Publications

Export 56 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
P
Barquinha, P., Pereira Gonçalves Martins Fortunato L. G. R. "P-202L: Late-news poster: Long-term stability of oxide semiconductor-based TFTs." 48th Annual SID Symposium, Seminar, and Exhibition 2010, Display Week 2010. Vol. 3. 2010. 1376-1379. Abstract

Long-term electrical stability measurements, including current/bias stress and aging over 18 months of idle shelf life are presented for GIZO-based TFTs. The effects of oxygen partial pressure, annealing temperature and passivation are discussed. Optimized devices show highly stable properties, such as a recoverable ΔVT<0.5 V after 24h of 1D=10 μA stress, quite promising for integration in electronic circuits.

Barquinha, P., Pereira Gonçalves Martins Fortunato L. G. R. "P-202L: Late-news poster: Long-term stability of oxide semiconductor-based TFTs." Digest of Technical Papers - SID International Symposium. Vol. 41 1. 2010. 1376-1379. Abstract

Long-term electrical stability measurements, including current/bias stress and aging over 18 months of idle shelf life are presented for GIZO-based TFTs. The effects of oxygen partial pressure, annealing temperature and passivation are discussed. Optimized devices show highly stable properties, such as a recoverable ΔV T<0.5 V after 24h of I D=10 μA stress, quite promising for integration in electronic circuits. © 2010 SID.

b Figueiredo, V.a, Elangovan Barros Pinto Busani Martins Fortunato E. a R. a. "P-Type Cu x films deposited at room temperature for thin-film transistors." IEEE/OSA Journal of Display Technology. 8 (2012): 41-47. AbstractWebsite

Thin-films of copper oxide Cu x were sputtered from a metallic copper (Cu) target and studied as a function of oxygen partial pressure. A metallic Cu film with cubic structure obtained from 0% O PP has been transformed to cubic Cu x phase for the increase in O PP to 9% but then changed to monoclinic CuO phase (for. The variation in crystallite size (calculated from x-ray diffraction data) was further substantiated by the variation in grain size (surface microstructures). The Cu x films produced with O PP ranging between 9% and 75% showed p-type behavior, which were successfully applied to produce thin-film transistors. © 2006 IEEE.

b b b b b Figueiredo, V.a b, Pinto Deuermeier Barros Alves Martins Fortunato J. V. a J. "P-Type CuxO thin-film transistors produced by thermal oxidation." IEEE/OSA Journal of Display Technology. 9 (2013): 735-740. AbstractWebsite

Thin-films of copper oxide Cu O were produced by thermal oxidation of metallic copper (Cu) at different temperatures (150-450 C). The films produced at temperatures of 200, 250 and 300 C showed high Hall motilities of 2.2, 1.9 and 1.6 cm V s , respectively. Single Cu O phases were obtained at 200 C and its conversion to CuO starts at 250 C. For lower thicknesses 40 nm, the films oxidized at 250 C showed a complete conversion to CuO phase. Successful thin-film transistors (TFTs) were produce by thermal oxidation of a 20 nm Cu film, obtaining p-type Cu O (at 200 C) and CuO (at 250 C) with On/Off ratios of 6 10 and 1 10 , respectively. © 2005-2012 IEEE.

b Martins, R.a, Figueiredo Barros Barquinha Gonçalves Pereira Ferreira Fortunato V. a R. a. "P-type oxide-based thin film transistors produced at low temperatures." Proceedings of SPIE - The International Society for Optical Engineering. Vol. 8263. 2012. Abstract

P-type thin-film transistors (TFTs) using room temperature sputtered tin and copper oxide as a transparent oxide semiconductor have been produced on rigid and paper substrates. The SnO x films shows p-type conduction presenting a polycrystalline structure composed with a mixture of tetragonal β-Sn and α-SnO x phases, after annealing at 200°C. These films exhibit a hole carrier concentration in the range of ≈ 10 16-10 18 cm -3, electrical resistivity between 101-102 Ωcm, Hall mobility of 4.8 cm 2/Vs, optical band gap of 2.8 eV and average transmittance ≈ 85 % (400 to 2000 nm). Concerning copper oxide Cu xO thin films they exhibit a polycrystalline structure with a strongest orientation along (111) plane. The Cu xO films produced between an oxygen partial pressure of 9 to 75% showed p-type behavior, as it was measured by Hall effect and Seebeck measurements. The bottom gate p-type SnO x TFTs present field-effect mobility above 1.24 cm 2/Vs (including the paper p-type oxide TFT) and an on/off modulation ratio of 10 3 while the Cu xO TFTs exhibit a field-effect mobility of 1.3×10 -3 cm 2/Vs and an on/off ratio of 2×10 2. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Golshahi, S.a, Rozati Martins Fortunato S. M. a R. "P-type ZnO thin film deposited by spray pyrolysis technique: The effect of solution concentration." Thin Solid Films. 518 (2009): 1149-1152. AbstractWebsite

The aim of this research is to study the role of concentration variations on precursor solution of nitrogen doped ZnO (ZnO:N) thin films which has been prepared by spray pyrolysis technique. SEM micrographs show that ZnO:N films in 0.1 ML concentration have a mono-disperse surface with nano-spheres of 50 nm in diameter. In higher molarities the nano-spheres agglomerate leading to particle formation. For 0.4 ML concentrations this change is observed, where plume like particles are seen over the surface of ZnO:N thin film. This change corresponds also to changes observed in the XRD spectra, where crystal orientation of ZnO:N thin films changes from (002) to (100). All of the ZnO:N thin films have kept their sharp ultra violet absorption edge, but the transparency in visible spectra region decreases as the molarities in precursor solution increase. Photoluminescence spectra at room temperature revealed emissions at 2.33 eV, 2.54 eV and 3.16 eV that can be attributed to the presence of nitrogen in ZnO structure. We also observe that all samples analyzed show a p-type Hall effect behavior, and that as the molarities in the precursor solution increase, the electrical resistivity of the films decreases, due to an enhancement of free carriers, while the mobility decreases. These data prove the capability of spray pyrolysis as a viable technique in preparing p-type TCO materials and so, fully transparent CMOS-like devices. © 2009 Elsevier B.V. All rights reserved.

Martins, R.a, Pereira Fortunato L. b E. c. "Paper electronics: A challenge for the future." Digest of Technical Papers - SID International Symposium. Vol. 44. 2013. 365-367. Abstract

In this paper we report results concerning the use of paper as substrate and as an electronic component for the next generation of sustainable low cost electronic systems, where different examples of applications are given. © 2013 Society for Information Display.

b Fortunato, E.a, Correia Barquinha Costa Pereira Gonçalves Martins N. a P. a. "Paper field effect transistor." Proceedings of SPIE - The International Society for Optical Engineering. Vol. 7217. 2009. Abstract

In this paper we report the use of a sheet of cellulose fiber-based paper as the dielectric layer used in oxide based semiconductor thin film field-effect transistors (FETs). In this new approach we are using the cellulose fiber-based paper in an "interstate" structure since the device is build on both sides of the cellulose sheet. Such hybrid FETs present excellent operating characteristics such as high channel saturation mobility (>30 cm 2/Vs), drain-source current on/off modulation ratio of approximately 104, near-zero threshold voltage, enhancement n-type operation and sub-threshold gate voltage swing of 0.8 V/decade. The cellulose fiber-based paper FETs characteristics have been measured in air ambient conditions and present good stability. The obtained results outpace those of amorphous Si TFTs and rival with the same oxide based TFTs produced on either glass or crystalline silicon substrates. The compatibility of these devices with large-scale/large-area deposition techniques and low cost substrates as well as their very low operating bias delineates this as a promising approach to attain high-performance disposable electronics like paper displays, smart labels, smart packaging, RFID and point-of-care systems for self analysis in bio-applications, among others. © 2009 SPIE.

Courteille, C.a, Hollenstein Ch.a Dorier Gay Schwarzenbach Howling Bertran Viera Martins Macarico J. - L. a. "Particle agglomeration study in in silane plasmas: In situ study by polarization-sensitive laser light scattering." Journal of Applied Physics. 80 (1996): 2069-2078. AbstractWebsite

To determine self-consistently the time evolution of particle size and their number density in situ multi-angle polarization-sensitive laser light scattering was used. Cross-polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135° and ex situ transmission electronic microscopy analysis demonstrate the existence of nonspherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross-polarization intensities is accompanied by low-frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian free molecule coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian free molecule coagulation model including a log-normal particle size distribution. © 1996 American Institute of Physics.

Oliveira, M.a, Liang Almeida Vistas Gonçalves Martins D. a J. a. "A path to renewable Mg reduction from MgO by a continuous-wave Cr:Nd:YAG ceramic solar laser." Solar Energy Materials and Solar Cells. 155 (2016): 430-435. AbstractWebsite

The first successful ablation of magnesium oxide through a home-made continuous-wave Cr:Nd:YAG ceramic solar laser is reported. A stationary heliostat-parabolic mirror solar energy collection and concentration system was used. A stable continuous-wave laser output power of 19.2 W was attained with laser beam brightness figure of merit 7.6 times higher than that of the previous scheme, enabling therefore the direct ablation of pure magnesium by our solar-pumped laser with only 1.6 m2 effective collection area. This could be an important step towards renewable magnesium production, offering multiple advantages, such as reducing agent avoidance, in relation to that of the previous Fresnel lens Cr:Nd:YAG continuous-wave solar laser system. © 2016 Elsevier B.V.

Barquinha, P.a, Pereira Gonçalves Martins Kuščer Kosec Fortunato L. b G. a. "Performance and stability of low temperature transparent thin-film transistors using barrieramorphous multicomponent dielectrics." Journal of the Electrochemical Society. 156 (2009): H824-H831. AbstractWebsite

High performance transparent thin-film transistors deposited on glass substrates and entirely processed at a low temperature not exceeding 150°C are presented and analyzed in this paper. Besides being based on an amorphous oxide semiconductor, the main innovation of this work relies on the use of sputtered multicomponent oxides as dielectric materials based on mixtures of Ta2O5 with SiO2 or Al2O3. These multicomponent dielectrics allow to obtain amorphous structures and low leakage currents while preserving a high dielectric constant. This results in transistors with remarkable electrical properties, such as field-effect mobility exceeding 35 cm2 V-1 s-1, close to 0 V turn-on voltage, on/off ratio higher than 106, and a subthreshold slope of 0.24 V decade-1, obtained with a Ta2O5: SiO2 dielectric. When subjected to severe current stress tests, optimized devices show little and reversible variation in their electrical characteristics. The devices presented here have properties comparable to the ones using plasma-enhanced chemical vapor deposited SiO2 at 400°C, reinforcing the success of this amorphous multicomponent dielectric approach for low temperature, high performance, and transparent electronic circuits. © 2009 The Electrochemical Society.

Cabrita, A., Figueiredo Pereira Silva Brida Fortunato Martins J. L. V. "Performance of a-Six:C1-x:H Schottky barrier and pin diodes used as position sensitive detectors." Journal of Non-Crystalline Solids. 299 (2002): 1277-1282. AbstractWebsite

Position sensitive detectors (PSD) using hydrogenated amorphous silicon as the active layer have been widely proposed either with the p-i-n or the Schottky structure. In this case, the devices are tailored to respond to light in the range 620-650 nm. Little is known about the use of silicon carbide active layers in such devices, which is important when the detected light is in the blue region of the light spectrum. In this paper we present for the first time the electro-optical properties of the a-Six:C1-x:H/Pd and p-ic-n PSD, using a-Six:C1-x:H layers deposited by plasma enhanced chemical vapour deposition (PECVD). These sensors are able to distinguish the wavelength of the impinging visible radiation (from red to blue light). In addition, the sensors respond to light intensities as lower as 1 × 10-6 W cm-2 with a resolution better than 0.04 mm and a linearity between ±0.12% and ±0.8%. © 2002 Elsevier Science B.V. All rights reserved.

Baía, I.a, Quintela Mendes Nunes Martins M. b L. a. "Performances exhibited by large area ITO layers produced by r.f. magnetron sputtering." Thin Solid Films. 337 (1999): 171-175. AbstractWebsite

This work refers to the main electro-optical characteristics exhibited by large area indium tin oxide films (300 × 400 mm) produced by r.f. magnetron sputtering under different oxygen concentrations and deposition pressures. Besides that, the ageing effect on the electro-optical characteristics of the films produced was also analyzed. The results achieved show that the film transparency and conductivity were highly improved (more than four orders of magnitude) by first annealing them in air at 470°C, followed by a reannealed stage under vacuum, in a hydrogen atmosphere, at 350°C. The ageing tests show that film degradation occurs when the films are produced at oxygen concentrations above 10% and/or at deposition pressures above 1.2 × 10-2 mbar. © 1999 Elsevier Science S.A. All rights reserved.

Martins, R., Ferreira Fernandas Fortunato I. B. E. "Performances of a-Si:H films produced by hot wire plasma assisted technique." Vacuum. 52 (1999): 203-208. AbstractWebsite

This work reports on the performances of undoped and doped amorphous/nanocrystalline silicon films grown by hot wire plasma assisted technique. The structure (including the presence of several nanoparticles with sizes ranging from 5 nm to 50 nm), composition (oxygen and hydrogen content) and transport properties of the films are highly dependent on the temperature of the filament and on the hydrogen dilution. The undoped films grown under low r.f. power (≈4mWcm-2) and filament temperatures around 1850 K present dark conductivities below 10-10 Scm-1, optical gaps of about 1.6 eV and photosensitivities above 105, (under AM 1.5 light intensities), with almost no traces of oxygen content. For the n- and the p-doped silicon films also fabricated under the same conditions the conductivities obtained are of about 10-2Scm-1 and 10-5Scm-1, respectively. © 1998 Elsevier Science Ltd. All rights reserved.

c c Martins, N.a, Canhola Quintela Ferreira Raniero Fortunato Martins P. a M. b. "Performances of an in-line PECVD system used to produce amorphous and nanocrystalline silicon solar cells." Thin Solid Films. 511-512 (2006): 238-242. AbstractWebsite

This paper presents the performances of an in-line plasma enhanced chemical vapor deposition system constituted by 5 chambers and one external unloaded chamber used in the simultaneous manufacturing of 4 large (30 cm × 40 cm) solar cells deposited on glass substrates. The system is fully automatically controlled by a Programmable Logic Controller using a specific developed software that allows devices mass production without losing the flexibility to perform process innovations according to the industrial requests, i.e. fast and secure changes and optimizations. Overall, the process shift is of about 15 min per each set of 4 solar cells. Without a buffer layer, solar cells with efficiencies of about 9% were produced by the proper tuning of the i-layer production conditions. © 2005 Elsevier B.V. All rights reserved.

Fortunato, E.a, Teodoro Silva Ferreira Nunes Guimarães Soares Giuliani Popovic Brener Martins P. a V. a. "Performances of an optical ruler based on one-dimensional hydrogenated amorphous Si position-sensitive detectors produced using different metal contacts." Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties. 80 (2000): 765-774. AbstractWebsite

The aim of this work is to determine the role of different metal contacts on the performances of one-dimensional thin-film position-sensitive detectors produced by plasma-enhanced chemical vapour deposition, to be used in optical rulers for alignment applications. The device consists on an indium tin oxide/p-i-n structure where the metal contacts used were based on Al, Al + Cu and Ag. The results achieved show that the contact mainly influences the final sensor range by limiting the magnitude of the analogue signals recorded. In spite of soldering problems the Al contact was the contact that lead to better discrimination of the sensor, with a nonlinearity of ±0.8% and a fall-off parameter of 3.2 × 10-3 cm-1. The Al + Cu contact also exhibits good performances (nonlinearity, of ±1.1%; fall-off parameter, 1.4 × 10-2 cm-1) and should be chosen since it is much easier to solder but requires protection against oxidation. The integration of these sensors on the optical ruler lead to the production of a system with a response time below 0.5 ms, an accuracy better than ±1% and a mechanical precision of better than 0.25 mm in 100 mm, with a full-scale noise below ±0.1%.

Pereira, L., Marques Águas Nedev Georgiev Fortunato Martins A. H. N. "Performances of hafnium oxide produced by radio frequency sputtering for gate dielectric application." Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 109 (2004): 89-93. AbstractWebsite

The search for new dielectric materials to be used in metal-insulator- semiconductor (MIS) structures to replace the silicon oxide (SiO2) has been growing up. The aim is to have materials with high dielectric constants that could allow the use of thicker films and so, to reduce the role of leakage currents that happens in devices using very thin SiO2 layers or to allow the MIS devices to support high currents, besides having a retain memory effect. In this work, we present data concerning the production of hafnium oxide (HfO2) thin films by radio frequency (rf) sputtering that present suitable characteristics to be used as a gate dielectric, taking advantage of its high dielectric constant and stoichiometry reached under certain deposition conditions. Data concerning the role of the deposition parameters in the films structure and in the electrical properties of the films produced using capacitance-voltage (C-V) and current-voltage (I-V) measurements will be shown, together with data concerning the degree of films' compactness measured by spectroscopic ellipsometry (SE). © 2003 Elsevier B.V. All rights reserved.

Parthiban, S., Elangovan Nayak Gonçalves Nunes Pereira Barquinha Busani Fortunato Martins E. P. K. "Performances of microcrystalline zinc tin oxide thin-film transistors processed by spray pyrolysis." IEEE/OSA Journal of Display Technology. 9 (2013): 825-831. AbstractWebsite

In this work, we report results concerning the performances of thin-film transistors (TFTs) where the channel layer is based on microcrystalline zinc tin oxide (ZTO) processed by spray pyrolysis technique. TFTs made with 30 nm thick ZTO channel layer deposited at a substrate temperature of 400 C and 300 Cexhibited, respectively, a saturation mobility of 2.9 cm V s and 1.45 cm V s ; voltage of 0.15 V, and 0.2 V; a sub-threshold swing of 400 mV/dec and 500 mV/dec; ON/OFF ratio at the onset of hard saturation current of 3.5 10 and 6 10 , for a drain to source voltage of 10 V (close to or below the gate to source voltage). This indicates that the substrate temperature is relevant in determining the devices' electronic performances. © 2013 IEEE.

Ferreira, I., Aguas Mendes Fernandes Fortunato Martins H. L. F. "Performances of nano/amorphous silicon films produced by hot wire plasma assisted technique." Materials Research Society Symposium - Proceedings. Vol. 507. 1999. 607-612. Abstract

This work reports on the performances of undoped and n doped amorphous/nano-crystalline silicon films grown by hot wire plasma assisted technique. The film's structure (including the presence of several nanoparticles with sizes ranging from 5 nm to 50 nm), the composition (oxygen and hydrogen content) and the transport properties are highly dependent on the filament temperature and on the hydrogen dilution. The undoped films grown under low r.f. power (≈4 mWcm-2) and with filament temperatures around 1850 °K have dark conductivities below 10-10 Scm-1, optical gaps of about 1.5 eV and photo-sensitivities above 105, (under AM1.5), with almost no traces of oxygen content. N-doped silicon films were also fabricated under the same conditions which attained conductivities of about 10-2 Scm-1.

Nunes, P., Marques Fortunato Martins A. E. R. "Performances presented by large area ZnO thin films deposited by spray pyrolysis." Materials Research Society Symposium Proceedings. Vol. 685. 2001. 152-157. Abstract

In this work we present the results of a study on the uniformity of ZnO thin films produced by spray pyrolysis. The properties of the thin films depend essentially on the carrier gas pressure and gas flow used. The best films for optoelectronic applications were obtained with a carrier gas pressure of 2 bar and solution flow of 37 ml/min. The velocity of the nozzle affects essentially the uniformity of the ZnO thin films. However this important characteristic of the large area thin films is independent of the nature (doped and undoped) of the thin film and exhibits a high dependence on the variation of the temperature along the substrate. © 2001 Materials Research Society.

Fortunato, E., Lavareda Scares Martins G. F. R. "Performances presented by large-area thin film position-sensitive detectors based on amorphous silicon." Thin Solid Films. 272 (1996): 148-156. AbstractWebsite

This paper presents a low-cost technology for the realisation of large-area thin film position-sensitive detectors using the a-Si:H technology. The obtained results are quite promising regarding the application of these sensors to a wide variety of optical inspection systems, such as: machine tool alignment and control; angle measuring; rotation monitoring; surface profiling; medical instrumentation; targeting; remote optical alignment; guidance systems; etc., to which automated inspection control is needed.

Nunes, P., Costa Fortunato Martins D. E. R. "Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering." Vacuum. 64 (2002): 293-297. AbstractWebsite

In this work, we report the electro-optical properties exhibited by ZnO:A1 thin films deposited by r.f. magnetron sputtering. The effect of the deposition parameters on the properties of the films were studied with the aim to determine the most suitable deposition conditions to obtain ZnO:Al thin films with a low resistivity and high transmittance, characteristics required for applications on optoelectronic devices. After annealing, the ZnO:Al thin films present a low resistivity (6.25 × 10-3 Ωcm) and a high transmittance (90%) when produced with a deposition pressure of 1.6 × 10-2 mbar and r.f. power of 150W. © 2002 Elsevier Science Ltd. All rights reserved.

Nunes, P.a, Fernandes Fortunato Vilarinho Martins B. a E. a. "Performances presented by zinc oxide thin films deposited by spray pyrolysis." Thin Solid Films. 337 (1999): 176-179. AbstractWebsite

The effect of doping and annealing atmosphere on the performances of zinc oxide thin films prepared by spray pyrolysis have been studied. The results show that the way doping influences the electrical and structural properties depends also on the characteristics of the doping element. Annealing the as-deposited films in an inert atmosphere leads to a substantial reduction in the resistivity of the films deposited and to an increase on the degree of film's crystallinity. © 1999 Elsevier Science S.A. All rights reserved.

c Nunes, D.a, Pimentel Pinto Calmeiro Nandy Barquinha Pereira Carvalho Fortunato Martins A. a J. V. "Photocatalytic behavior of TiO2 films synthesized by microwave irradiation." Catalysis Today. 278 (2016): 262-270. AbstractWebsite

Titanium dioxide was synthesized on glass substrates from titanium (IV)isopropoxide and hydrochloride acid aqueous solutions through microwave irradiation using as seed layer either fluorine-doped crystalline tin oxide (SnO2:F) or amorphous tin oxide (a-SnOx). Three routes have been followed with distinct outcome: (i) equimolar hydrochloride acid/water proportions (1HCl:1water) resulted in nanorod arrays for both seed layers; (ii) higher water proportion (1HCl:3water) originated denser films with growth yield dependent on the seed layer employed; while (iii) higher acid proportion (3HCl:1water) hindered the formation of TiO2. X-ray diffraction (XRD) showed that the materials crystallized with the rutile structure, possibly with minute fractions of brookite and/or anatase. XRD peak inversions observed for the materials synthesized on crystalline seeds pointed to preferred crystallographic orientation. Electron diffraction showed that the especially strong XRD peak inversions observed for TiO2 grown from the 1HCl:3water solution on SnO2:F originated from a [001] fiber texture. Transmittance spectrophotometry showed that the materials with finer structure exhibited significantly higher optical band gaps. Photocatalytic activity was assessed from methylene blue degradation, with the 1HCl:3water SnO2:F material showing remarkable degradability performance, attributed to a higher exposure of (001) facets, together with stability and reusability. © 2015 Elsevier B.V.

Fortunato, Elvira, Malik Alexander Martins Rodrigo. "Photochemical sensors based on amorphous silicon thin films." Sensors and Actuators, B: Chemical. B46 (1998): 202-207. AbstractWebsite

Hydrogenated amorphous silicon photochemical sensors based on Pd metal/insulator/semiconductor (Pd-MIS) structures were produced by plasma enhanced chemical vapour deposition (PECVD) with two different oxidized surfaces (thermal and chemical oxidation). The behaviour of dark and illuminated current-voltage characteristics in air and in the presence of a hydrogen atmosphere is explained by the changes induced by the gases adsorbed, in the work function of the metal, modifying the electrical properties of the interface. The photochemical sensors produced present more than two orders of magnitude variation on the reverse dark current in the presence of 400 ppm hydrogen. When the sensors are submitted to light it corresponds a decrease of 45% on the open circuit voltage.