Publications

Export 575 results:
Sort by: Author Title Type [ Year  (Asc)]
2001
Cabrita, A., Figueiredo Pereira Águas Silva Brida Ferreira Fortunato Martins J. L. H. "Thin film position sensitive detectors based on pin amorphous silicon carbide structures." Applied Surface Science. 184 (2001): 443-447. AbstractWebsite

The performances of silicon carbide position sensitive detectors in relation to position color selection applications were presented. The devices were deposited on glass substrates coated with a transparent conductive oxide layer based on indium tin oxide film (ITO). On top of the ITP layer a pin structure produced by plasma enhanced chemical vapor deposition technique was deposited. The set of data achieved indicated that the undoped silicon carbide layers presented a low density of states, which explained high dark conductivity values obtained and the type of performances recorded on the PSD devices produced.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Martins P. a A. a. "Zinc oxide thin films deposited by rf magnetron sputtering on mylar substrates at room temperature." Materials Research Society Symposium Proceedings. Vol. 685. 2001. 140-145. Abstract

Aluminium doped zinc oxide thin films (ZnO:Al) have been deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by r.f. magnetron sputtering. The structural, morphological, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface. The ZnO:Al thin films with 85% transmittance in the visible and infra-red region and a resistivity as low as 3.6×102 Ωcm have been obtained, as deposited. The obtained results are comparable to those ones obtained on glass substrates, opening a new field of low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices. © 2001 Materials Research Society.

2002
b b b b b b b Martins, R.a b, Figueiredo Silva Águas Soares Marques Ferreira Fortunato J. a V. a. "32 Linear array position sensitive detector based on NIP and hetero a-Si:H microdevices." Journal of Non-Crystalline Solids. 299-302 (2002): 1283-1288. AbstractWebsite

In this paper we present results concerning the performance exhibited by an integrated array of 32 one-dimensional amorphous silicon thin film position sensitive detectors based on nip and hetero amorphous silicon structures, with a total active area size below 1 cm2 linearity, its spatial resolution and response time, that make it one of the most interesting analog detector to be used in unmanned optical inspection control systems where a continuous detection process is required. This opens a wide range of applications for amorphous silicon devices in the area of image processing. © 2002 Elsevier Science B.V. All rights reserved.

Pereira, L.a, Brida Fortunato Ferreira Águas Silva Costa Teixeira Martins D. a E. a. "a-Si:H interface optimisation for thin film position sensitive detectors produced on polymeric substrates." Journal of Non-Crystalline Solids. 299-302 (2002): 1289-1294. AbstractWebsite

In this paper we present results concerning the optimisation of the electronic and mechanical properties presented by amorphous silicon (a-Si:H) thin films produced on polyimide (Kapton® VN) substrates with different thicknesses (25, 50 and 75 μm) by the plasma enhanced chemical vapour deposition (PECVD) technique. The purpose of this study is to obtain a low defect density as well as low residual stresses (specially at the interface) in order to provide good performances for large area (10 mm wide by 80 mm long) flexible position sensitive detectors. The electrical and optical properties presented by the films will be correlated to the sensor characteristics. The properties of samples have been measured by dark/photoconductivity, constant photocurrent measurements (CPM) and the results have been compared with films deposited on Corning 7059 glass substrates during the same run deposition. The residual stresses were measured using an active optical triangulation and angle resolved scattering. The preliminary results indicate that the thinner polymeric substrate with 25 μm presents the highest density of states, which is associated to the residual stresses and strains associated within the film. © 2002 Elsevier Science B.V. All rights reserved.

d Teixeira, V.a, Cui Meng Fortunato Martins H. N. a L. "Amorphous ITO thin films prepared by DC sputtering for electrochromic applications." Thin Solid Films. 420-421 (2002): 70-75. AbstractWebsite

Indium-Tin-Oxide (ITO) thin films were deposited on glass substrates using DC magnetron reactive sputtering at different bias voltages and substrate temperatures. Some improvements were obtained on film properties, microstructure and other physical characteristics for different conditions. Amorphous and polycrystalline films can be obtained for various deposition conditions. The transmission, absorption, spectral and diffuse reflection of ITO films were measured in some ranges of UV-Vis-NIR. The refractive index (n), Energy band gap Eg and the surface roughness of the film were derived from the measured spectra data. The carrier density (nc) and the carrier mobility (μ) of the film micro conductive properties were discussed. The films exhibited suitable optical transmittance and conductivity for electrochromic applications. © 2002 Elsevier Science B.V. All rights reserved.

Fortunato, E., Nunes Costa Brida Ferreira Martins P. D. D. "Characterization of aluminium doped zinc oxide thin films deposited on polymeric substrates." Vacuum. 64 (2002): 233-236. AbstractWebsite

We report, for the first time, results on transparent ZnO:Al thin films deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by magnetron sputtering. The structural, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (0 0 2) perpendicular to the substrate surface. The ZnO:Al thin films with 83% transmittance in the visible region and a resistivity as low as 3.6 × 10-2 Ωcm have been obtained, as deposited. The obtained results are comparable to those obtained on glass substrates, opening a new field of low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices. © 2002 Elsevier Science Ltd. All rights reserved.

c Almeida, P.L.a, Godinho Cidade Nunes Marques Martins Fortunato Figueirinhas M. H. a M. "Composite systems for flexible display applications from cellulose derivatives." Synthetic Metals. 127 (2002): 111-114. AbstractWebsite

In this work, we study the electro-optical behaviour of cellulose/liquid crystal-based composite systems, in particular the influence of the flexible substrates and its conductive layers in the electro-optical behaviour of these kind of cells. Four cells were made using, respectively, two different substrates (a flexible polymer (poly(ethylene terephthalate) (PET)) and a soda lime glass) and two different conductive layers (indium tin oxide (ITO) and aluminium zinc oxide (AZO)). The conductive layer (AZO) was deposited in both, flexible and rigid substrates, for the same conditions, and the same substrates coated with ITO are commercially available. The cells were prepared from solid films of hydroxypropylcellulose (HPC) (30 μm thick) cross linked with 1,4-diisocyanatobutane (BDI) (7% w/w) and the nematic liquid crystal E7 (Merck, UK). The four different substrates were electrically and morphologically characterised. We have analysed all samples by light transmission and determined the maximum transmission, contrast and Von. We show a comparison of the results obtained for both flexible and rigid cells and discuss them in terms of the proposed working mechanism for these systems. © 2002 Elsevier Science B.V. All rights reserved.

Ferreira, I., Cabrita Fortunato Martins A. E. R. "Composition and structure of silicon-carbide alloys obtained by hot wire and hot wire plasma assisted techniques." Vacuum. 64 (2002): 261-266. AbstractWebsite

In this work we present results concerning the composition and structure of intrinsic thin film silicon carbide alloys obtained by hot wire and hot wire plasma assisted techniques using ethylene as carbon gas source. The data show that by increasing the percentage of ethylene in the gas mixture from 14% to 60% the optical band gap is enhanced from 1.8 eV to 2.3 eV, for films produced by hot wire technique at a filament temperature of 2123K (1850°C). This is attributed to the increase of carbon incorporation, which was confirmed by the infrared spectra data where an increase is observed in the SiC stretching vibration mode ascribed to the peak located at around 750cm-1. On the other hand, the films produced by combining hot wire and rf plasma show a more efficient carbon incorporation. The SEM photographs of samples produced with hot wire technique reveal an amorphous structure, confirmed by micro-Raman spectroscopy data, while the samples produced with plasma assisting the process show a granular structure with grain sizes in the range of 100-200nm. © 2002 Elsevier Science Ltd. All rights reserved.

Fortunato, E.a, Brida Pereira Águas Silva Ferreira Costa Teixeira Martins D. a L. a. "Dependence of the strains and residual mechanical stresses on the performances presented by a-Si:H thin film position sensors." Advanced Engineering Materials. 4 (2002): 612-616. AbstractWebsite

The influence of residual stresses on the performances of large area position sensitive detectors produced on flexible substrates are presented here. For evaluating the residual stresses, two main techniques were used: An active optical triangulation and angle resolved scattering and the constant photocurrent method (CPM). From the results it was possible to correlate the stresses and the density of defects present in the films.

Nunes, P.a, Fortunato Tonello Braz Fernandes Vilarinho Martins E. a P. a. "Effect of different dopant elements on the properties of ZnO thin films." Vacuum. 64 (2002): 281-285. AbstractWebsite

In this work we studied the influence of the dopant elements and concentration on the properties of ZnO thin film deposited by spray pyrolysis. The results show that the doping affects the thin films properties mainly the electrical ones, function of dopant concentration and nature. The most important changes were observed for films doped with 1at% of indium which exhibit a resistivity of 1.9 × 10-1 Ωcm associated with a transmitance of 90%. After the annealing treatment, the resistivity of the film decreases to 5.9 × 10-3 Ωcm without significative changes in the optical properties. The films were also used to produce amorphous silicon solar cells where the best results were obtained for ZnO:In. © 2002 Elsevier Science Ltd. All rights reserved.

Martins, R., Ferreira Águas Silva Fortunato Guimarães I. H. V. "Engineering of a-Si:H device stability by suitable design of interfaces." Solar Energy Materials and Solar Cells. 73 (2002): 39-49. AbstractWebsite

Where a-Si:H pin devices are concerned, one of the main obstacles regarding improved performance is device stability, usually attributed to adverse behaviour at various interfaces within the device. Several attempts have been made to overcome this problem, such as the use of blocking layers at the interfaces. Although these have led to some improvements in device performance, most of the problems associated with device stability remain. This is mainly due to the defects at the interfaces, since the blocking layers (silicon alloys with carbon, nitrogen or oxygen) usually have a high density of bulk states, in comparison to intrinsic a-Si:H films. In this paper, we present a method that seems to be capable of improving device stability. It consists of performing a controlled removal of oxide interlayers at the interfaces, by an appropriate etching process. This enables the production of highly smoothed interfaces, and reduces possible cross-contamination of the i-layer from the adjacent doped layers. This amounts to a new design of typical pin devices, in which thin absorber layers are placed at the p/i and i/n interfaces. Their purpose is to trap most of the impurity atoms diffused from the doped layers, after which they are removed by appropriate etching. The fabrication of the absorbers (sacrificial layers), the nature of the etching and the tailoring of the defect profile at the interfaces will be discussed, including the performance exhibited by the resulting devices. © 2002 Elsevier Science B.V. All rights reserved.

Martins, R., Ferreira Fortunato I. E. "Growth model of gas species produced by the hot-wire and hot-wire plasma-assisted techniques." Key Engineering Materials. 230-232 (2002): 603-606. AbstractWebsite

The model presented is based on the heat transfer and energy balance equations that rule the set of physical and chemical interactions that take place on the gas phase of a growth process, assuming that the deposition process occurs under laminar dynamic flow conditions (Knudsen number below 1). In these conditions, the chemistry and physics of the process involved in the growth mechanism of silicon thin films produced by the hot wire or the hot-wire plasma assisted technique can be proper derived by balance equations that supply information about how the plasma density, the gas dilution and the gas temperature influence the growth mechanism and the equilibrium of the concentration of species presented on the growth surface. The model developed establishes a relation between the abundance species formed and the parameters initiators of the process such as the filament temperature and the rf power density used.

AÁguas, H., Fortunato Silva Pereira Martins E. V. L. "High quality a-Si:H films for MIS device applications." Thin Solid Films. 403 (2002): 26-29. AbstractWebsite

This work presents the I-V results of a-Si:H/SiOx/Pd MIS (metal-insulator-semiconductor) structures. The a-Si:H was deposited by non-conventional modified triode PECVD. This new configuration allows the deposition of high quality a-Si:H with a photosensitivity of 106, indicating the presence of low density of defects. Spectroscopic ellipsometry measurements revealed that these films are highly dense and present a very smooth surface so allowing a low defect interface between the Pd and the a-Si:H. As a result, we could make MIS photodiodes with barrier heights of 1.17 eV, which give a high reduction of the reverse dark current, an increase of the signal to noise ratio of 106 and an open circuit voltage VOC = 0.5 V. © 2002 Elsevier Science B.V. All rights reserved.

Fortunato, E., Nunes Marques Costa Águas Ferreira Costa Martins P. A. D. "Highly conductive/transparent ZnO:Al thin films deposited at room temperature by rf magnetron sputtering." Key Engineering Materials. 230-232 (2002): 571-574. AbstractWebsite

Transparent conducting ZnO:Al thin films have been deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by r.f. magnetron sputtering. The structural, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface. As deposited ZnO:Al thin films have an 85% transmittance in the visible and infra-red region and a resistivity as low as 3.6×10-2 Ωcm. The obtained results are comparable to those ones obtained on glass substrates, opening a new field for low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices.

Ferreira, I.a, Fortunato Martins Vilarinho E. a R. a. "Hot-wire plasma assisted chemical vapor deposition: A deposition technique to obtain silicon thin films." Journal of Applied Physics. 91 (2002): 1644-1649. AbstractWebsite

We have produced amorphous intrinsic silicon thin films by hot-wire plasma assisted chemical vapor deposition, a process that combines the traditional rf plasma and the recent hot-wire techniques. In this work we have studied the influence of hydrogen gas dilution and rf power on the surface morphology, composition, structure and electro-optical properties of these films. The results show that by using this deposition technique it is possible to obtain at moderate rf power and filament temperature, compact i-type silicon films with ημτ of the order of 10 -5cm 2V -1, without hydrogen dilution. © 2002 American Institute of Physics.

Águas, H., Fortunato Martins E. R. "Influence of a DC grid on silane r.f. plasma properties." Vacuum. 64 (2002): 387-392. AbstractWebsite

In this work we show that it is possible to control the plasma regime in the region close to the substrate in r.f. silane discharges. The PECVD reactor works in a modified triode configuration, where the control over the plasma regime is performed by polarising a grid electrode, placed close to the r.f. electrode, with a DC power source. Besides that, the DC grid allows also to control the energy of the ion bombardment, because the plasma potential will be a function of the voltage (Vpol) applied to the DC grid. The silane plasma was characterised with a Langmuir probe and an impedance probe. We were able to identify three plasma regimes in the region close to the substrate: γ′ regime for Vpol<0 V; γ′-α regime for 0 V<Vpol<40 V; and α regime for Vpol40 V. The γ′ regime is associated with a high concentration of dust particles in plasma and high electron energy (≈8eV), while the α regime is associated with a free dust plasma and low electron energy (≈2eV). The intermediate regime, γ′-α, is characterised by the presence of smaller particles (≈2-5nm) that can be beneficial for the film's properties. © 2002 Elsevier Science Ltd. All rights reserved.

Ferreira, I., Vilarinho Fernandes Fortunato Martins P. F. E. "Influence of hydrogen gas dilution on the properties of silicon-doped thin films prepared by the hot-wire plasma-assisted technique." Key Engineering Materials. 230-232 (2002): 591-594. AbstractWebsite

P- and n-type silicon thin films have been produced using a new hot wire plasma assisted deposition process that combines the conventional plasma enhanced chemical vapor deposition and the hot wire techniques. The films were produced in the presence of different hydrogen gas flow and their optoelectronic, structural and compositional properties have been studied. The optimized optoelectronic results achieved for n-type Si:H films are conductivity at room temperature of 9.4(Ωcm)-1 and optical band gap of 2eV while for p-type SiC:H films these values are 1 × 10-2(Ωcm)-1 and 1.6eV, respectively. The films exhibit the required optoelectronic characteristics and compactness for device applications such as solar cells.

Fantoni, A.a b, Viera Martins M. a R. b. "Influence of the intrinsic layer characteristics on a-Si:H p-i-n solar cell performance analysed by means of a computer simulation." Solar Energy Materials and Solar Cells. 73 (2002): 151-162. AbstractWebsite

In this paper a set of one-dimensional simulations of a-Si:H p-i-n junctions under different illumination conditions and with different intrinsic layer are presented. The simulation program ASCA permits the analysis of the internal electrical behaviour of the cell allowing a comparison among the different internal configurations determined by a change in the input set. Results about the internal electric configuration will be presented and discussed outlining their influence on the current tension characteristic curve. Considerations about the drift-diffusion and the generation-recombination balance distributions, outlined by the simulation, can be used to explain the correlation between the basic device output, the i-layer characteristics (thickness and DOS), the incident radiation intensity and photon energy. © 2002 Elsevier Science B.V. All rights reserved.

Águas, H., Martins Fortunato R. E. "Influence of the plasma regime on the structural, optical and transport properties of a-Si:H thin films." Key Engineering Materials. 230-232 (2002): 583-586. AbstractWebsite

In this work we show that it is possible to control the plasma species present near the substrate surface, from what is usually associated with an α regime (a plasma free of particles) to a γ' regime (a plasma where particles are present) and simultaneously control the energy of the ions striking the substrate during a-Si:H deposition from a silane glow discharge in a modified triode (MT) type PECVD reactor, where a DC mesh electrode biased with Vpol is located in front of the r.f electrode. The presence of large particles in the plasma leads to the deposition of the films with the poorest optoelectronic properties. When the particle size in the plasma decrease the film properties improve, but, when particles are no longer present in the plasma region close to the substrate, like in a α like regime, the properties of the films deteriorate again. The results show that the best transport properties are achieved for the films deposited in the α-γ' transition regime corresponding to 0V<Vpol<51V. Under this condition the films present a dark conductivity, σ d ≈ 10-11 (Ωcm)-1, photosensitivity, S ≈ 107, activation energy, ΔE ≈ 0.9 eV, hydrogen content, CH ≈ 10%, factor of microstructure, R ≈ 0.085 and an optical gap, Eop ≈ 1.77 eV.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Godinho Almeida Borges Martins P. a A. a. "Influence of the strain on the electrical resistance of zinc oxide doped thin film deposited on polymer substrates." Advanced Engineering Materials. 4 (2002): 610-612. AbstractWebsite

Tensile tests were performed on PET films coated with Al doped zinc oxide films by RF magnetron sputtering. During the tensile elongation, the electrical resistance of the oxide was evaluated in situ. The results indicate that the increase in the electrical resistance is related to the crack debsity and crack width, which also depends on the film thickness.

Kholkin, A.L.b, Martins Águas Ferreira Silva Smirnova Costa Vilarinho Fortunato Baptista R. a H. a. "Metal-ferroelectric thin film devices." Journal of Non-Crystalline Solids. 299-302 (2002): 1311-1315. AbstractWebsite

Ferroelectric and high dielectric permittivity films are currently being investigated in view of their use as gate dielectrics in MIS structures. Along with the suppression of tunnelling currents at small gate thickness, they provide a memory function to MIS structures, which can be used in non-volatile memory applications. In this work we report fabrication and characterization of novel metal-ferroelectric-amorphous silicon structures. The structures consist of glass/ITO substrates coated with PZT 20/80 films (sol-gel) followed by an active layer (i-a-SiC:H, deposited by plasma enhanced chemical vapor deposition (PECVD)). A strong capacitance hysteresis is observed in C-V curves in electron accumulation region (VG > 0), accompanied with a large increase in the capacitance of ferroelectric-semiconductor structures at low frequencies. Threshold voltage for electron accumulation is about 10 V being dependent on the ferroelectric polarization switching. © 2002 Elsevier Science B.V. All rights reserved.

Ferreira, I., Cabrita Braz Fernandes Fortunato Martins A. F. E. "Morphology and structure of nanocrystalline p-doped silicon films produced by hot wire technique." Vacuum. 64 (2002): 237-243. AbstractWebsite

In this paper we report results of nanocrystalline p-doped silicon films produced by hot wire chemical vapour deposition technique with Ta filaments, using a pre-mixed gas containing silane, diborane, methane, helium and hydrogen. The data obtained show that the films produced exhibit good optoelectronic properties and show a surface morphology dependent on the filament temperature and hydrogen dilution. The increase in the filament temperature, keeping constant the hydrogen dilution (87%), promotes the preferential growth of the crystals in the {220} direction, giving rise to a pyramidal-like surface structure. This behaviour is observed by the SEM micrographs as well as by the micro-Raman and X-ray diffraction analyses. On the other hand, using a constant filament temperature, the increase in the hydrogen dilution contributes to an increase in both {111} and {220} diffraction peaks. Thus, by combining both filament temperature and hydrogen dilution the film surface can be controlled from a smooth to a pyramidal-like structure, without decreasing the crystalline fraction of the films. The structure and morphology is also reflected in the stability of the electrical dark conductivity. We observe that this property depends on the temperature range of the measurements and on the exposition time of films to the atmospheric conditions. © 2002 Elsevier Science Ltd. All rights reserved.

Seiroco, H., Vincente Ferreira Fernandes Marvão Martins Fortunato Martins M. J. F. "New adhesion process based on lead-free solder applied in electronic power devices." Key Engineering Materials. 230-232 (2002): 92-95. AbstractWebsite

The aim of this paper is to present a set of electric data concerning the performances before and after ageing of Cu-Sn-Cu joins used to solder power diodes and to compare the results achieved with the ones obtained in diodes soldered using the conventional technology. The set of results achieved show that the Cu-Sn-Cu joins present even better performances than the ones exhibited by diodes soldered using the conventional technology, without requiring the use of Mo discs to be inserted between the silicon crystal and the metal contacts (stud or finger) to compensate thermal mismatches.

Brida, D., Fortunato Águas Silva Marques Pereira Ferreira Martins E. H. V. "New insights on large area flexible position sensitive detectors." Journal of Non-Crystalline Solids. 299 (2002): 1272-1276. AbstractWebsite

In this paper we present an improved version of large area (5 mm × 80 mm) flexible position sensitive detectors deposited on polyimide (Kapton® VN) substrates with 75 μm thickness, produced by plasma enhanced chemical vapor deposition (PECVD). The structures presented by the sensors are Kapton/ZnO:Al/(pin)a-Si:H/Al and the heterostructure Kapton/Cr/(in)a-Si:H/ZnO:Al. These sensors were characterized by spectral response, photocurrent dependence as a function of light intensity and position detectability measurements. The set of data obtained on one-dimensional position sensitive detectors based on the heterostructure show excellent performances with a maximum spectral response of 0.12 A/W at 500 nm and a non-linearity of ±10%. © 2002 Elsevier Science B.V. All rights reserved.

Kholkin, A.L., Iakovlev Fortunato Martins Ferreira Shvartsman Baptista S. E. R. "Optical and photoelectric properties of PZT films for microelectronic applications." Key Engineering Materials. 230-232 (2002): 563-566. AbstractWebsite

PbZrxTi1-xO3 (PZT) films are currently being investigated in view of their large switching polarization and piezoelectric coefficients useful for various applications. Besides, PZT films possess large photosensitivity, which, in combination with the above listed properties, can be a base for future microelectronic applications including photostrictive actuators and optical storage devices. In this work, PZT thin films of several compositions (x=0.2 and 0.45) were deposited on Pt-coated Si and ITO/glass substrates via modified sol-gel technique. Microstructures of the films were evaluated using XRD, SEM and AFM. The optical transmission measurements on PZT films deposited on ITO/glass revealed a high transparency over 80% and a band gap of about 3.4 eV. The observed photocurrent exhibited a maximum and was attributed to band-to-band optical transitions.