Publications

Export 2 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F [G] H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
G
Lopes, A. A. S., R. S. Soares, M. M. A. Lima, and R. C. C. Monteiro. "Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method." Journal of Applied Physics. 115 (2014). AbstractWebsite

The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B2O3-10SiO2were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (Tg) and of the maximum crystallization temperature (Tp) on the heating rate was used to determine the activation energy associated with the glass transition (Eg), the activation energy for crystallization (Ec), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (β-BaB2O4) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba5Si8O21). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (Ec(χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures. © 2014 AIP Publishing LLC.

Davim, E. a, M. H. V. a Fernandes, and R. C. C. b Monteiro. "Glass-ceramics produced from incinerated municipal solid waste." Glass Technology: European Journal of Glass Science and Technology Part A. 48 (2007): 164-167. AbstractWebsite

A homogeneous black coloured glass was obtained by melting the bottom ashes produced by a municipal solid waste incinerator at 1300°C for 2 h without any chemical additives. Based on thermal analysis data glass-ceramics were produced by heat treating the glass, doped with additional TiO2 as a nucleating agent, at temperatures between 870 and 1000°C. The crystalline phases precipitated during the heat treatments were identified by powder XRD and the microstructures were examined using SEM. After a heat treatment at 900°C for 2 h, the glass was converted into a fine grained glass-ceramic with uniform microstructure. The major crystalline phases precipitated in the glass-ceramics were augite (Ca(Mg,Fe)Si2O6), gehlenite (Ca2Al2SiO7) and clinopyroxene (Ca(Ti,Mg,Al)(Si,Al)2O6). Preliminary evaluation of the mechanical and chemical properties of the bottom ash glasses and glass-ceramics suggest that they have potential to compete with existing natural and commercial outdoor cladding materials.