Publications

Export 575 results:
Sort by: Author Title Type [ Year  (Asc)]
2002
Mei, S.a, Yang Ferreira Martins J. a J. M. "Optimisation of parameters for aqueous tape-casting of cordierite-based glass ceramics by Taguchi method." Materials Science and Engineering A. 334 (2002): 11-18. AbstractWebsite

Aqueous suspensions of cordierite-based glass ceramics were prepared by using four types of dispersants and binders and different solids loading. The experiments were designed according to the Taguchi method, which shows great advantages in optimising more than two factors that need to be considered in an experimental design. Different parameters such as the type and concentration of the dispersants and the binders, and the solids loading were optimised to obtain homogeneous and crack-free green tapes. Dolapix CE 64 (1.0 wt.%) and Duramax B-1080 or Duramax B-1070 (10 wt.%) with 65 wt.% solids loading represent an optimal selection of the parameters to obtain low viscosity suspension, and crack-free green tapes with the highest green and sintered density. Microstructural differences between crack-free and cracked samples were observed by scanning electron microscopy (SEM). The crack-free green tapes show homogenous microstructures from top to bottom with organic additives uniformly surrounding the powders, whereas cracked samples exhibit heterogeneous microstructures and non-uniform distribution of the organics. © 2002 Elsevier Science B.V. All rights reserved.

Cabrita, A., Figueiredo Pereira Silva Brida Fortunato Martins J. L. V. "Performance of a-Six:C1-x:H Schottky barrier and pin diodes used as position sensitive detectors." Journal of Non-Crystalline Solids. 299 (2002): 1277-1282. AbstractWebsite

Position sensitive detectors (PSD) using hydrogenated amorphous silicon as the active layer have been widely proposed either with the p-i-n or the Schottky structure. In this case, the devices are tailored to respond to light in the range 620-650 nm. Little is known about the use of silicon carbide active layers in such devices, which is important when the detected light is in the blue region of the light spectrum. In this paper we present for the first time the electro-optical properties of the a-Six:C1-x:H/Pd and p-ic-n PSD, using a-Six:C1-x:H layers deposited by plasma enhanced chemical vapour deposition (PECVD). These sensors are able to distinguish the wavelength of the impinging visible radiation (from red to blue light). In addition, the sensors respond to light intensities as lower as 1 × 10-6 W cm-2 with a resolution better than 0.04 mm and a linearity between ±0.12% and ±0.8%. © 2002 Elsevier Science B.V. All rights reserved.

Nunes, P., Costa Fortunato Martins D. E. R. "Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering." Vacuum. 64 (2002): 293-297. AbstractWebsite

In this work, we report the electro-optical properties exhibited by ZnO:A1 thin films deposited by r.f. magnetron sputtering. The effect of the deposition parameters on the properties of the films were studied with the aim to determine the most suitable deposition conditions to obtain ZnO:Al thin films with a low resistivity and high transmittance, characteristics required for applications on optoelectronic devices. After annealing, the ZnO:Al thin films present a low resistivity (6.25 × 10-3 Ωcm) and a high transmittance (90%) when produced with a deposition pressure of 1.6 × 10-2 mbar and r.f. power of 150W. © 2002 Elsevier Science Ltd. All rights reserved.

Bender, M.a, Gagaoudakis Douloufakis Natsakou Katsarakis Cimalla Kiriakidis Fortunato Nunes Marques Martins E. a E. a. "Production and characterization of zinc oxide thin films for room temperature ozone sensing." Thin Solid Films. 418 (2002): 45-50. AbstractWebsite

The room temperature ozone sensing properties of polycrystalline undoped zinc oxide (ZnO) thin films have been investigated. ZnO thin films have been produced by the d.c. and r.f. magnetron sputtering technique as well as with spray pyrolysis with a variety of parameters. The as-grown films were brought to a high conducting state through a reversible photoreduction process by UV light exposure and were subsequently exposed to ozone resulting in a strong resistivity increase caused by re-oxidation. The magnitude of the effect was largest for the sputtered films, which exhibited resistivity changes of more than 8 orders of magnitude, whereas films deposited by spray pyrolysis showed changes of less than 3 orders of magnitude. XRD and AFM analysis of the films revealed that all films were microcrystalline. The film texture, however, was strongly related to the growth technique and the parameters used. Best results were achieved with r.f.-sputtered films, which have been deposited at high total pressures. These films exhibited a sensor response of 1.2 × 108. © 2002 Elsevier Science B.V. All rights reserved.

Ferreira, I.a, Fortunato Pereira Costa Martins E. a L. a. "The properties of a-Si:H films deposited on Mylar substrates by hot-wire plasma assisted technique." Journal of Non-Crystalline Solids. 299-302 (2002): 30-35. AbstractWebsite

In this work we studied the influence of hydrogen dilution, rf power, and the filament and substrate temperatures on the electro-optical properties and composition of a-Si:H films produced by hot wire plasma assisted technique. The a-Si:H films were produced on Mylar substrates with growth rate of up to 37 Å/s, ημτ product of 1.6 × 10-7 cm2/V, photoconductivity to dark conductivity ratio of 1 × 104 (at AM1.5 radiation), and a dark conductivity of about 10-10 (Ω cm)-1 for substrate temperature of 130 °C, hydrogen dilution of 99%, filament temperature of 1700 °C, and rf power of 100 W. © 2002 Elsevier Science B.V. All rights reserved.

Nunes, P., Fortunato Martins Vilarinho E. R. P. "Properties presented by ZnO thin films deposited by magnetron sputtering and spray pyrolysis." Key Engineering Materials. 230-232 (2002): 424-427. AbstractWebsite

The most common techniques used to produce ZnO thin films are the spray pyrolysis and the magnetron sputtering techniques, low and high cost processes respectively. The aim of this work is to compare the properties of the films produced by these two techniques. The predominant difference observed was on the morphological properties. The films produced by spray pyrolysis have a rougher surface than the ones obtained by sputtering. Also the effect of the thermal annealing treatment is much more prononnced for the ZnO thin films produced by spray pyrolysis. After heat treatment films exhibit similar electrical properties and their application to optoelectronic devices is demonstrated.

Cabrita, A., Pereira Brida Silva Ferreira Fortunato Martins L. D. V. "Role of the density of states in the colour selection of the collection spectrum of amorphous silicon-based Schottky photodiodes." Key Engineering Materials. 230-232 (2002): 559-562. AbstractWebsite

This work deals with the study of the role of intra-gap density of states on the colour selection of the collection spectrum of glass/ITO/a-Six:C1-x:H/Al Schottky photodiodes. In order to optimise the voltage colour selection and to study the influence of intragap density of states in the final device performances, different undoped a-Six:C1-x:H films (1 μm thick) have been produced in a conventional Plasma Enhanced Chemical Vapour Deposition (PECVD) system using silane and a controlled mixtures of silane and methane as gas sources. The properties of the films were analysed by dark conductivity measurements, infrared spectroscopy, visible spectroscopy and constant photocurrent method (CPM), to determine the valence controllability and to correlate the silicon carbide layer composition with the performances of the devices. The performances obtained concerning the spectral response of the devices were correlated with the carbon content and the density of states of the a-Six:C1-x:H films.

Águas, H., Fortunato Martins E. R. "Role of the i layer surface properties on the performance of a-Si:H Schottky barrier photodiodes." Sensors and Actuators, A: Physical. 99 (2002): 220-223. AbstractWebsite

In this work, we study the influence of the hydrogenated amorphous silicon (a-Si:H) surface treatment on the J-V characteristics of a-Si:H/Pd Schottky barrier photodiodes. The a-Si:H surface were etched, thermally oxidised and wet oxidised by H2O2. The a-Si:H films were characterised by spectroscopic ellipsometry, were we found that all the oxidation techniques promote an increase of the surface oxide thickness that was confirmed by the increase of the barrier height. The highest barrier was achieved by the H2O2 oxidation where a value of 1.17 eV was found. As a result of the barrier height increase, the dark reverse current density decreases up to 10-10 A/cm2 and the signal to noise ratio increases up to 106. The open circuit voltage under AM1.5 illumination conditions also increases from 0.4 to 0.5 V. These results reveal the importance of the a-Si:H surface preparation prior to metallization to improve the Schottky photodiodes properties. © 2002 Elsevier Science B.V. All rights reserved.

Águas, H., Fortunato Pereira Silva Martins E. L. V. "Role of the i-layer thickness in the performance of a-Si:H Schottky barrier photodiodes." Key Engineering Materials. 230-232 (2002): 587-590. AbstractWebsite

In this work we present the current/voltage characteristics of Si:H/Pd Schottky structures using high quality, low defect density amorphous silicon (a-Si:H) deposited by a non-conventional, modified triode PECVD method. This new configuration allows the deposition of compact and high quality a-Si:H with a photosensitivity of 107, yielding films with low bulk defects. AFM measurements also revealed that these films have a very smooth surface allowing a low defect interface between the metal and the a-Si:H. As a result, we show that by using these a-Si:H films and by proper control of the i-layer thickness the reverse dark current of the diode can be highly reduced achieving signal to noise ratio of 106, surpassing the results usually achieved by p-i-n structures.

Martins, R., Águas Silva Ferreira Cabrita Fortunato H. V. I. "Silicon nanostructure thin film materials." Vacuum. 64 (2002): 219-226. AbstractWebsite

This paper deals with the growth process of nanostructured silicon films produced by chemical vapour deposition technique, at or close to the γ-regime where powders are formed. There, besides the set of chemical reactions undertaken by the species decomposed on the growth surface, the importance of the physics of the plasma in managing the powders and on the final film performances will be shown. To identify the plasma region where Si nanoaggregates are formed, we propose the use of a new parameter that translates the energy coupling of the rf power to the species of the gas flow, per pressure range of the process. By doing so we could establish an excellent correlation between this ratio and the plasma parameters such as peak to peak rf voltage and plasma impedance, or with the films defect density and their transport properties. Apart from that, we also show that high compact Si nanoclusters could be grown under moderate ion bombardment. Finally, to allow the growth at high rates of controlled silicon nanostructures, a three cycling process based on hot wire chemical vapour deposition and plasma assisting the hot wire technique will be discussed. © 2002 Elsevier Science Ltd. All rights reserved.

Fernandes, F.M.Braz, Martins Teresa Nogueira Silva Nunes Costa Ferreira Martins R. M. R. "Structural characterisation of NiTi thin film shape memory alloys." Sensors and Actuators, A: Physical. 99 (2002): 55-58. AbstractWebsite

Currently, microactuators are being developed using shape memory alloys (SMAs), which allow simple design geometries and provide large work outputs in restricted space. Several techniques have been used to produce NiTi shape memory alloy thin films, but from the practical point of view, only the sputter deposition method has succeeded so far. Vacuum evaporation of NiTi binary alloy entails the potential problem of the evaporation rates of each component not being the same due to differences in vapour pressure. Aiming to study the possible applications of SMAs to microfabrication, NiTi thin films were produced at CENIMAT by sputter and vacuum evaporation using raw materials from different sources. The films were analysed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) at room temperature, as well as in situ high temperature, in order to characterise the temperature ranges at which the different structural transformations occur. © 2002 Elsevier Science B.V. All rights reserved.

Nunes, P., Braz Fernandes Silva Fortunato Martins F. M. R. J. "Structural characterisation of zinc oxide thin films produced by spray pyrolysis." Key Engineering Materials. 230-232 (2002): 599-602. AbstractWebsite

In this work, we present a study of the effect of temperature, type and concentration of the dopant on the structural characteristics of ZnO thin films produced by spray pyrolysis; the crystallite size has been determined from profile peak shape analysis. These results are compared to the electrical characterisation performed on these materials. The effect of the dopant on the properties of ZnO thin films depends on its characteristics, mainly its ionic radius. Al, Ga and In have been studied as dopants, the best one being In, since it leads to the lowest resistivity.

Lopes, A., Nunes Vilarinho Monteiro Fortunato Martins P. P. R. "Study of the sensing mechanism of SnO2 thin-film gas sensors using hall effect measurements." Key Engineering Materials. 230-232 (2002): 357-360. AbstractWebsite

Hall effect measurements are one of the most powerful techniques for obtaining information about the conduction mechanism in polycrystalline semiconductor materials, which is the basis for understanding semiconductor gas sensors. In order to investigate the correlation between the microscopic characteristics and the macroscopic performances exhibited by undoped tin oxide gas sensors deposited by spray pyrolysis, Hall effect measurements were performed at different temperatures, from room temperature up to 500 K, and in the presence of two different atmospheres, air and methane. From these measurements, it was possible to infer the potential barrier and its dependence with the used atmosphere. The obtained results were analysed in terms of the oxygen mechanism at grain boundaries on the basis of the grain boundary-trapping model. In the presence of methane gas, the electrical resistivity decreases due to the lowering of the inter-grain boundary barrier height.

Mei, S., Yang Monteiro Martins Ferreira J. R. R. "Synthesis, characterization, and processing of cordierite-glass particles modified by coating with an alumina precursor." Journal of the American Ceramic Society. 85 (2002): 155-160. AbstractWebsite

The surfaces of cordierite and glass particles were modified by coating them with an alumina precursor using a precipitation process in the presence of urea. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy, X-ray diffraction, electrophoresis, and rheological measurements were used to characterize the coated powders. SEM and transmission electron microscopy morphologies of the coated powders revealed that amorphous and homogeneous coatings have been formed around the particles. The morphology of the coated powders showed a coiled wormlike surface. The coating Al2O3 layer dominated the surface properties of the coated glass and cordierite powders. The influence of the coating layer on the processing ability of cordierite-based glass-ceramics substrates by tape casting was studied in aqueous media. It could be concluded that the coating of the powders facilitates the processing and yields green and sintered tapes with denser, more homogeneous microstructures compared with the uncoated powders.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Godinho Almeida Borges Martins P. a A. a. "Transparent, conductive ZnO:Al thin film deposited on polymer substrates by RF magnetron sputtering." Surface and Coatings Technology. 151-152 (2002): 247-251. AbstractWebsite

In this paper, we present the optical, electrical, structural and mechanical properties exhibited by aluminum-doped zinc oxide (ZnO:Al) thin films produced by RF magnetron sputtering on polymeric substrates (polyethylene terephthalate, PET; Mylar type D from Dupont®) with a standard thickness of 100 μm. The influence of the uniaxial tensile strain on the electrical resistance of these films was evaluated in situ for the first time during tensile elongation. In addition, the role of the thickness on the mechanical behavior of the films was also evaluated. The preliminary results reveal that the increase in electrical resistance is related to the number of cracks, as well as the crack width, which also depends on the film thickness. © 2002 Elsevier Science B.V. All rights reserved.

2003
Fortunate, E., Assunção Marques Ferreira Águas Pereira Martins V. A. I. "Characterization of transparent and conductive ZnO:Ga thin films produced by rf sputtering at room temperature." Materials Research Society Symposium - Proceedings. Vol. 763. 2003. 225-230. Abstract

Gallium-doped zinc oxide films were prepared by rf magnetron sputtering at room temperature as a function of the substrate-target distance. The best results were obtained for a distance of 10 cm, where a resistivity as low as 2.7×10-4 Ωcm, a Hall mobility of 18 cm2/Vs and a carrier concentration of 1.3×1021 cm-3 were achieved. The films are polycrystalline presenting a strong crystallographic c-axis orientation (002) perpendicular to the substrate. The films present an overall transmittance in the visible part of the spectra of about 85 %, in average. The low resistivity, accomplished with a high growth rate deposited at RT, enables the deposition of these films onto polymeric substrates for flexible applications.

Ferreira, I., Fortunato Martins E. R. "Combining HW-CVD and PECVD techniques to produce a-Si:H films." Thin Solid Films. 427 (2003): 231-235. AbstractWebsite

Amorphous undoped a-Si:H films have been produced by hot wire plasma assisted chemical vapour deposition (HWPA-CVD), which combines the hot wire chemical vapour deposition (HW-CVD) and plasma enhanced chemical vapour deposition techniques. In this work we analyse the dissociation mechanism of the gas during the film growth in both processes with a quadrupole mass spectrometer. Besides that, the energy delivered to the gas dissociation is determined and correlated with the films properties. Thus, based on the results of the dissociated species for each deposition condition and process, we explain why the growth rate is enhanced when the filament temperature rises in HW-CVD process and why it decreases as r.f. power is enhanced in HWPA-CVD process. © 2002 Elsevier Science B.V. All rights reserved.

Águas, H.a, Pereira Goullet Silva Fortunato Martins L. a A. b. "Correlation between the Tunnelling Oxide and I-V Curves of MIS Photodiodes." Materials Research Society Symposium - Proceedings. Vol. 762. 2003. 217-222. Abstract

In this work we present results of a study performed on MIS diodes with the following structure: substrate (glass) / Cr (2000Å) / a-Si:H n + (400Å) / a-Si:H i (5500Å) / oxide (0-40Å) / Au (100Å) to determine the influence of the oxide passivation layer grown by different techniques on the electrical performance of MIS devices. The results achieved show that the diodes with oxides grown using hydrogen peroxide present higher rectification factor (2×106) and signal to noise (S/N) ratio (1×107 at -1V) than the diodes with oxides obtained by the evaporation of SiO2, or by the chemical deposition of SiO 2 by plasma of HMDSO (hexamethyldisiloxane), but in the case of deposited oxides, the breakdown voltage is higher, 30V instead of 3-10 V for grown oxides. The ideal oxide thickness, determined by spectroscopic ellipsometry, is dependent on the method used to grow the oxide layer and is in the range between 6 and 20 Å. The reason for this variation is related to the degree of compactation of the oxide produced, which is not relevant for applications of the diodes in the range of ± 1V, but is relevant when high breakdown voltages are required.

Ferreira, I.a, Costa Fortunato Martins M. E. V. b. "From porous to compact films by changing the onset conditions of HW-CVD process." Thin Solid Films. 427 (2003): 225-230. AbstractWebsite

Doped a/μc-Si:H films were produced in different starting deposition conditions by the hot wire chemical vapor deposition technique. In this paper, we show that by changing the initial onset deposition conditions of the process and maintaining the overall pressure, hydrogen dilution and filament temperature, it is possible to control the compactness of the films. As the films nucleation is the key parameter to produce compact films, we show that starting the process with hydrogen and progressively introducing the process gas enhances the compactness and improve the electrical properties of the films produced. © 2002 Elsevier Science B.V. All rights reserved.

Fortunato, E., Gonçalves Marques Assunção Ferreira Águas Pereira Martins A. A. V. "Gallium zinc oxide coated polymeric substrates for optoelectronic applications." Materials Research Society Symposium - Proceedings. Vol. 769. 2003. 291-296. Abstract

Highly transparent and conductive ZnO:Ga thin films were produced by rf magnetron sputtering at room temperature on polyethylene naphthalate substrates. The films present a good electrical and optical stability, surface uniformity and a very good adhesion to the polymeric substrates. The lowest resistivity obtained was 5×10-4 Ωcm with a sheet resistance of 15 Ω/sqr and an average optical transmittance in the visible part of the spectra of 80%. It was also shown that by passivating the polymeric surface with a thin SiO2 layer, the electrical and structural properties of the films are improved nearly by a factor of 2.

Fortunato, E., Gonçalves Assunção Marques Águas Pereira Ferreira Martins A. V. A. "Growth of ZnO:Ga thin films at room temperature on polymeric substrates: Thickness dependence." Thin Solid Films. 442 (2003): 121-126. AbstractWebsite

In this paper, we present results concerning the thickness dependence (from 70 to 890 nm) of electrical, structural, morphological and optical properties presented by gallium-doped zinc oxide (GZO) deposited on polyethylene naphthalate (PEN) substrates by r.f. magnetron sputtering at room temperature. For thicknesses higher than 300 nm an independent correlation between the electrical, morphological, structural and optical properties are observed. The lowest resistivity obtained was 5 × 10-4 Ω cm with a sheet resistance of 15 Ω/□ and an average optical transmittance in the visible part of the spectra of 80%. It is also shown that by passivating the surface of the polymer by depositing a thin silicon dioxide layer the electrical and structural properties of the films are improved nearly by a factor of two. © 2003 Elsevier B.V. All rights reserved.

Bender, M.a, Fortunato Nunes Ferreira Marques Martins Katsarakis Cimalla Kiriakidis E. b P. b. "Highly sensitive ZnO ozone detectors at room temperature." Japanese Journal of Applied Physics, Part 2: Letters. 42 (2003): L435-L437. AbstractWebsite

In this letter we compare the room temperature ozone sensing properties of intrinsic zinc oxide (ZnO) thin films deposited by spray pyrolysis, dc and r.f. magnetron sputtering. Their sensor response exceeds 8 orders of magnitude when the film structure is constituted by nanocrystallites. These preliminary results clearly demonstrate that the films could be potentially used for ozone detection at room temperature.

Assunção, V.a, Fortunato Marques Águas Ferreira Costa Martins E. a A. a. "Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature." Thin Solid Films. 427 (2003): 401-405. AbstractWebsite

Highly conducting and transparent gallium doped zinc oxide thin films have been deposited at high growth rates by r.f. magnetron sputtering at room temperature on inexpensive soda lime glass substrates. The argon sputtering pressure was varied between 0.15 and 2.1 Pa. The lowest resistivity was 2.6 × 10-4 Ω cm (sheet resistance ≈6 Ω/sq. for a thickness ≈600 nm) and was obtained at an argon sputtering pressure of 0.15 Pa and a r.f. power of 175 W. The films present an overall transmittance in the visible spectra of approximately 90%. The increase on the resistivity for higher sputtering pressures is due to a decrease of both, mobility and carrier concentration, and is associated to a change on the surface morphology. The low resistivity, accomplished with a high growth rate (290 Å/min) and with a room temperature deposition enables these films deposition onto polymeric substrates for flexible optoelectronic devices. © 2002 Elsevier Science B.V. All rights reserved.

i Águas, H.a, Silva Fortunato Lebib Roca Cabarrocas Ferreira Guimarães Martins V. a E. a. "Large Area Deposition of Polymorphous Silicon by Plasma Enhanced Chemical Vapor Deposition at 27.12 MHz and 13.56 MHz." Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. 42 (2003): 4935-4942. AbstractWebsite

This work presents for the first time a study on the deposition of polymorphous silicon at an excitation frequency of 27.12 MHz in a large-area plasma enhanced chemical vapor deposition (PECVD) reactor. Moreover, the films produced at 13.56 MHz were also investigated to compare their performance with that of the films produced at 27.12 MHz. The SiH4/H2 plasma was characterized by impedance probe measurements, aiming to identify the plasma conditions that lead to produce polymorphous films, under quasi-isothermal conditions. The films were characterized by spectroscopic ellipsometry, infrared absorption, Raman spectroscopy, and hydrogen exodiffusion experiments. These techniques enable a detailed structural characterization of the polymorphous films and a study of the differences between the films deposited at 27.12 MHz and 13.56 MHz. Conductivity measurements were also performed to determine the transport properties of the films. The results show that by using a 27.12 MHz frequency, the growth rate increased by 70% and a more stable, relaxed and denser structure was obtained.

Assunção, V., Fortunato Marques Gonçalves Ferreira Águas Martins E. A. A. "New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering." Thin Solid Films. 442 (2003): 102-106. AbstractWebsite

Gallium-doped zinc oxide films were prepared by r.f. magnetron sputtering at room temperature as a function of the substrate-target distance. The best results were obtained for a distance of 10 cm, where a resistivity as low as 2. 7 × 10-4 Ω cm, a Hall mobility of 18 cm2/Vs and a carrier concentration of 1.3 × 1021 cm-3 were achieved. The films are polycrystalline presenting a strong crystallographic c-axis orientation (002) perpendicular to the substrate. The films present an overall transmittance in the visible part of the spectra of approximately 85%, on average. © 2003 Elsevier B.V. All rights reserved.