Copositive Optimization

EETIEWAELE]

Dep. Mathematics and CMA

University Nova de Lisboa

FCe / CMO.c.on

/




Copositive Optimization

Motivation

Spring School on MINLP and Applications | April 6, 2016 2/84



Copositive Optimization

Standard quadratic program

(StQ) min
s.t.

(StQCp) min
s.t.

(StQCo) max
s.t.

' Qx

ele =1

x>0

Q. X)

(E,X)=1

Xe{XEMn:X:YYT,YGR”Xk, YZO}:C*
Yy
Q—yEE{XEMn:yTXyZOforaIIyEW}r}:C
yeR
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Copositive Optimization

Copositive Optimization

min (C, X)
s.t. <A1,X> =bi,i€{1,...,m}
Xek

K = C Copositive Cone or K = C* Completely Positive
Cone

(X,Y) = trace(YTX) = Z X;Yi
1,5=1
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Copositive Optimization

Lower Bounds

Copositive Relaxation

min (C, X)
s.t. (A;, X) =b,ie{l,...,m}
Xee*
XeKkD>cCr
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QOutline

Properties of Copositive Matrices and Copositive Cone
Detecting Copositivity
Duality

Formulation of Problems as Conic Programs



Copositive Optimization

Cones

Definition (Cone)
Aset CeR"isaconeif A\ >0, Ac K= )NAeck.

Definition (Pointed Cone)
A cone K is pointed if KN -/ = {0}.

Definition (Convex Cone)
A cone K is convexiffor A,B c Kanda,3 € RT, aA+SB € K.

Definition (Closed Cone)
A cone K is closed if it contains its boundary.
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Copositive Optimization

Definition (Cone of Symmetric matrices)

Mn:{Xananmatrix:XT:X}

Definition (Cone of Nonnegative symmetric matrices)

Nn:{XGMnZXijZOfOI’i,j:].,...,n}

Definition (Cone of the Positive Semidefinite matrices)

Sy ={XeM,:y"Xy>0forallyeR"}

Definition (Cone of the Positive Definite matrices)

St={XeM,:y"Xy>0forallyeR"\{0}}
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Copositive Optimization

Definition (Cone of Doubly Nonnegative matrices)

Dn:{XEMnZX:D()ﬂSOWith DQENn and S()ES"}

Definition (Dual of the Cone of Doubly Nonnegative ma-
trices)

D ={X € M, : X = Dg+ So with Dy € N}, and Sy € S,,}

Spring School on MINLP and Applications | April 6, 2016 9/84



Copositive Optimization

Definition (Cone of the Copositive matrices)

Co={X €M, :y"Xy>0forallyeRt}

Definition (Cone of the Strict Copositive matrices)

C::{XeMn:yTXy>OforaIIye%?_\{O}}

Definition (Cone of the D—Copositive matrices)

CD,={X €M, :y"Xy>0forallyeDC R}
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Copositive Optimization

Properties of Copositive Matrices and Copositive
Cone

[Diananda(1962)], [Hall and Newman(1963)], [Baston(1968/1969)]
= Nonnegative (X € N,,) = Copositive (X € C,,)

= Semidefinite (X € S,,) = Copositive (X € C,)
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Copositive Optimization

= Form=2
[yl yz} X1 X2
X2 X2

(X1 >20)A (X2 >0 A( (X12>0) V(X3 — X11 X2 <0))
———
Nonnegative - &,  Semidefinite - s,

lzll — Xllyf + 2X 121192 + Xzzyg >0
2

« C, =N, + S, forn=3,4.
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Copositive Optimization

= Example (Horn)

-1 1 1 -1 1
2 THz = (x1 — 2o + 23 + T4 — 5 2 4 dxomy + das(zs — x4)

)
2THx = (1 — 29 + 23 — 14 + 25)% + daows + da3(xy — T5)

= X >0.

eF=[0 .. 1 . 0] thenelXe; = X,
N

%
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Copositive Optimization

» X =0= X;; >0.
(ae; +e;) X (ae; +e;) = ® Xy + 20X, + X5
if X;; =0 and a — +o00 then X;; >0
= Not invariant under basis transformations.
= |s invariant under permutation and scaling transformations.
» C, is closed, convex, pointed and full dimensional.
= C, is nonpolyhedral.
» The interior of C, is the set of strictly copositive matrices, C;!".

= |f there exists a strictly positive vector v such that v/’ Av = 0 then A € S,,.
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Copositive Optimization

= |t is co-NP-complete to check that a matrix is copositive
([Murty and Kabadi(1987)])
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Copositive Optimization

Dual Cone

Definition (Dual Cone)
Consider the cone K C R™*™. The dual cone of K is,

K*={Y e R"™":VX € K,(X,Y) > 0}

Definition (Self Dual)
A cone K is self-dual if K = K*.

Example:S} = Sy,
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Copositive Optimization

Properties of the Dual Cone

Let K be a cone,
= K* is closed and convex.
= K** = conv(K).
» /C closed and convex = K** = IC.

» Lemma K C K = K* D K*.
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Copositive Optimization

Completely Positive Cone - Dual Copositive Cone

Definition (Cone of Completely Positive matrices)

k
CP, = {X GMn:X:Zzi(zi)T ‘keN,z ZO}
i=1

= {XeM,: X=YY" Y eR™ Y >0}

Theorem
The dual of C,, is the cone of Completely Positive matrices.
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Copositive Optimization

Theorem
CP,=C,
CP; =Cy,
Crr=Cy
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Copositive Optimization

Proof
Any AeC and B = ZZZ(ZZ)T, z'>0eCP
i=1

k k
(A,B) = <A, Zzi(zi)T> = ()T Az" > O(because A € C)

i=1 i=1

pec -
Any A € CP* then (A, B) > 0 in particular B = vo” (v > 0) we have
(A, 00"y =v"Av > 0andso A€ C and CP* CC

From the previous result we have that so
¢ =cp|
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Copositive Optimization

= () is closed, convex, pointed and full dimensional.

= The extremal rays of C are the rank-one matrices X = zzT with z >0
and z # 0.

= Characterization of the interior of the completely positive cone.
[Dir and Still(2008)]

int(C*) = {AAT : A =[A;|As], with A; > 0 nonsingular, A, > 0}

= Checking that a matrix is in C} is NP-hard. [Dickinson and Gijben(2014)]
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Copositive Optimization
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Copositive Optimization

Detecting Copositivity

Based on Submatrices

A principal submatrix of A is a matrix which is constructed by selecting some of
the rows and columns of A simultaneously. Given I =1,...,n, A;; = [A;] for
1,7 € 1.

Spring School on MINLP and Applications | April 6, 2016 23/84



Copositive Optimization

Eigenvector and eigenvalues

[Kaplan(2001)]

The matrix A is copositive if and only if all principal submatrices
of A have no positive eigenvector with negative eigenvalue.

A= ifv>0=A>0
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Copositive Optimization

Similar to the Schur Complement

a b
b C
The matrix A is copositive (a > 0) if and only one of the following conditions
hold.
= CeCA(aC—bb") € Cp with D= {y:bTy <0, y >0} Remember?

= b>0NC€eC

= b<OA(aC—bbT)ecC
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Copositive Optimization

Theorem
A e M, D CR"™ a polyhedral cone and R a matrix whose columns are represen-
tatives of the extremal rays of D then A € Cp iif RTAR € C.

Checking copositivity in polynomial time,
= {141},
= diagonal matrices,
= tridiagonal matrices,

= acyclic matrices.
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Copositive Optimization

Based on Simplicial Partitions
[Sponsel et al.(2012)Sponsel, Bundfuss, and Dir], [Bundfuss(2009)]

Lemma
Let A € M,,.

AeC, & z"Ax>0,VzeRY, with [z =1
AecCt & 2TAz>0,Yz e R}, with |z =1

Proof < Let v € RY}, & = %7, such that [|Z]] = 1 so " AZ > 0 but since
T Az = WxTAx we have that 27 Az > 0. O
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Copositive Optimization

Choose the 1-norm, ||z||1, define the standard simplex

A% ={z e R} : ||z|1 = 1} = conv{er, e2,...,en}

€2

€1 €3
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Copositive Optimization

For all z € A%, there are unique A = [\, Az, ..., \,] with A > 0 such that

i=1 i=1
2T Az = (Zn: /\ieiT> A (Zn: /\ieiT> = z”: /\ix\ieiTAej
i=1

i=1 ij=1

Sufficient condition el Ae; > 0 & A(i,j) > 0, Vi,j < A €N,
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Copositive Optimization

U2

U1 U3
Vg

A family of Ps of simplices {Aq,...,A,,} satisfying

U A; = Ag and int(A;) Nint(A;) =0, i #j
i=1

is called a simplicial partition of Ag.
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Copositive Optimization

A is the convex hull of n affinely independent points (vertices) A = conv{vy,...,v,}
For all z € A = conv{vy,...,v,}, there are unique A = [A1, Aa,..., A,] with
A > 0 such that (barycentric coordinates with respect to A):

T = i)\z’vz with Zn:)\z =1.
=1 =1

As a simplex A is determined by its vertices, it can be represented by a matrix

Va whose columns are these vertices. Va = [v1 v2 ... Up]
n n n
2T Az = (Z )\iviT> A (Z Aw?) = Z Aol Av;
i=1 i=1 ij=1

Sufficient condition v Av; > 0 Vi, j
Necessary condition v} Av; > 0 Vi
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Copositive Optimization

Theorem
Let A € M,,, and let P be a simplicial partition of Ag. If

(vf)TA(vf) >0, VA, = conv{vf,...,v5l € P

then A is copositive.

Proof
VE=T[of, ... vk

TN

T e Ay
et Az = (VFN)TAWVEN) = AT (VFTAVF) A >0
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Copositive Optimization

Data: A €¢ M,
Result: Copositive certificate = "Yes" or "No"
IPs = {Ag};
while Ps # ( do
choose A = conv{vi,...,vn} € Ps;
if Ju; € {v1,..., 00} : v Av; <0 then
| return "No"
else
if vl Av; >0 foralli,7=1,...,n then
‘ Ps+ Ps\A;
else
Ps+ Ps\A;
partition A into Aj and Az ;
Ps <+ Ps\ AU {Al,Az}
end
end

end
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Copositive Optimization

PS:{Al,...,Am}

(Fineness of a Partition Ps) +— 6(Ps) = max max |u— o]
AEPsu,veV(A)

Theorem
Let A € M,,. The following assertions are equivalent

= A is not copositive,

= There exists ¢ > 0 such that for all partitions Ps of A% with §(Ps) < €
there exists a v € V(Ps) with vT' Av < 0.

Theorem
Let A € M,, strict-copositive, A € C* then there exits ¢ > 0 such that for all
partitions Ps of A% with §(Ps) <, v Au > 0 for all (u,v) € V(Ps).
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Copositive Optimization

Algorithm may not terminate

Theorem

Let A € M,, be copositive, and A = conv{vy,...,v,}, with v] Av; > 0. If
Jr € A\ {v1,...,v,} such that 27 Az = 0 then there Ji,j € {1,2,...,n} such
that vl Av; < 0.
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Copositive Optimization

Proof By contradition v} Av; > 0.

2T Az

>0
(Z )\{U?) A (Z )\l’l};r) = Z )\z)\z viTAvj
i= i=1

i,j=1

Y

Z)\Q  Av; > 0.

Require only that A is e—copositive, 7 Az > —e¢
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Copositive Optimization

Subdivision

A = conv{vy,..., v}

bisection of the simplex along the longest edge

= §(P)—=0

vTAu < 0 ,w = v+ (1 — Nu such that v7'Aw > 0 and u? Aw >0
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Copositive Optimization

Polyhedral inner approximations of the copositive cone

P={An....An)
Ay = conv{vF vk, ... oF

ren

Ip=qAeM:()TA} >0, Vk=1,...,m, Vi,j € {1,...,n}
N—_——
linear

IAS:{AEMZAZ‘J‘ZO, Vi,je{l,...,n}}:Nn

Lemma
Let P,P;1, P> denote two simplicial partitions of Ag. Then

= 7Zp is a closed convex polyhedral cone,
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Copositive Optimization

» If Zp C C (Zp is an inner approximation of C),
= if Py is a refinement of Py, then Ip, C Ip, .

Vo V2

U1 v3 U1 U3
Vg V4

Theorem
Let P, be a sequence of simplicial partitions of Ag with 6(P,) — 0. Then we

have _
C= U Ip.
reN
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Copositive Optimization

MeWwcCc
Sufficient condition v Av; > 0 Vi, j

VATAVA eN
VIAVAeWCC

The choice M = N is not always desirable. To check whether a matrix is
non negative does not take much effort but the non negative cone is a poor
approximation of the copositive cone.

= the choice of the set M influences the number of iterations and the runtime
= the set M should be a good approximation of C

= checking membership of M should be cheap
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Copositive Optimization

Data: A€ M,, WeC

Result: Copositive certificate = "Yes" or "No"
IPs = {Agh

while Ps # 0 do

choose A € Ps;

if v e VI :vTAv <0 then

return "No" ;

Ps=10

else
if VIAVA € W then
‘ Ps <+ Ps\A;

else
Ps+ Ps\A;
partition A into Aj and Ag ;
Ps + PS\AU{Al,AQ}

end

end

end
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Copositive Optimization

Based on Polinomials [Parrilo(2000)], [Bomze and de Klerk(2002)],
[Peiia et al.(2007)Peiia, Vera, and Zuluaga), [Lasserre(2000/01)]
z = [z1,... ,xn]T € R can be written as xox = [xf, e ,xi}T eRrR"”

x" Az > 0,2 > 0 replacing z; by z; we have P(z) = (zox)" A(zox) >0

2
air a2 a13| [T1 a1l a1z a3 Tl T1T2 X173
— 2
[551 T2 $3} a2 a2 Q23| |T2 ai2 Az  a23|, |TiT2 T2  T2T3
2
a1z a2z as3| |3 a13 G23 G33 T1T3 T2T3 I3

2 2 2
a1121 + a22025 + az3x3 + 2a122122 + a132123 + a23T223

4 2 2 2 2
a1l ai2 a3 Ty T1xy T1Z3
2 2 4 2 2 _
ai2 Q22 a23(, |T1T2 T TaT3 =
2 2 2 2 4
a1z a23 G33 T1xT3 T3 x3

4 4 4 2 2 2 2 2 2
a11T] + a22xy + asz3xrs; + 2a12x7x5 + 20130723 + 2023T523
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Copositive Optimization

T 2
Wy = [ml ZTo . Ty, T1x2 . T1Tn PN mn_lxn]

wawz = <M, wzw3>

and M is of order n + %n(n -1)

x‘ll zfx% wiwg xizz x?wg :E%:L‘gwg, a1 nis nis 0 0 7123
ximg 920‘212 T35 T3e1 z3z123 zha3 w12 asz w23 0 1213 0
a3} z2a? =3 T3T1T TRy 3T w13 pes az  n312 0 0
=y 2 zywg D) z223 22zoxy  wlziws 0 0 m312  viz  d123 6213
zfasy z3xiwg 2329 22z0x3 x2a2 3T 0 1213 0 8123  viz 6312

2oy x5y EEEPS zieiwy iz z3x3 n123 0 0 3213 6312 va3

4 .

T; - a;=a, t=1,...,n
3 —

T Tk — sz = 07
2

TIT;Tp — 20k + 20555 =0
5 5 J! -

;T - 2u" 4+ v = 2ay

TiTjTrTs —> Tijks = 0
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Copositive Optimization

LY = {M € My : (zox)" A(zox) = wawx}

Theorem
The matrix A is copositive if there is a matrix M € L% nonnegative
or positive semidefinite.

Lemma

Condition (zoxz)T A(zox) > 0 hold if the polynomial wX Mw, can
be written as a sum of squares Z:Zl fi(x)?, for some polynomial
functions f;. A sum of squares decomposition is possible if and only if
a representation of wl Mw, exists where M = S + N where § € S4
and N € NV,.
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Copositive Optimization

Example

T 2 2 2
r Ax = x4+ x5+ 23+ 2122 + 220123 — 22203

(acoa:)TA(acox) = o + 25+ x5 + 227705 + 22375 — 20575

T __ 2 2
W, = |T7 T XT3 r1T2 r1x3 X2T3

1 0 o0 0 0 o0
0 1 -1 0 0 o0
T 7lo -1 1 0o o0 o
We Mwe =ws | o o 5 o o|We=
o0 0 0 0 2 o0
0 0 0 0 0 o0

= (D) 4+ (V23:12232)* + (V2x123)* + (23 — 23)°
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Copositive Optimization

Lemma

LONNs#0e Ae N,
LYNSa#0e Ae (N, +38n)

How to obtain higher order sufficient conditions?

P(z) = (zoz)A(zox) = wr Muw,
P@) = Pl (Z x>
Plz)>0 & P'(x) 2_()

P'(2)>0 « P()=>) fi(x)’
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Copositive Optimization

LY = {M € My : P(z) = (zox)" A(zox) = wawm}

L, = {M € My, : P"(z) = P(x) (Zwi) = werwzr}

k=1

Lemma

LhiNSi#0= AcCn
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Copositive Optimization

P(z) = (wox)A(zox)=wlMuw,
Pw) = Pl) (Z:::)

P'(@) = ) file)®

Definition
The convex cone K7, consists of the matrices in M, for which P"(z)
allows a polynomial sum of squares decomposition (sos). K9 =

No + S
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Copositive Optimization

Lemma

K C K2 for all 7

Proof

n r+1
Pl (z) = P(a) (Z;ﬁ) =

= P'(x) <Z 992)
1 n

= Zfi($)2 (Zﬁ) = Z(xkfi)2
i=1 k=1

ik
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Copositive Optimization

Aek,?

The copositive cone can be approximate to a given accuracy by a sufficiently large set of
linear matrix inequalities. Each copositive programming problem can be approximated
to a given accuracy by a sufficiently large SDP.

d = O(n"*2). In practice we are restricted to 7 = 1. Degree 6.

For r > 2 the resulting problems become too large for current SDP solvers even for
small values of n.

Also possible to have LP approximations of the copositive cone, that are weaker than
the SDP approximations but are easier to solved.
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Copositive Optimization

Definition
The convex cone P;, consists of the matrices in M,, for which P"(z)
has no negative coefficients. P2 = A, and P C K% and PL C PrHL

AePp,?

The copositive cone can be approximate to a given accuracy by a sufficiently large set
of linear inequalities. Each copositive programming problem can be approximated to a
given accuracy by a sufficiently large LP.
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Copositive Optimization

Theorem
Let A € C/f such that A ¢ N,, +S,,. Then there are integers rx and
rp with 1 < rg < rp < 4o such that

No=PnCPrC--CPp

A€ Py forallr>rp but A¢ PP

and

Ae Kl forallr>rx but A¢ KIE?
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Copositive Optimization

Approximations for the C*

The dual cone of C is the cone C* of completely positive matrices. By duality, the dual
cone of an inner (resp. outer) approximation of C is an outer (resp. inner) approximation
of C*.
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Copositive Optimization
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Copositive Optimization

Duality

Definition (Dual)
The dual of conic problem P

vp <+ inf(C, X)
s.t. (Ai,X>=bi,i€{1,...,m}
Xek

is the conic problem D

vp <+ supbly

s.t. C=> ydieK’
i=1
yeR™

Spring School on MINLP and Applications | April 6, 2016
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Copositive Optimization

Attainability

Definition (Conic duality theorem)

If there exists an interior feasible solution of (P) (X° € int(K)), and
a feasible solution of (D) then vp = v}, and the supremum in (D) is
attained. Similarly, if there exist y° € R™ such that C—Zzl yWA; €
int (*) and a feasible solution of (P), then v5 = v} and the infimum
in (P) is attained.
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Copositive Optimization

Dual of a Copositive Program - Completely Positive
Program

Definition (Dual)
The dual of conic problem P

vp <+ inf{(C, X)
s.t. (Ai, X) =bi,i € {1,...,m}
XecC
is the conic problem D

vh <+« supbly

s.t. C-> yAec
i=1
yeR™
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Copositive Optimization

Formulation of Problems as Conic Programs

Single Quadratic Constraint Quadratic Programs
[Preisig(1996)]

Standard Quadratic Program (maximum clique)
[Bomze et al.(2000)Bomze, Diir, de Klerk, Roos, Quist, and Terlaky],
[Bomze and de Klerk(2002)]

Binary and continuous nonconvex quadratic programs [Burer(2009)]
mixed-integer fractional quadratic [Amaral and Bomze(2015)]
binary and ternary fractional quadratic [Amaral and Bomze(2015)]

fractional quadratic programs. [Preisig(1996)],
[Amaral et al.(2014)Amaral, Bomze, and Jidice]
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Copositive Optimization

The pioneer work of Preisig

[Preisig(1996)] (SQC) min  2'Qu
st. 2lAz=b
x>0

Without loss of generality b = 1. Consider y = x/\/g

(SQC1) min " Qx
s.t. e Az =1
x>0

Lemma
A€CT then {z: 2" Az =1, z > 0} is compact.
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Copositive Optimization

Lemma

AcCt, Qe M, then Ty such that
(@—yA) € C\C'fory=yo (1)
(Q-yA) € ¢ Vy<uyo
(@-yA) ¢ C, Vy>uyo

Lemma

AcCt, Qe M, then 3xo >0, and zo # 0, such that
25 (Q—yoA)zo = 0
and

ZTo = arg m>i£1 27 (Q —yod) x

eTe=1

where yo is as defined in 1.
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Copositive Optimization

Lemma
AcCh, Qe M, then Ixp >0, and zo # 0, such that

m>1£1 zT (Q@—yoA)x >0 Vy<uyo
e;‘;:l
m>1£1 2 (Q—yA)z <0 Vy>uyo

eTw=1

where yo is as defined in 1.

Theorem
AecCt,QeM
" . T
z° = arg min z Qux
>0
2T Ax=1
N . T
= min =" Qz
y min Q
2T Ax=1

and yo is as defined in 1, then yo = y™.
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Copositive Optimization

Relationship to fractional programming

Theorem
AccCh,QeM
__ . T
Vo= omp oo
2T Az=1
__— ; zTQx
o= T Az
Tr=1
then y* = yi.
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Copositive Optimization

Single Quad. Constrained Quad. Programs (A €C* and b > 0)

[Preisig(1996)] (SQC) min 27 Qu
s.t. 2T Az =b
x>0

Completely Positive Formulation
(SQCCp) min (@, X)
s.t. (A, X)=0
Xec
Copositive Formulation
(SQCCo) max by
s.t. QRQ—-yAecC
yeR
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Copositive Optimization

AcCtandb>0.
(SQC) min " Qu
s.t. e Az =b
x>0
2TQx = <Q,amT> and 27 Az = <A,:cncT>. Also X = zzT then X € C* and
rank(X) = 1.
(SQCCpR1) min (@, X)
s.t. (A, X)=10
X has rank one
XecC
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Theorem

The extremal points of {X : (4,X) = b, X € C*} are rank-one matrices X = 227
with ¥ Az = b and z > 0.

Proof
Fea(SQC) = {z € R™: 2T Az =b ,x > 0}
Fea(SQCCp) ={X e M": (A, X)=b,X€C"}

Let 2 € Fea(SQC) and consider X = zz”. Then X € Fea(SQCCp). Now suppose
that

with X7 and X5 in Fea(SQCCp). We know that the extreme rays of the Com-

pletely Positive cone are the rank-one matrices. If X is an extreme ray of the cone
then X = D; + D> implies that X = v1D; and X = wv2Ds. In this case, from
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X = AX1+ (1 = N)X> there are 1 and pq such that X = 1 X5 and X = po X5, But
since X1 and X» in Fea(SQCCp) we have:

b= <A7X> = M1 <A7X1> = M2 <A7X2>
~—— ~——
b b

so

pr=p2 =1
then from X = ;1 X7 and X = pu2 X2 we obtain X = X; and X = X5, and X is an
extreme point of Fea(SQCCp).

Now let X be an extreme point of Fea(SQCCp) and suppose that

d
X = sz(xz)T with z; > 0 and z; #0

=1

i J— _b .. . L b b T R
Consider u; = /Z?Am,xz then u; Au; T /I?Am,xl Az; =0b
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zT A

since x; = i i, considering U; = w;(u;)”
d d xT Axi xT Axi !
_ (T — i ) i )
X = Z;xz(xl) = z_; A Us A Ui
d T f, d T
_ x; Axi T _ x; Az, ‘
—z( Yt =3 ()
i=1 i=1
T A,
since (A X) <A ZZ | > = Zj_leAxi = b, then ijl L ;:le =1
and “2%0 5 0 then X is a convex combination of Ui,...,Uq but since X is a extreme
point of Fea(SQCCp), we have Uy = --- = Ug. In that case

d T .
X-0y ( )

i=1

T
X=U1 = U1Uq
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Standard Quadratic Programs

[Bomze et al.(2000)Bomze, Diir, de Klerk, Roos, Quist, and Terlaky], [Bomze and de Kler
(StQ) min =7 Qux

s.t. fz=1

x>0

Completely Positive Formulation : (StQCp) min (@, X)
s.t. (B, X)=1
XecC

Copositive Formulation : (5tQCo) max y
s.t. Q—-ykFeC
yeR
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Binary and continuous nonconvex quadratic programs
[Burer(2009)]

(MBQ) min 2" Q4 2¢
T

s.t. a;x="b;fori=1,...,
z; € {0,1}Vj € B
x>0

L={xEO:alT:czbi,Vizl,...,m}

Key assumption: z € L =0<z; <1Vje B
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(MBQ) min 2" Qe 42"z

s.t. alz=b;fori=1,...,m
z; € {0,1}Vj € B
x>0

(MBQ) min (Q,X)+2"x
s.t. a;v‘rx:biforizl,...,m
z; =X;;Vj €B
x>0

T
X =zx
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(MBQ) min  (Q,X) +2¢"x
s.t. alz="b;fori=1,...,
T = ij VjeB
>0

T
X =zx

(MBQC™) min (Q,X)+2c"x
s.t. alra::biforizl,...,
af Xai=b2fori=1,...,

z;=X,;VjeB
1 2"
C*
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Theorem
(MBQ) & (MBQC™)

Eliminate x from the formulation

Jy e R™ s.t. a:iy,—ai >0, iyibi =1

i=1 i=1
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Binary and ternary fractional quadratic

[Amaral and Bomze(2015)]

;I g(x)

zi=Li+ > 292 iel., 29 €{0,1}, j € [0,1], where I; = [log, (Ui — Li)],

j=0 "1

y '—inf{M:mERi,ax:a x; € [Ly, Us] for aIIiEI}

Example: x € [2,17]
=24 2020 4 Mol 4 ;@924 ()93
=242 4, Wo 4 @y B8 with 2O ... 23 ¢ {0,1}

B:=|J{i} x[0:1].

i€l

!
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Replace = by v € R* with d =n+ > 1;

i€l

v = [acl,wg,...,xr,......zgj)...}

T™MB = inf{%:véRi,Cuzc, v; € {0,1} for aIIiEB}
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Homogenize a general quadratic constraint vTQu + ¢7v + - considering new variables

w=[1,0T]T
T
@:[7 1 ]EMd+1

g Q
as well as
T Lot *
Y =ww = - €Chy1-
v vv

UTQv+qu+'y:§oY.
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Cv=ce ||Cv—c|®>=0

__ e —Tc
C.= [_CT|CT]T[_¢:|C] = |: T oTO :| € Sar1,
1 0T
Y =ww? =
[ v oot

[Co—c|?=0—C.0Y =0
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Yoo =1
Yo; = Yi; ensure that v; = v? for all i € B, which in turn is equivalent to v; € [0, 1], so
that we arrive at

T™MB ::inf{%:veRi,Cv:c, v; € {0,1} forallieB}
glv

BeY
where C;’T“ denotes the (non-convex, not closed) subcone of all completely positive

T;‘M::inf{é.y :CcoY =0, Yy —Yii =0, Yoo =1, aIIieB,YEC;ffl},

d x d matrices Y of rank one.

!
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Under conditions
{xGRi:szO}:O ({xGRi:C’x:O} is bounded )
w Bw >0 if Cw =0 for w € RET'\ 0

we have Yp0 > 0 and BeY > 0 and we replace Y rank-one by Y # 0.
So !l

N d+1

. AeY — _ )
Trk11=inf{_.y:CCOY:O,YOi—Yu:O,Yoo:l, aIIzEB,YGC"M“}7

Under previous conditions and Burer’s key condition we have an equivalent formulation
E L] Y =1.

Toop =inf{AeY : BeY =1,CceY =0,Yy —Vii=0, ali€ B,Y € Ci;,} ,
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Fractional quadratic programs

. [Amaral et al.(2014)Amaral, Bomze, and Jidice]

TO BE CONTINUED ...

Infeasibility, Fractional Quadratic Problems and Copositivity
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