Publications

Export 11 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C [D] E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
D
Martins, R., Fortunato E. "Dark current-voltage characteristics of transverse asymmetric hydrogenated amorphous silicon diodes." Journal of Applied Physics. 78 (1995): 3481-3487. AbstractWebsite

The aim of this work is to provide the basis for the interpretation, under steady state and in the low-voltage regime of the dark current-density-voltage (J-V) characteristics of transverse asymmetric amorphous silicon (a-Si:H) p-i-n and n-i-p diodes. The transverse asymmetric a-Si:H diodes present ratios between the metal contact and the underneath doped layer areas larger than five, leading to the inclusion, in the diode equation, of a lateral leakage current, responsible for the high saturation current density and the forward shape of the J-V curves recorded. The leakage current depends on the lateral spatial potential developed with which varies following a power-law dependence. The experimental J-V curves in diodes with the doped layer around the metal contact unetched and etched prove the role and origin of this lateral leakage current and, thus, the proposed model. © 1995 American Institute of Physics.

Martins, R., Bicho Lavareda Fortunato A. G. E. "Dependence of amorphous silicon solar cell performances on the lateral drift current." Solar Energy Materials and Solar Cells. 45 (1997): 1-15. AbstractWebsite

The aim of this work is to present a model able to explain the role of the lateral drift current on the experimental behaviour exhibited by p-i-n amorphous silicon solar cells (J-V characteristics, responsivity and the apparent device degradation behaviour), when the ratio between the covered and uncovered metal collected areas of the device is higher than one or recrystallization occurs in the edges of the p-i-n junction.

Fortunato, E.a, Brida Pereira Águas Silva Ferreira Costa Teixeira Martins D. a L. a. "Dependence of the strains and residual mechanical stresses on the performances presented by a-Si:H thin film position sensors." Advanced Engineering Materials. 4 (2002): 612-616. AbstractWebsite

The influence of residual stresses on the performances of large area position sensitive detectors produced on flexible substrates are presented here. For evaluating the residual stresses, two main techniques were used: An active optical triangulation and angle resolved scattering and the constant photocurrent method (CPM). From the results it was possible to correlate the stresses and the density of defects present in the films.

Correia, A.a b, Martins Fortunato Barquinha Goes R. a E. a. "Design of a robust general-purpose low-offset comparator based on IGZO thin-film transistors." Proceedings - IEEE International Symposium on Circuits and Systems. Vol. 2015-July. 2015. 261-264. Abstract

This paper presents a low-offset comparator based on n-type amorphous indium gallium zinc oxide thin-film transistors (TFTs). An a-Si:H TFT model was adapted to fit the electrical characterization data obtained for these devices. The proposed comparator comprises three pre-amplification stages, a positive-feedback analog latch and a fully dynamic digital latch. Simulation results show that the proposed circuit can work at several tens of kHz, with an accuracy of the order of 10 mV, considering a supply voltage of 10 V and a current consumption of 380 μA. Monte-Carlo simulations exhibit a 1-sigma random offset voltage smaller than 10 mV and 40 mV, respectively, with and without using autozeroing techniques. © 2015 IEEE.

Mendes, M.J., Araújo Vicente Águas Ferreira Fortunato Martins A. A. H. "Design of optimized wave-optical spheroidal nanostructures for photonic-enhanced solar cells." Nano Energy. 26 (2016): 286-296. AbstractWebsite

The interaction of light with wavelength-sized photonic nanostructures is highly promising for light management applied to thin-film photovoltaics. Several light trapping effects come into play in the wave optics regime of such structures that crucially depend on the parameters of the photonic and absorbing elements. Thus, multi-parameter optimizations employing exact numerical models, as performed in this work, are essential to determine the maximum photocurrent enhancement that can be produced in solar cells.Generalized spheroidal geometries and high-index dielectric materials are considered here to model the design of the optical elements providing broadband absorption enhancement in planar silicon solar cells. The physical mechanisms responsible for such enhancement are schematized in a spectral diagram, providing a deeper understanding of the advantageous characteristics of the optimized geometries. The best structures, composed of TiO2 half-spheroids patterned on the cells' top surface, yield two times higher photocurrent (up to 32.5 mA/cm2 in 1.5 μm thick silicon layer) than the same devices without photonic schemes.These results set the state-of-the-art closer to the theoretical Lambertian limit. In addition, the considered light trapping designs are not affected by the traditional compromise between absorption enhancement versus current degradation by recombination, which is a key technological advantage. © 2016 Elsevier Ltd.

Martins, R., Lavareda Soares Fortunato G. F. E. "Detection limit of large area 1D thin film position sensitive detectors based in a-Si:H P.I.N. diodes." Materials Research Society Symposium - Proceedings. Vol. 377. 1995. 791-796. Abstract

The aim of this work is to provide the basis for the interpretation of the steady state lateral photoeffect observed in p-i-n a-Si:H 1D Thin Film Position Sensitive Detectors (1D TFPSD). The experimental data recorded in 1D TFPSD devices with different performances are compared with the predicted curves and the obtained correlation's discussed.

Martins, R.a, Costa Águas Soares Marques Ferreira Borges Fortunato D. a H. a. "Detection limits of a nip a-Si:H linear array position sensitive detector." Materials Research Society Symposium Proceedings. Vol. 808. 2004. 507-512. Abstract

This paper presents results of the spatial and frequency detection limits of an integrated array of 32 one-dimensional amorphous silicon thin film position sensitive detectors with a nip structure, under continuous and pulsed laser operation conditions. The data obtained show that 0.45×0.06 cm arrays, occupying a total active area of about 1 cm2 have a spatial resolution better than 10 μm (modulation transfer function of about 0.2), with a cut-off frequency of about 6.8 KHz. Besides that, under pulsed laser conditions the device non-linearity has its minimum (about 1.6%), for a frequency of about 200Hz. Up to the limits of the cut-off frequency, the device non-linearity increases to values above 4%.

Raniero, L.a, Ferreira Fortunato Martins I. b E. b. "Differences between amorphous and nanostructured silicon films and their application in solar cell." High Temperature Material Processes. 11 (2007): 575-583. AbstractWebsite

Nanostructured silicon thin films were produced in a single PECVD (Plasma Enhanced Chemical Vapour Deposition) reactor using an excitation frequency of 27.12 MHz. The process parameters were selected to allow the films' production to be performed at the transition region (from amorphous to microcrystalline), aiming their use in solar cells. The real and imaginary parts of pseudo-dielectric function of these nanostructured films show a shift to higher energies and the order factor reveals an improvement on the short atomic range order of the films produced. The solar cells with a structure of ZGO/p-a-SiC:H/buffer1/buffer2/i-(nc/a-Si:H)/n-a-Si:H/Ag/Al were deposited with nanostructured intrinsic layer, showing a good performances, with current densities of about 14.48 mA/cm2, open circuit voltage of 0.94 V, and fill factor of 0.67, which lead to efficiencies of 9.12%. The solar cell degradation study performed under AM1.5 spectrum conditions up to 100 hours revealed a decrease on the solar cell efficiency of about 8.11%, mainly related to the decreasing of current density. Despite that, the open circuit voltage increases slightly after the degradation.

Zhang, S.a b, Liao Xu Martins Fortunato Kong X. a Y. a. "The diphasic nc-Si/a-Si:H thin film with improved medium-range order." Journal of Non-Crystalline Solids. 338-340 (2004): 188-191. AbstractWebsite

A series of silicon film samples were prepared by plasma enhanced chemical vapor deposition (PECVD) near the threshold from amorphous to nanocrystalline state by adjusting the plasma parameters and properly increasing the reactions between the hydrogen plasma and the growing surface. The microstucture of the films was studied by micro-Raman and Fourier transform infrared (FTIR) spectroscopy. The influences of the hydrogen dilution ratio of silane (R H = [H2]/[SiH4]) and the substrate temperature (Ts) on the microstructural and photoelectronic properties of silicon films were investigated in detail. With the increase of RH from 10 to 100, a notable improvement in the medium-range order (MRO) of the films was observed, and then the phase transition from amorphous to nanocrystalline phase occurred, which lead to the formation of diatomic hydrogen complex, H 2 * and their congeries. With the increase of T s from 150 to 275 °C, both the short-range order and the medium range order of the silicon films are obviously improved. The photoconductivity spectra and the light induced changes of the films show that the diphasic nc-Si/a-Si:H films with fine medium-range order present a broader light spectral response range in the longer wavelength and a lower degradation upon illumination than conventional a-Si:H films. © 2004 Elsevier B.V. All rights reserved.

Baptista, A.C.a, Botas Almeida Nicolau Falcão Soares Leitão Martins Borges Ferreira A. M. b A. "Down conversion photoluminescence on PVP/Ag-nanoparticles electrospun composite fibers." Optical Materials. 39 (2015): 278-281. AbstractWebsite

The influence of Ag nanoparticles (Ag NPs) on the luminescence of electrospun nonwoven mats made of polyvinylpyrrolidone (PVP) has been studied in this work. The PVP fibers incorporating 2.1-4.3 nm size Ag NPs show a significant photoluminescence (PL) band between 580 and 640 nm under 325 nm laser excitation. The down conversion luminescence emission is present even after several hours of laser excitation, which denotes the durability and stability of fibers to consecutive excitations. As so these one-dimensional photonic fibers made using cheap methods is of great importance for organic optoelectronic applications, fluorescent clothing or counterfeiting labels. © 2014 Elsevier B.V. All rights reserved.

Fernandes, M.a, Vieira Martins M. a R. b. "Dynamic characterization of large area image sensing structures based on a-SiC:H." Materials Science Forum. 455-456 (2004): 86-90. AbstractWebsite

The working principle of silicon p-i-n structures with low conductivity (σd) doped layers as single element image sensors is based on the modulation, by the local illumination conditions of the photocurrent generated by a light beam scanning the active area of the device. A higher sensitivity is achieved using a wide band gap a-Si:C alloy in the doped layers, improving the light penetration into the intrinsic semiconductor and reducing the lateral currents in the structure, which are responsible by an image smearing effect observed in sensors with high σd doped layers. This work focuses on the transient response of such sensor and on the role of the carbon (C) content of the doped layers. A set of devices with different percentage of C incorporation in the doped layers is analyzed by measuring the scanner-induced photocurrent under different bias conditions, (ranging from -1.5V to 1V) in order to evaluate the response time.