Publications

Export 575 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Z
Fortunato, E., Assunção Marques Gonçalves Águas Pereira Ferreira Fernandes Silva Martins V. A. A. "ZnO:Ga thin films produced by RF sputtering at room temperature: Effect of the power density." Materials Science Forum. 455-456 (2004): 12-15. AbstractWebsite

Ga-doped polycrystalline zinc oxide (GZO) thin films have been deposited at high growth rates by rf magnetron sputtering. The dependence of electrical, optical and morphological properties on the rf power density were investigated. The lowest resistivity of 1.9×10-4 Ωcm was obtained for a rf power density of 9 W/cm2 and an argon sputtering pressure of 0.15 Pa at room temperature. The films are polycrystalline with a hexagonal structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface. The films present an overall transmittance in the visible spectra of about 85%. The low resistivity, accomplished with a high growth rate deposited at room temperature, enables the deposition of these films onto polymeric substrates for flexible optoelectronic devices and displays.

Fortunato, E., Gonçalves Pimentel Barquinha Gonçalves Pereira Ferreira Martins A. A. P. "Zinc oxide, a multifunctional material: From material to device applications." Applied Physics A: Materials Science and Processing. 96 (2009): 197-205. AbstractWebsite

In this paper we report on some of the recent advances in transparent thin film oxide semiconductors, specifically zinc oxide produced by radio frequency magnetron sputtering at room temperature, with multifunctional properties. By controlling the deposition parameters it is possible to produce undoped material with electronic semiconductor properties, or by doping it to get either n-type or p-type semiconductor behavior. In this work we refer to our experience in producing n-type doped zinc oxide as transparent electrode to be used in optoelectronic applications such as solar cells and position sensitive detectors, while the undoped zinc oxide can be used as active layer of fully transparent thin film transistors. © 2009 Springer-Verlag.

O'Brien, S.a, Nolan Çopuroglu Hamilton Povey Pereira Martins Fortunato Pemble M. G. a M. "Zinc oxide thin films: Characterization and potential applications." Thin Solid Films. 518 (2010): 4515-4519. AbstractWebsite

Zinc oxide (ZnO) has attracted recent interest for a range of applications, including use as a transparent conductive oxide (TCO) and in gas sensor devices. This paper compares ZnO films grown using two methods designed for the production of thin films, namely sol-gel and aerosol assisted chemical vapour deposition (AACVD) for potential use in sensor and TCO applications. Materials produced by the sol-gel route were observed to be amorphous when annealed at 350 °C, but were crystalline when annealed at higher temperatures and had a relatively open grain structure when compared to the AACVD films. Electrical characterization showed that materials were highly resistive, but that their properties varied considerably when the measurements were performed in vacuum or in air. This behaviour was rapidly reversible and reproducible for room temperature measurement. In contrast materials grown by aerosol-assisted CVD were non-porous, polycrystalline and conductive. Measured electrical properties did not vary with changing measurement atmosphere. These differences are discussed in terms of the structural characterisation of the films and some comments are made regarding the suitability of both approaches for the growth of ZnO thin film sensor materials. © 2009 Elsevier B.V. All rights reserved.

Pimentel, A.C., Gonçalves Marques Martins Fortunato A. A. R. "Zinc oxide thin films used as an ozone sensor at room temperature." Materials Research Society Symposium Proceedings. Vol. 915. 2006. 243-248. Abstract

In this paper we present results of intrinsic/non doped zinc oxide films deposited at room temperature by rf magnetron sputtering able to be used as a truly semiconductor on electronic devices like ozone gas sensors and ultra-violet detectors. The produced films are polycrystalline with a c-axis preferential orientation parallel to the substrate. The films' resistivity varies from 4.0×10-2 Ωcm to 1.0×10-9 Ωcm, depending on the deposition conditions used (rf power density and oxygen partial pressure), which turns not affecting the optical properties (in average a transmittance of around 85 % and an optical band gap of about 3.44 eV, independent of the deposition conditions used). When exposed to UV light the sensor response based on these films may exceed more than 5 orders of magnitude, recovering to the initial state in the presence of ozone. The sensitivity of the films is improved when the oxygen partial pressure increases and the rf power density used decreases, due to changes on the structural properties of the films. © 2006 Materials Research Society.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Martins P. a A. a. "Zinc oxide thin films deposited by rf magnetron sputtering on mylar substrates at room temperature." Materials Research Society Symposium Proceedings. Vol. 685. 2001. 140-145. Abstract

Aluminium doped zinc oxide thin films (ZnO:Al) have been deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by r.f. magnetron sputtering. The structural, morphological, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface. The ZnO:Al thin films with 85% transmittance in the visible and infra-red region and a resistivity as low as 3.6×102 Ωcm have been obtained, as deposited. The obtained results are comparable to those ones obtained on glass substrates, opening a new field of low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices. © 2001 Materials Research Society.

Martins, R.a, Fortunato Nunes Ferreira Marques Bender Katsarakis Cimalla Kiriakidis E. a P. a. "Zinc oxide as an ozone sensor." Journal of Applied Physics. 96 (2004): 1398-1408. AbstractWebsite

A study of intrinsic zinc oxide thin film as ozone sensor based on the ultraviolet (UV) photoreduction and subsequent ozone re oxidation of zinc oxide as a fully reversible process was presented. It was found that the film described were produced by spray pyrolysis, dc and rf magnetron sputtering. The dc resistivity of the films changed more than eight orders of magnitude when exposed to an UV dose of 4 mW/cm2. Analysis shows that the porous and textured zinc oxide films produced by spray pyrolysis at low substrate exhibit an excellent ac impedance response.

Martins, R., Pereira Barquinha Ferreira Prabakaran Gonçalves Gonçalves Fortunato L. P. I. "Zinc oxide and related compounds: Order within the disorder." Proceedings of SPIE - The International Society for Optical Engineering. Vol. 7217. 2009. Abstract

This paper discusses the effect of order and disorder on the electrical and optical performance of ionic oxide semiconductors based on zinc oxide. These materials are used as active thin films in electronic devices such as pn heterojunction solar cells and thin-film transistors. Considering the expected conduction mechanism in ordered and disordered semiconductors the role of the spherical symmetry of the s electron conduction bands will be analyzed and compared to covalent semiconductors. The obtained results show p-type c-Si/a-IZO/poly-ZGO solar cells exhibiting efficiencies above 14% in device areas of about 2.34 cm2. Amorphous oxide TFTs based on the Ga-Zn-Sn-0 system demonstrate superior performance than the polycrystalline TFTs based on ZnO, translated by ION/IOFF ratio exceeding 107, turn-on voltage below 1-2 V and saturation mobility above 25 cm2/Vs. Apart from that, preliminary data on p-type oxide TFT based on the Zn-Cu-O system will also be presented. © 2009 SPIE.

Nayak, P.K.a, Busani Elamurugu Barquinha Martins Hong Fortunato T. a E. a. "Zinc concentration dependence study of solution processed amorphous indium gallium zinc oxide thin film transistors using high-k dielectric." Applied Physics Letters. 97 (2010). AbstractWebsite

The effects of zinc concentration on the performance of solution processed amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) have been investigated using high-k aluminum titanium oxide as gate dielectric. The x-ray diffraction results confirmed that all the IGZO channel layers are amorphous. The performance of a-IGZO TFTs were investigated in the linear regime operation. Highest linear field-effect mobility of 5.8 cm2 /V s with an Ion / Ioff ratio of 6× 107 and subthreshold swing of 0.28 V/dec were obtained for the a-IGZO (311) TFTs. The obtained performance of the a-IGZO TFTs is very promising for low-voltage display applications. © 2010 American Institute of Physics.

W
Martins, R., Barquinha Pereira Correia Goņalves Ferreira Fortunato P. L. N. "Write-erase and read paper memory transistor." Applied Physics Letters. 93 (2008). AbstractWebsite

We report the architecture and the performances of a memory based on a single field-effect transistor built on paper able to write-erase and read. The device is composed of natural multilayer cellulose fibers that simultaneously act as structural support and gate dielectric; active and passive multicomponent amorphous oxides that work as the channel and gate electrode layers, respectively, complemented by the use of patterned metal layers as source/drain electrodes. The devices exhibit a large counterclockwise hysteresis associated with the memory effect, with a turn-on voltage shift between 1 and -14.5 V, on/off ratio and saturation mobilities of about 104 and 40 cm 2 V-1 s-1, respectively, and estimated charge retention times above 14 000 h. © 2008 American Institute of Physics.

Fortunato, E.M.C., Barquinha Pimentel Gonçalves Marques Martins Pereira P. M. C. A. "Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature." Applied Physics Letters. 85 (2004): 2541-2543. AbstractWebsite

The fabrication of high field-effect mobility ZnO thin film transistor (ZnO-TFT) at room temperature by rf magnetron sputtering was discussed. The ZnO used was deposited onto borosilicate glass substrate with a thickness of 1 mm with 100 x 100 mm surface area, coated with a 200 nm sputtered ITO film. The hall mobilities of about 2 cm2 / V s and a carrier concentration of 3 x 1016cm-3 were measured for the films with lower resistivity. It was observed that the ZnO-TFT presented an average optical transmission of 80% in the visibility part of the spectrum.

Fortunato, E., Martins R. "Where science fiction meets reality? With oxide semiconductors!" Physica Status Solidi - Rapid Research Letters. 5 (2011): 336-339. AbstractWebsite

Transparent electronics is today one of the most advanced topics for a wide range of device applications, where the key components are wide band gap semiconductors, where oxides of different origin play an important role, not only as passive components but also as active components similar to what we observe in conventional semiconductors. As passive components they include the use of these materials as dielectrics for a wide range of electronic devices and also as transparent electrical conductors for use in several optoelectronic applications, such as liquid crystal displays, organic light emitting diodes, solar cells, optical sensors etc. As active materials, they exploit the use of truly electronic semiconductors where the main emphasis is being put on transparent thin film transistors, light emitting diodes, lasers, ultraviolet sensors and integrated circuits among others. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Liu, A.a, Liu Zhu Meng Song Shin Fortunato Martins Shan G. a H. a. "A water-induced high-k yttrium oxide dielectric for fully-solution-processed oxide thin-film transistors." Current Applied Physics. 15 (2015): S75-S81. AbstractWebsite

In this work, we develop a simple and eco-friendly water-inducement method for high-k yttrium oxide (YOx) dielectric. To prepare YOx thin films at low temperature, yttrium nitrate and deionized water were used as the source materials. No toxic organic materials were required in the YOx coating process. The YOx thin film annealed at 350 °C showed a low leakage current density of 2 × 10-9 A/cm2 at 5 MV/cm and a large areal-capacitance of 448 nF/cm2 at 1 kHz. On the basis of its implementation as the gate dielectric, the fully-water-induced In2O3 TFT based on YOx exhibited a high field-effect mobility of 15.98 cm2/Vs, excellent subthreshold swing of 75 mV/dec, an on/off current ratio of 6 × 106, and a negligible hysteresis of 50 mV. The as-fabricated TFT operated at a low voltage (∼1.5 V) and showed high drain current drive capability, enabling oxide TFT with a water-induced high-k dielectric for use in backplane electronics for low-power mobile display applications. © 2015 Elsevier B.V. All rights reserved.

U
Malik, A., Martins R. "UV enhanced and solar blind photodetectors based on large-band-gap materials." Materials Science Forum. 258-263 (1997): 1425-1430. AbstractWebsite

High quantum efficiency, UV-enhanced monocrystalline zinc sulphide optical sensors for precise radiometric and spectroscopic measurements have been developed by spray deposition of heavy fluorinedoped tin oxide thin films with carrier concentration near 1021 cm-3 onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced silicon photodetectors as well as to new detectors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that was nearly 100% from 250 to 320 nm, and the typical sensitivity at 290 nm is 0.15 A/W. The sensors were insensitive to solar radiation in earth's conditions and can be used as solar blind photodetectors for precision UV-measurements under direct solar illumination, both terrestrial and space applications.

c Gonçalves, G.a, Pimentel Fortunato Martins Queiroz Bianchi Faria A. a E. a. "UV and ozone influence on the conductivity of ZnO thin films." Journal of Non-Crystalline Solids. 352 (2006): 1444-1447. AbstractWebsite

Complex impedance measurements were used to analyze the influence of ultraviolet and ozone gas on the electronic behaviour of ZnO films grown by rf magnetron sputtering. The data show that UV exposure strongly increases the ac conductivity of the film at very low frequencies, and that after ozone exposure it recovers the original value. At high frequencies, however, UV-light exposure it does not change the conductivity but the ozone acts in the sense to decrease it. Two distinct mechanisms, related to two relaxation time distributions are clearly observed: they are superimposed in the virgin sample, but they split forming two semicircles in the z″(f) - z′(f) diagrams when the samples are treated with UV and/or ozone gas. A combination of the bruggeman effective medium approximation (BEMA) with the random free energy barrier model is used to fit the data and to explain the ac conductivity variation phenomena observed. © 2006 Elsevier B.V. All rights reserved.

Danciu, A.-I..a b, Musat Busani Pinto Barros Maria Rego Maria Ferraria Carvalho Martins Fortunato V. a T. b. "Uniform arrays of ZnO 1D nanostructures grown on Al:ZnO seeds layers by hydrothermal method." Journal of Nanoscience and Nanotechnology. 13 (2013): 6701-6710. AbstractWebsite

In obtaining uniform array of ZnO 1D nanostructures, especially using solution based methods, the thickness and the morphology of the epitaxial seeds layer are very important. The paper presents the effect of the thickness and the morphology of the Al:ZnO seeds layer on the morphology and properties of ZnO nanowires array grown by hydrothermal method. Compact and vertically aligned ZnO 1D nanostructures were obtained. Concentration of 0.02 M of zinc nitrate was found to be optimal for growing nanowires with diameters up to 50 nm and lengths between 1.5 and 2.5 microns. Using 0.04 M solution, nanorods with diameter between 50 and 100 nm were obtained. The correlation between the crystal structure and optical properties of ZnO nanowires is discussed. From electrical measurements on single nanowire, resistivity value of 9×10?2 cm was obtained. The I-V curves of single ZnO NWs show quasi diode characteristic when an e-beam is irradiating the NWs, and a typical semiconductive behaviour when the e-beam is turned off. Copyright © 2013 American Scientific Publishers.

Ferreira, I., Carvalho Martins J. R. "Undoped and doped crystalline silicon films obtained by Nd-YAG laser." Thin Solid Films. 317 (1998): 140-143. AbstractWebsite

In this paper, we present results of the role of laser beam energy and shot density on the electro-optical and structural properties of undoped and doped recrystallized amorphous silicon thin films, generated by pulsed Nd-YAG laser (λ = 532 nm). The data reveal that the structure and electrical characteristics of the recrystallized thin films are mainly dependent on the energy and shot density of the laser beam, while the morphology of the obtained films are mainly governed by the number of shots used. The data also show that the electrical conductivity of undoped and doped recrystallized films can be varied up to 6 orders of magnitude, by the proper choice of the recrystallization conditions. Doped samples with conductivities in the amorphous states in the range of 10-5 Ω-1 cm-1 present, after recrystallization, conductivities of about 300 Ω-1 cm-1. The SEM micro-chemical analysis also shows that the obtained crystalline grains are constituted by pure silicon. © 1998 Elsevier Science S.A.

T
Fantoni, A.a, Vieira Cruz Schwarz Martins M. a J. a. "A two-dimensional numerical simulation of a non-uniformly illuminated amorphous silicon solar cell." Journal of Physics D: Applied Physics. 29 (1996): 3154-3159. AbstractWebsite

We present here a two-dimensional numerical simulation of a hydrogenated amorphous silicon p-i-n solar cell non-uniformly illuminated through the p-layer. This simulation is used to show the effect of the presence of dark regions in the illuminated surface on the electrical behaviour of the device. The continuity equations for holes and electrons together with Poisson's equation, implemented with a recombination mechanism reflecting the amorphous structure of the material, are solved using standard numerical techniques over a rectangular domain. The results obtained reveal the appearance of a lateral component of the electric field and current density vectors inside the structure. The effect of such components is a lateral carrier flow of electrons inside the intrinsic layer and of holes inside the p-layer, resulting in leakage of the transverse current collected at the contacts and an increase in the series resistance.

Águas, H., Cabrita Tonello Nunes Fortunato Martins A. P. P. "Two step process for the growth of a thin layer of silicon dioxide for tunnelling effect applications." Materials Research Society Symposium - Proceedings. Vol. 619. 2000. 179-184. Abstract

In today's main crystalline silicon (c-Si) applications in MOS (metal-oxide-silicon), MIS (metal-insulator-semiconductor) or SIS (Semiconductor-Insulator-Semiconductor), the growing of the oxide layer plays the main role, dictating the device performances, in particular if it has to be grown by a low temperature process. Of fundamental importance is the SiO2 interface with the c-Si. A very low defect density interface is desirable so that the number of trapping states can be reduced and the devices performance optimised. A two step low temperature oxidation process is proposed. The process consists of growing first a layer of oxide by a wet process and then treating the grown oxide with an oxygen plasma. The oxygen ions from the plasma bombard the oxide causing compaction of the oxide and a decrease in the interface roughness and defect density. Infrared spectroscopy and spectroscopic ellipsometry measurements were performed on the samples to determine the oxide thickness, optical and structural properties. SIS structures were built and capacitance measurements were performed under dark and illuminated conditions from which were inferred the interface defect density and correlated with the oxide growth process.

Fortunato, E., Martins Ferreira Santos Maçarico Guimarães R. I. M. "Tunneling in vertical μcSi/aSixCyOz:H/μcSi heterostructures." Journal of Non-Crystalline Solids. 115 (1989): 120-122. AbstractWebsite

In this paper we report by the first time tunneling tranport on vertical μcSi/aSixCyOz:H/μcSi (μcaμc) heterostructures produced in a Two consecutive Decomposition and Deposition Chamber system where a Negative Differential Conductance is observed even at room temperature. Giant bias anomalies are observed, that decrease with temperature. Tunneling spectroscopy data are also reported for samples measured at low temperatures. A qualitative information of the recorded data is obtained and related with main features of the heterostructure. Nevertheless in this stage is hard to take quantitative information. © 1989.

Fantoni, A.a, Vieira Martins M. b R. a. "Transport properties of μc-Si:H analyzed by means of numerical simulation." Thin Solid Films. 337 (1999): 109-112. AbstractWebsite

Microcrystalline silicon is a two-phase material. Its composition can be interpreted as grains of crystalline silicon imbedded in an amorphous silicon tissue, with a high concentration of danglind bonds in the transition regions. In this paper, results obtained by means of numerical simulations about the transport properties of a μc-Si:H p-i-n junction are reported. The role played by the boundary regions between the crystalline grains and the amorphous matrix is taken in account, and these regions are treated similarly to a heterojunction interface. The influence of the local electric field at the grains boundary transition regions on the internal electric configuration of the device is outlined under illumination and applied external bias. © 1999 Elsevier Science S.A. All rights reserved.

Martins, R.a, Vieira Ferreira Fortunato Guimarães M. b I. a. "Transport properties of doped silicon oxycarbide microcrystalline films produced by spatial separation techniques." Solar Energy Materials and Solar Cells. 41-42 (1996): 493-517. AbstractWebsite

This paper presents results of the role of the oxygen partial pressure used during the deposition process on the transport properties exhibited by doped microcrystalline silicon oxycarbide films produced by a Two Consecutive Decomposition and Deposition Chamber system, where a spatial separation between the plasma and the growth regions is achieved. This paper also presents the interpretative models of the optoelectronic behaviour observed in these films (highly conductive and transparent with suitable properties for optoelectronic applications) as well as the interpretation of the growth process that leads to film's microcrystallization.

Martins, Rodrigo, Vieira Manuela Ferreira Isabel Fortunato Elvira Guimaraes L. "Transport properties of doped silicon oxycarbide microcrystalline films produced by spatial separation techniques." Conference Record of the IEEE Photovoltaic Specialists Conference. Vol. 1. 1994. 508-511. Abstract

This paper presents results of the role of the oxygen partial pressure (pO2) used on the properties exhibited by doped μc silicon oxycarbide films produced by a Two Consecutive Decomposition and Deposition Chamber (TCDDC) system [1], where a spatial separation between the plasma and the growth regions is achieved. The films produced are highly conductive and transparent with suitable properties for optoelectronic applications.

Fantoni, A.a, Vieira Martins M. b R. a. "Transport properties in microcrystalline silicon solar cells under AM1.5 illumination analyzed by two-dimensional numerical simulation." Solid-State Electronics. 43 (1999): 1709-1714. AbstractWebsite

Microcrystalline silicon is a two-phase material. Its composition can be interpreted as a series of grains of crystalline silicon imbedded in an amorphous silicon tissue, with a high concentration of dangling bonds in the transition regions. In this paper, results for the transport properties of a μc-Si:H p-i-n junction obtained by means of two-dimensional numerical simulation are reported. The role played by the boundary regions between the crystalline grains and the amorphous matrix is taken into account and these regions are treated similar to a heterojunction interface. The device is analyzed under AM1.5 illumination and the paper outlines the influence of the local electric field at the grain boundary transition regions on the internal electric configuration of the device and on the transport mechanism within the μc-Si:H intrinsic layer.

Martins, R.a, Willeke Fortunato Ferreira Vieira Santos Maçarico Guimarães G. b E. a. "Transport in μc-Six:Cy:Oz:H films prepared by a TCDDC system." Journal of Non-Crystalline Solids. 114 (1989): 486-488. AbstractWebsite

N- and p-type weakly absorbing and highly conductive microcrystalline thin μc-Six:Cy:Oz:H films, have been produced by a TCDDC (Two Consecutive Decomposition and Deposition Chamber) system1. The optoelectronic and structural results show that we are in the presence of a mixed phase of Si microcrystals (c-islands) embedded in a-Six:Cy:Oz:H (a-tissue). Based on that, we propose a model where transport mechanisms are explained by the potential fluctuations related to films heterogeneities. Thus, conduction is due to carriers that by tunneling or percolation "pass" or "go" trough the barriers and/or percolate randomly by the formed channels. © 1989.

Martins, R., Barquinha Pimentel Pereira Fortunato P. A. L. "Transport in high mobility amorphous wide band gap indium zinc oxide films." Physica Status Solidi (A) Applications and Materials Science. 202 (2005): R95-R97. AbstractWebsite

This paper discusses the electron transport in the n-type amorphous indium-zinc-oxygen system produced at room temperature by rf magnetron sputtering, under different oxygen partial pressures. The data show that the transport is not band tail limited, as it happens in conventional disordered semiconductors, but highly dependent on its ionicity, which explains the very high mobilities (≥ 60 cm 2 V -1 s -1) achieved. The room temperature dependence of the Hall mobility on the carrier concentration presents a reverse behaviour than the one observed in conventional crystalline/polycrystalline semiconductors, explained mainly by the presence of charged structural defects in excess of 4 × 10 10 cm -2 that scatter the electrons that pass through them. © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.