Publications

Export 38 results:
Sort by: Author [ Title  (Asc)] Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Águas, H.a, Nunes Fortunato Gordo Maneira Martins Y. b E. a. "Correlation between a-Si:H surface oxidation process and the performance of MIS structures." Thin Solid Films. 383 (2001): 185-188. AbstractWebsite

In order to correlate the MIS devices performance with different surface oxidation methods, AFM, spectroscopic ellipsometry and infrared spectroscopy measurements were performed in a-Si:H films, before and after surface oxidation, using different oxidation techniques and oxides: thermal dry (in air), wet (in H2O2) and by oxygen plasma, while MIS (metal-insulator-semiconductor) devices were characterized by I-V curves, under dark and AM1.5 illumination conditions. The a-Si:H films were grown by the PECVD technique, in a modified triode configuration reactor to allow a precise control of the ion bombardment during the film deposition. We found that the growth of a thin layer of oxide by chemical processes on the top of the a-Si:H surface can cause changes on the surface morphology that are reflected in the electrical behaviour of the devices. The oxygen plasma treatment, cause the rearrangement of the surface atoms leading to a change of their morphology and to the improvement of the electrical properties of the surface for a MIS applications.

Martins, R., Macarico Ferreira Nunes Bicho Fortunato A. I. R. "Correlation between electrical-optical and structural properties of microcrystalline silicon N type films." Materials Research Society Symposium - Proceedings. Vol. 420. 1996. 807-812. Abstract

Wide band gap microcrystalline silicon films have aroused considerable interest since they combine some electro-optical advantages of amorphous and crystalline materials highly important to produce electro-optical devices such as TFTs and solar cells. In this paper we present results concerning the electro-optical characteristics of highly transparent and conductive n-type μc-Si based films. Here, emphasis is given to the production of n-type μc-films with optical gaps of 2.3 eV and dark conductivity's of 6.5 Scm-1.

Águas, H.M.B., Fortunato Cabrita Silva Tonello Martins E. M. C. A. "Correlation between surface/interface states and the performance of MIS structures." Materials Research Society Symposium - Proceedings. Vol. 609. 2000. A1211-A1216. Abstract

In order to understand the kinetics of formation of interface/surface states and its correlation on the final device performance, a preliminary study was performed on MIS structures, before and after surface oxidation/passivation, using different oxidation techniques and oxides: thermal (in air), chemical (in H2O2) and oxygen plasma. The devices used in this work are based on a glass/Cr/a-Si:H(n+)/a-Si:H(i)/SiOx/Pd structures, where the amorphous silicon intrinsic layer (i a-Si:H) with a photosensitivity of 107 was deposited by a modified plasma enhanced chemical vapour deposition (PECVD) triode system. The electrical properties of a-Si:H MIS structures were investigated by measuring their diode current-voltage characteristics in the dark and under illumination as well as the spectral response, as a function of the various oxidation techniques. Infrared spectroscopy and spectroscopic ellipsometry were used as a complementary tool to characterise the oxidised surface.

Martins, R., Silva �?guas Cabrita Ferreira Fortunato V. H. A. "Correlation between the carbon and hydrogen contents with the gas species and the plasma impedance of silicon carbide films produced by PECVD technique." Applied Surface Science. 184 (2001): 101-106. AbstractWebsite

This paper deals with the determination of plasma impedance and ion density in r.f. plasmas using different mixtures of silane with methane or ethylene and r.f. powers. The aim is to correlate these parameters with carbon and hydrogen contents of the films produced. The data achieved show that the best carbon incorporation is achieved using ethylene gas mixtures, under low gas mixture concentration, where the substrate also sustains a low ion bombardment. The data also show that particulates in the plasma can be more easily formed in the ethylene-based processes. © 2001 Published by Elsevier Science B.V.

Lopes, A.a, Fortunato Nunes Vilarinho Martins E. a P. a. "Correlation between the microscopic and macroscopic characteristics of SnO2 thin film gas sensors." International Journal of Inorganic Materials. 3 (2001): 1349-1351. AbstractWebsite

Hall effect measurements have been used to evaluate the conduction mechanism, exhibited by tin oxide thin film gas sensors deposited by spray pyrolysis. Two experiments have been carried out: (i) Hall measurements in air and (ii) in the presence of methane (first results reported), both as a function of temperature. From the measurements performed it was possible to infer the potential barrier and its dependence with the atmosphere used. The results obtained for the carrier concentration and mobility have been analysed in the light of the oxygen diffusion mechanism at grain boundaries by using the grain boundary-trapping model. In the presence of the methane gas the electrical resistivity decreases due to the lowering of the inter-grain boundary barrier height. © 2001 Published by Elsevier Science Ltd.

Águas, H.a, Pereira Goullet Silva Fortunato Martins L. a A. b. "Correlation between the Tunnelling Oxide and I-V Curves of MIS Photodiodes." Materials Research Society Symposium - Proceedings. Vol. 762. 2003. 217-222. Abstract

In this work we present results of a study performed on MIS diodes with the following structure: substrate (glass) / Cr (2000Å) / a-Si:H n + (400Å) / a-Si:H i (5500Å) / oxide (0-40Å) / Au (100Å) to determine the influence of the oxide passivation layer grown by different techniques on the electrical performance of MIS devices. The results achieved show that the diodes with oxides grown using hydrogen peroxide present higher rectification factor (2×106) and signal to noise (S/N) ratio (1×107 at -1V) than the diodes with oxides obtained by the evaporation of SiO2, or by the chemical deposition of SiO 2 by plasma of HMDSO (hexamethyldisiloxane), but in the case of deposited oxides, the breakdown voltage is higher, 30V instead of 3-10 V for grown oxides. The ideal oxide thickness, determined by spectroscopic ellipsometry, is dependent on the method used to grow the oxide layer and is in the range between 6 and 20 Å. The reason for this variation is related to the degree of compactation of the oxide produced, which is not relevant for applications of the diodes in the range of ± 1V, but is relevant when high breakdown voltages are required.

G-Berasategui, E.a, Bayón Zubizarreta Barriga Barros Martins Fortunato R. a C. a. "Corrosion resistance analysis of aluminium-doped zinc oxide layers deposited by pulsed magnetron sputtering." Thin Solid Films. 594 (2015): 256-260. AbstractWebsite

In this paper an exhaustive analysis is performed on the electrochemical corrosion resistance of Al-doped ZnO (AZO) layers deposited on silicon wafers by a DC pulsed magnetron sputtering deposition technique to test layer durability. Pulse frequency of the sputtering source was varied and a detailed study of the electrochemical corrosion response of samples in the presence of a corrosive chloride media (NaCl 0.06 M) was carried out. Electrochemical impedance spectroscopy measurements were performed after reaching a stable value of the open circuit at 2 h, 192 h and 480 h intervals. Correlation of the corrosion resistance properties with the morphology, and the optical and electrical properties was tested. AZO layers with transmission values higher than 84% and resistivity of 6.54 × 10- 4 â. cm for a deposition process pressure of 3 × 10- 1 Pa, a sputtering power of 2 kW, a pulse frequency of 100 kHz, with optimum corrosion resistance properties, were obtained. © 2015 Elsevier B.V.

Gonçalves, G., Barquinha Raniero Martins Fortunato P. L. R. "Crystallization of amorphous indium zinc oxide thin films produced by radio-frequency magnetron sputtering." Thin Solid Films. 516 (2008): 1374-1376. AbstractWebsite

In this work we studied indium zinc oxide (IZO) thin films deposited by r.f. magnetron sputtering at room temperature. The films were annealed at high temperature (1100 K) in vacuum, and the oxygen exodiffusion was monitored in-situ. The results showed three main peaks, one at approximately 600 K, other at approximately 850 K and the last one at 940 K, which are probably from oxygen bonded in the film surface and in the bulk, respectively. The initial amorphous structure becomes microcrystalline, according to the X-ray diffraction. The electrical conductivity of the films decreases (about 3 orders of magnitude), after the annealing treatment. This behavior could be explained by the crystallization of the structure, which affects the transport mechanism. Apart from the changes in the material structure, a small variation was observed on the absorption coefficient. © 2007 Elsevier B.V. All rights reserved.

Malik, A., Nunes Martins R. R. "Cubic to hexagonal phase transition in spray deposited tin-doped indium oxide films." Materials Research Society Symposium - Proceedings. Vol. 481. 1998. 599-605. Abstract

This work's aim is to report for the first time the cubic to hexagonal phase transition in tin-doped In2O3 films with a Sn/In atomic ratio of 0.03, fabricated at low temperature and normal pressure from alcoholic solution of InCl3 and SnCl4. The performed X-ray diffraction measurements show a difference between crystallographic symmetry of thin (100 nm) and thick (400 nm) films prepared in the same conditions: the structure of thick films can be related to high pressure In2O3 hexagonal system with a preferred orientation of c-axis parallel to the substrate surface, while thin films present a cubic symmetry with columnar (400) grain orientation. Phase transition nature is connected with non-axial tensile deformation of indium oxide grid due to insertion of chlorine ions in the position of two diagonally opposite oxygen vacancies in In2O3 network.

Martins, R.M., Pereira Siqueira Salomão Freitas S. V. S. "Curcuminoid content and antioxidant activity in spray dried microparticles containing turmeric extract." Food Research International. 50 (2013): 657-663. AbstractWebsite

Curcuma longa L., also known as turmeric, is widely used as a food colorant and has been reported to have antioxidant, anti-inflammatory, anti-mutagenic and anti-cancer properties. The aim of this study was to evaluate the effects of the spray drying on curcuminoid and curcumin contents, antioxidant activity, process yield, the morphology and solubility of the microparticulated solid dispersion containing curcuma extract using a Box Behnken design. The microparticles were spherical in shape, and an increase in outlet temperature from 40 to 80 °C resulted in a significant increase in the yield of microparticles from 16 to 53%. The total curcuminoid content (17.15 to 19.57. mg/g), curcumin content (3.24 to 4.25. mg/g) and antioxidant activity (530.1 to 860.3 μg/mL) were also affected by the spray drying process. The solubility of curcuminoid from C. longa remarkably improved 100-fold in the microparticles, confirming the potential of the ternary solid dispersion technique to improve the dyeing and nutraceutical properties of these compounds. Furthermore, the microparticles were obtained using the spray drying process, can be easily scaled up. © 2011 Elsevier Ltd.

Martins, R., Guimaraes L. "CURRENT TRANSPORT IN METAL-AMORPHOUS SEMICONDUCTOR RECTIFYING DEVICES. ITS APPLICATIONS TO SOLAR CELLS." Commission of the European Communities, (Report) EUR. 1984. 146-150. Abstract

The current transport in metal-amorphous semiconductor barriers is examined by solving the proper Poisson's equation and transport equations within the semiconductor's space charge region taking into account the role of trap shallow states distribution function. The effect of metal is also included through appropriate boundary conditions of the above solutions. Generalized transport equations will be derived either when thermionic drift-diffusion emission process dominates or when the conduction mechanism is mainly due to drift-diffusion emission. Both situations will be analysed with or without neglecting carriers losses during their collision free path, from which a tractable expression for the current-voltage characteristic will be determined.

Nandy, S., Gonçalves Pinto Busani Figueiredo Pereira Paiva Martins Fortunato G. J. V. "Current transport mechanism at metal-semiconductor nanoscale interfaces based on ultrahigh density arrays of p-type NiO nano-pillars." Nanoscale. 5 (2013): 11699-11709. AbstractWebsite

The present work focuses on a qualitative analysis of localised I-V characteristics based on the nanostructure morphology of highly dense arrays of p-type NiO nano-pillars (NiO-NPs). Vertically aligned NiO-NPs have been grown on different substrates by using a glancing angle deposition (GLAD) technique. The preferred orientation of as grown NiO-NPs was controlled by the deposition pressure. The NiO-NPs displayed a polar surface with a microscopic dipole moment along the (111) plane (Tasker's type III). Consequently, the crystal plane dependent surface electron accumulation layer and the lattice disorder at the grain boundary interface showed a non-uniform current distribution throughout the sample surface, demonstrated by a conducting AFM technique (c-AFM). The variation in I-V for different points in a single current distribution grain (CD-grain) has been attributed to the variation of Schottky barrier height (SBH) at the metal-semiconductor (M-S) interface. Furthermore, we observed that the strain produced during the NiO-NPs growth can modulate the SBH. Inbound strain acts as an external field to influence the local electric field at the M-S interface causing a variation in SBH with the NPs orientation. This paper shows that vertical arrays of NiO-NPs are potential candidates for nanoscale devices because they have a great impact on the local current transport mechanism due to its nanostructure morphology. © 2013 The Royal Society of Chemistry.