Ferreira, I.M.M., Martins Cabrita Fortunato Vilarinho R. F. P. A. "
Nanocrystalline undoped silicon films produce by hot wire plasma assisted technique."
Materials Research Society Symposium - Proceedings. Vol. 609. 2000. A2241-A2246.
AbstractIn this work, we show results concerning electro-optical properties, composition and morphology of nanocrystalline hydrogenated undoped silicon (nc-Si:H) films produced by hot wire plasma assisted chemical vapour deposition process (HWPA-CVD) and exhibiting a compact granular structure, as revealed by SEM micrographs. This was also inferred by infrared spectra, which does not present the SiO vibration band located at 1050-1200 cm-1, even when samples have long atmospheric exposition. The photoconductivity measured at room temperature also does not change when samples have a long time exposition to the air or to the light irradiation. The influence of hydrogen dilution on the properties of the films was also investigated.
Ferreira, I., Aguas Mendes Fernandes Fortunato Martins H. L. F. "
Performances of nano/amorphous silicon films produced by hot wire plasma assisted technique."
Materials Research Society Symposium - Proceedings. Vol. 507. 1999. 607-612.
AbstractThis work reports on the performances of undoped and n doped amorphous/nano-crystalline silicon films grown by hot wire plasma assisted technique. The film's structure (including the presence of several nanoparticles with sizes ranging from 5 nm to 50 nm), the composition (oxygen and hydrogen content) and the transport properties are highly dependent on the filament temperature and on the hydrogen dilution. The undoped films grown under low r.f. power (≈4 mWcm-2) and with filament temperatures around 1850 °K have dark conductivities below 10-10 Scm-1, optical gaps of about 1.5 eV and photo-sensitivities above 105, (under AM1.5), with almost no traces of oxygen content. N-doped silicon films were also fabricated under the same conditions which attained conductivities of about 10-2 Scm-1.
Fortunate, E., Gonçalves De Carvalho Pimentel Lavareda Marques Martins A. C. N. "
Enhancement of the electrical properties of ITO deposited on polymeric substrates by using a ZnO buffer layer."
Materials Research Society Symposium Proceedings. Vol. 814. 2004. 231-236.
AbstractIn this paper we present the effect of the insertion of a non-doped nanocrystalline zinc oxide/buffer layer on the electrical, optical and structural properties of indium tin oxide produced at room temperature by radio frequency plasma enhanced reactive thermal evaporation on polymeric substrates. The electrical resistivity of the ITO films is reduced by more than two orders of magnitude (4.5×10-1 to 2.9×10-3 Ωcm). From the Hall effect measurements it is observed that the large decrease associated to the electrical resistivity, is due to the increase associated to the Hall mobility. Concerning the optical properties no effect was observed, being the transmittance in the visible and near the infra red region always higher than 80%.
Fortunate, E., Assunção Marques Ferreira Águas Pereira Martins V. A. I. "
Characterization of transparent and conductive ZnO:Ga thin films produced by rf sputtering at room temperature."
Materials Research Society Symposium - Proceedings. Vol. 763. 2003. 225-230.
AbstractGallium-doped zinc oxide films were prepared by rf magnetron sputtering at room temperature as a function of the substrate-target distance. The best results were obtained for a distance of 10 cm, where a resistivity as low as 2.7×10-4 Ωcm, a Hall mobility of 18 cm2/Vs and a carrier concentration of 1.3×1021 cm-3 were achieved. The films are polycrystalline presenting a strong crystallographic c-axis orientation (002) perpendicular to the substrate. The films present an overall transmittance in the visible part of the spectra of about 85 %, in average. The low resistivity, accomplished with a high growth rate deposited at RT, enables the deposition of these films onto polymeric substrates for flexible applications.
Fortunate, E.a, Ferreira Giuliani Wurmsdobler Martins I. a F. a. "
New ultra-light flexible large area thin film position sensitive detector based on amorphous silicon."
Journal of Non-Crystalline Solids. 266-269 B (2000): 1213-1217.
AbstractIn this paper we report on large area one dimensional (1D) amorphous silicon position sensors deposited on flexible polymer foil substrate. The pin sensor structure was deposited by rf plasma enhanced chemical vapour deposition (PECVD). For the electrical and optical characterisation the sensors have been mounted on a convex holder with a 14-mm radius-of-curvature, since the main goal of this work is to develop a flexible position sensor to be incorporated in a micromotor in order to measure its angular velocity continuously. The obtained sensors present adequate performances concerning the position non-linearity (±1% in 20 mm length), comparable to those fabricated on glass substrates. © 2000 Elsevier Science B.V. All rights reserved.
Fortunato, E., Soares Lavareda Martins F. G. R. "
A linear array thin film position sensitive detector for 3D measurements."
Journal of Non-Crystalline Solids. 198-200 (1996): 1212-1216.
AbstractA novel compact linear thin film position sensitive detector with 128 elements, based on p-i-n a-Si:H devices was developed. The proper incorporation of this sensor into an optical inspection camera makes possible the acquisition of three dimension information of an object, using laser triangulation methods. The main advantages of this system, when compared with the conventional charge-coupled devices, are the low complexity of hardware and software used and that the information can be continuously processed (analogue detection).
Fortunato, E., Barquinha Pimentel Gonçalves Pereira Marques Martins P. A. A. "
Next generation of thin film transistors based on zinc oxide."
Materials Research Society Symposium Proceedings. Vol. 811. 2004. 347-352.
AbstractWe report high performance ZnO thin film transistor (ZnO-TFT) fabricated by rf magnetron sputtering at room temperature with a bottom gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 19 V, a field effect mobility of 28 cm2/Vs, a gate voltage swing of 1.39 V/decade and an on/off ratio of 3×105. The ZnO-TFT present an average optical transmission (including the glass substrate) of 80% in the visible part of the spectrum. The combination of transparency, high field-effect mobility and room temperature processing makes the ZnO-TFT a very promising low cost optoelectronic device for the next generation of invisible and flexible electronics.
Fortunato, E.a, Malik Sêco Ferreira Martins A. a A. b. "
Amorphous silicon sensors: From photo to chemical detection."
Journal of Non-Crystalline Solids. 227-230 (1998): 1349-1353.
AbstractThis paper reports the performances of metal/insulator/semiconductor devices, simultaneously sensitive to hydrogen and to the visible region of the spectrum. The sensors used in this work are based on glass/Cr/a-SiH(n+)/a-Si:H(i)/SiOx/Pd structures, where the amorphous silicon was deposited by conventional r.f. techniques and the oxide grown thermally (in air) or chemically (in hydrogen peroxide). The proposed sensors present a response of ∼ 3 orders of magnitude change in the saturation current when in the presence of 400 ppm of hydrogen and an open circuit voltage that decreases in the presence of hydrogen, with a maximum spectral response at 500 nm. These sensors were also compared with equivalent crystalline silicon devices whose oxides were prepared exactly in the same conditions as the ones used for the a-Si:H devices. © 1998 Elsevier Science B.V. All rights reserved.