Publications

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Sallem, A., P. Pereira, H. M. Fino, and M. Fakhfakh, "A hybrid approach for the sensitivity analysis of integrated inductors", Integration, the \{VLSI\} Journal, pp. 1-6, 2015. AbstractWebsite

Abstract This paper proposes a hybrid methodology for the evaluation of integrated inductors sensitivity against technological/geometrical parameters variation. The obtained results are used in an optimization-based design environment for integrated inductors, as a way of guaranteeing that obtained solutions are robust against parameter variation. For the inductor characterization, a lumped element model is used, where each element value is evaluated through physics based equations. The sensitivity of the inductor characterization to parameter variations is evaluated at two levels. At the physical level, the sensitivity of the model element values to technological/geometrical parameters variations is computed through an equation-based strategy. Then, the sensitivity of the inductor characterization to the model parameter variations is obtained through a simulation-based approach, where the Richardson extrapolation technique is used for the calculation of the partial derivatives. Several examples considering the evaluation of sensitivity of both inductance and quality factor of two inductors in \{UMC130\} technology are presented. Obtained results are compared against Monte-Carlo simulations.

Sallem, A., and P. Pereira, "Sensitivity Analysis in the Optimization of Analog Active Filters by Applying the Richardson Extrapolation", Focus on Swarm Intelligence Research and Applications: Nova Science Publishers, pp. 247-275, 2017. Abstract

The key step of the analog active filter design is the optimal selection of component values due to manufactured series (E12, E24, E48, E96 and E192). In this paper, four simulation-based metaheuristics are applied to optimize four active filters using commercials available ICs as building blocks. The emphasis of this work is applying Richardson extrapolation-based sensitivity analysis in the optimization process of analog active filters. Indeed, Richardson extrapolation technique facilitates the calculation of the partial derivatives for the sensitivity using the simulation-based evaluation, without an explicit mathematical expression. Viability and benefits of the sensitivity analysis are highlighted. Monte Carlo analysis is performed in order to investigate robustness of the proposed sensitivity analysis of the active filters in case of component value variations due to specified tolerances of manufactured series.

Sallem, A., P. Pereira, and M. Fakhfakh, "Automatic sensitivity analysis tool for analog active filter", 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 124-127, Dec, 2017. Abstract

In this paper we deal with analog active filter design using discrete components taking into consideration tolerance effects. Sensitivity analysis is performed to determine the most influential components in the considered circuit, thus relative higher precision is offered to those parameters. Further, an in-loop optimization technique is considered, thus actual IC models are handled. An application example is presented. HSpice simulation results, supported by Monte Carlo analysis, are given to highlight efficiency of the proposed selection technique.