Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T [U] V W X Y Z   [Show ALL]
U
Ferreira, I., Carvalho Martins J. R. "Undoped and doped crystalline silicon films obtained by Nd-YAG laser." Thin Solid Films. 317 (1998): 140-143. AbstractWebsite

In this paper, we present results of the role of laser beam energy and shot density on the electro-optical and structural properties of undoped and doped recrystallized amorphous silicon thin films, generated by pulsed Nd-YAG laser (λ = 532 nm). The data reveal that the structure and electrical characteristics of the recrystallized thin films are mainly dependent on the energy and shot density of the laser beam, while the morphology of the obtained films are mainly governed by the number of shots used. The data also show that the electrical conductivity of undoped and doped recrystallized films can be varied up to 6 orders of magnitude, by the proper choice of the recrystallization conditions. Doped samples with conductivities in the amorphous states in the range of 10-5 Ω-1 cm-1 present, after recrystallization, conductivities of about 300 Ω-1 cm-1. The SEM micro-chemical analysis also shows that the obtained crystalline grains are constituted by pure silicon. © 1998 Elsevier Science S.A.

Danciu, A.-I..a b, Musat Busani Pinto Barros Maria Rego Maria Ferraria Carvalho Martins Fortunato V. a T. b. "Uniform arrays of ZnO 1D nanostructures grown on Al:ZnO seeds layers by hydrothermal method." Journal of Nanoscience and Nanotechnology. 13 (2013): 6701-6710. AbstractWebsite

In obtaining uniform array of ZnO 1D nanostructures, especially using solution based methods, the thickness and the morphology of the epitaxial seeds layer are very important. The paper presents the effect of the thickness and the morphology of the Al:ZnO seeds layer on the morphology and properties of ZnO nanowires array grown by hydrothermal method. Compact and vertically aligned ZnO 1D nanostructures were obtained. Concentration of 0.02 M of zinc nitrate was found to be optimal for growing nanowires with diameters up to 50 nm and lengths between 1.5 and 2.5 microns. Using 0.04 M solution, nanorods with diameter between 50 and 100 nm were obtained. The correlation between the crystal structure and optical properties of ZnO nanowires is discussed. From electrical measurements on single nanowire, resistivity value of 9×10?2 cm was obtained. The I-V curves of single ZnO NWs show quasi diode characteristic when an e-beam is irradiating the NWs, and a typical semiconductive behaviour when the e-beam is turned off. Copyright © 2013 American Scientific Publishers.

c Gonçalves, G.a, Pimentel Fortunato Martins Queiroz Bianchi Faria A. a E. a. "UV and ozone influence on the conductivity of ZnO thin films." Journal of Non-Crystalline Solids. 352 (2006): 1444-1447. AbstractWebsite

Complex impedance measurements were used to analyze the influence of ultraviolet and ozone gas on the electronic behaviour of ZnO films grown by rf magnetron sputtering. The data show that UV exposure strongly increases the ac conductivity of the film at very low frequencies, and that after ozone exposure it recovers the original value. At high frequencies, however, UV-light exposure it does not change the conductivity but the ozone acts in the sense to decrease it. Two distinct mechanisms, related to two relaxation time distributions are clearly observed: they are superimposed in the virgin sample, but they split forming two semicircles in the z″(f) - z′(f) diagrams when the samples are treated with UV and/or ozone gas. A combination of the bruggeman effective medium approximation (BEMA) with the random free energy barrier model is used to fit the data and to explain the ac conductivity variation phenomena observed. © 2006 Elsevier B.V. All rights reserved.

Malik, A., Martins R. "UV enhanced and solar blind photodetectors based on large-band-gap materials." Materials Science Forum. 258-263 (1997): 1425-1430. AbstractWebsite

High quantum efficiency, UV-enhanced monocrystalline zinc sulphide optical sensors for precise radiometric and spectroscopic measurements have been developed by spray deposition of heavy fluorinedoped tin oxide thin films with carrier concentration near 1021 cm-3 onto the surface of zinc sulphide monocrystals as an alternative to the UV-enhanced silicon photodetectors as well as to new detectors based on SiC and GaN. The fabricated sensors have an unbiased internal quantum efficiency that was nearly 100% from 250 to 320 nm, and the typical sensitivity at 290 nm is 0.15 A/W. The sensors were insensitive to solar radiation in earth's conditions and can be used as solar blind photodetectors for precision UV-measurements under direct solar illumination, both terrestrial and space applications.