented in this work, with accuracy, precision,
and recall of 0.894, 0.923, and 0.914, respectively. A classification example from the best
performing CNN-LSTM model is presented in Figure 8. This model was able to segment
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each PPG wave correctly, as shown in Figure 8a, and detected the noise with minimum
leakage to the PPG waves, as shown in Figure 8b.
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Figure 8. True labeling versus predicted labeling of PPG signal of CNN-LSTM models with SSFT input: (a) well-defined
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result of the model classification. More details are found in the main text.

4. Discussion and Conclusions

As far as the PPG signal classification is concerned, LSTM networks are one of the
most successful architectures in the detection of patterns in time-series data [33]. Different
methodologies based on these networks were herein tested. The best results achieved for
each architecture are represented in Table 8. The first approach included RNN, where
LSTM and Bidirectional LSTM neural networks were explored. The herein selected sample-
by-sample classification method was a different approach relative to that currently found
in the literature. The advantage of this new method is referred to in Section 2.3. The
BiLSTM networks learnt to accurately identify signal minimums, as shown in Figure 5, and
achieved an accuracy of 0.745 and recall of 0.965. However, this model did not detect most
of the noise regions.
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Table 8. Best performing models for each studied architecture.

Model

Number of Neurons
in Each Layer Data

Input Epochs Batch-Size Accuracy Precision Recall F1-Score
1st 2nd 3rd

B-B-B-TD(D)-S 64 128 64 PPG 100 20,000 0.745 0.757 0.965 0.848
B-B-B-TD(D)-S 32 64 32 SSFT 100 20,000 0.736 0.764 0.862 0.810

C-MP-B-L-TD(D) 16 8 4 PPG 30 60 0.719 0.749 0.939 0.833
C-MP-B-L-TD(D) 64 128 64 SSFT 200 50 0.894 0.923 0.914 0.918

C: Conv1D; MP: MaxPool1D; L: LSTM; B: Bidirectional LSTM; TD: Time Distributed; D: Dense; S: Softmax.

For the SSTF transformed PPG signals, the BiLSTM was also tested. Applying a
time-frequency transform to the signals before classification provided the model with an
increased feature set. This extended data pool also corresponds to a signal projection
from the time to the time-frequency domain, where non-stationary components may be
better represented. With this approach, the model reached up to an accuracy of 0.736
and recall of 0.862, results that are inferior to the previously mentioned case. However,
these models were the only ones with an LSTM-based architecture able to identify noisy
regions beyond the signal minimums, as depicted in Figure 6b. These results imply that the
RNN-based methods’ classification performance could be improved by using a different
set of hyperparameters. Further work on this task is expected to be done.

Regarding the CNN-LSTM approach for the PPG data, it correctly identified signal
minimums, but it was not able to detect most noise regions, as shown in Figure 7b. However,
when the CNN-LSTM was implemented with the SSFT, the best overall results were
achieved. The best performing model had an accuracy, precision, and recall of 0.894,
0.923, and 0.914, respectively. With this model, signal minimums were mostly correctly
identified, as well as some noisy regions. These results show good agreement with the one
presented by Azar et al. [34], where the achieved precision and recall were 0.90 and 0.95,
respectively, for a similar CNN-LSTM model with a windowed PPG signal as model input.
This comparison has to take into account that different databases were used.

The main goal of this work was to create a Deep Learning Neural Network to detect
PPG waveforms with different noise levels. Most of the tested networks were able to detect
the signal minimums in order to segment each PPG waveform. However, only models
with a time-frequency input could identify with improved accuracy both noise and the
signal minimums. The time-frequency transform seems to be a promising tool to be used
as a deep learning feature generator, given the herein obtained results. In future work,
different model architectures and hyperparameters could be explored. The CNN-LSTM
with different time-frequency representations as input, such as the continuous and discrete
wavelet transforms, may be tested. Empirical mode decomposition applied to the PPG
could also provide a significant data pool for classification.
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