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Copositive Optimization

Standard quadratic program

(StQ) min xTQx

s.t. eTx = 1
x ≥ 0

(StQCp) min 〈Q,X〉
s.t. 〈E,X〉 = 1

X ∈
{
X ∈Mn : X = Y Y T , Y ∈ Rn×k, Y ≥ O

}
= C∗

(StQCo) max y

s.t. Q− yE ∈
{
X ∈Mn : yTXy ≥ 0 for all y ∈ <n

+

}
= C

y ∈ R
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Copositive Optimization

Copositive Optimization

min 〈C,X〉
s.t. 〈Ai., X〉 = bi, i ∈ {1, . . . ,m}

X ∈ K

K = C Copositive Cone or K = C∗ Completely Positive
Cone

〈X,Y 〉 = trace(Y TX) =
n∑

i,j=1
XijYij
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Copositive Optimization

Lower Bounds

Copositive Relaxation

min 〈C,X〉
s.t. 〈Ai., X〉 = bi, i ∈ {1, . . . ,m}

X ∈ C∗

X ∈ K ⊃ C∗
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Outline

Properties of Copositive Matrices and Copositive Cone

Detecting Copositivity

Duality

Formulation of Problems as Conic Programs



Copositive Optimization

Cones

Definition (Cone)
A set K ∈ <n is a cone if λ ≥ 0, A ∈ K ⇒ λA ∈ K.

Definition (Pointed Cone)
A cone K is pointed if K ∩−K = {0}.

Definition (Convex Cone)
A cone K is convex if for A,B ∈ K and α, β ∈ <+, αA+βB ∈ K.

Definition (Closed Cone)
A cone K is closed if it contains its boundary.
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Copositive Optimization

Definition (Cone of Symmetric matrices)

Mn =
{
X an n× n matrix : XT = X

}
Definition (Cone of Nonnegative symmetric matrices)

Nn = {X ∈Mn : Xij ≥ 0 for i, j = 1, . . . , n}

Definition (Cone of the Positive Semidefinite matrices)

Sn =
{
X ∈Mn : yTXy ≥ 0 for all y ∈ <n

}
Definition (Cone of the Positive Definite matrices)

S+
n =

{
X ∈Mn : yTXy > 0 for all y ∈ <n \ {0}

}
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Copositive Optimization

Definition (Cone of Doubly Nonnegative matrices)

Dn = {X ∈Mn : X = D0 ∩ S0 with D0 ∈ Nn and S0 ∈ Sn}

Definition (Dual of the Cone of Doubly Nonnegative ma-
trices)

D∗n = {X ∈Mn : X = D0 + S0 with D0 ∈ Nn and S0 ∈ Sn}
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Copositive Optimization

Definition (Cone of the Copositive matrices)

Cn =
{
X ∈Mn : yTXy ≥ 0 for all y ∈ <n

+
}

Definition (Cone of the Strict Copositive matrices)

C+
n =

{
X ∈Mn : yTXy > 0 for all y ∈ <n

+ \ {0}
}

Definition (Cone of the D−Copositive matrices)

CDn =
{
X ∈Mn : yTXy ≥ 0 for all y ∈ D ⊆ <n

+
}
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Copositive Optimization

Properties of Copositive Matrices and Copositive
Cone
[Diananda(1962)], [Hall and Newman(1963)], [Baston(1968/1969)]

• Nonnegative (X ∈ Nn) ⇒ Copositive (X ∈ Cn)

• Semidefinite (X ∈ Sn) ⇒ Copositive (X ∈ Cn)

Dn

Sn +Nn

Cn

Sn Nn
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Copositive Optimization

• For n = 2[
y1 y2

] [X11 X12
X12 X22

][
y1
y2

]
= X11y

2
1 + 2X12y1y2 +X22y

2
2 ≥ 0

(X11 ≥ 0) ∧ (X22 ≥ 0) ∧ ( (X12 ≥ 0)︸ ︷︷ ︸
Nonnegative - Nn

∨ (X2
12 −X11X22 ≤ 0︸ ︷︷ ︸

Semidefinite - Sn

))

• Cn = Nn + Sn for n = 3, 4.
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Copositive Optimization

• Example (Horn)

H =


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1


xTHx = (x1 − x2 + x3 + x4 − x5)2 + 4x2x4 + 4x3(x5 − x4)
xTHx = (x1 − x2 + x3 − x4 + x5)2 + 4x2x5 + 4x3(x4 − x5)

• Xii ≥ 0.

eT
i =

[
0 . . . 1︸︷︷︸

i

. . . 0
]
then eT

i Xei = Xii
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Copositive Optimization

• Xii = 0⇒ Xij ≥ 0.

(αei + ej)TX(αei + ej) = α2Xii + 2αXij +Xjj

if Xii = 0 and α→ +∞ then Xij ≥ 0

• Not invariant under basis transformations.

• Is invariant under permutation and scaling transformations.

• Cn is closed, convex, pointed and full dimensional.

• Cn is nonpolyhedral.

• The interior of Cn is the set of strictly copositive matrices, C+
n .

• If there exists a strictly positive vector v such that vTAv = 0 then A ∈ Sn.
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Copositive Optimization

• It is co-NP-complete to check that a matrix is copositive
([Murty and Kabadi(1987)])
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Copositive Optimization

Dual Cone

Definition (Dual Cone)
Consider the cone K ⊆ Rn×n. The dual cone of K is,

K∗ =
{
Y ∈ Rn×n : ∀X ∈ K, 〈X,Y 〉 ≥ 0

}
Definition (Self Dual)
A cone K is self-dual if K = K∗.

Example:S∗n = Sn.
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Copositive Optimization

Properties of the Dual Cone

Let K be a cone,

• K∗ is closed and convex.

• K∗∗ = conv(K).

• K closed and convex ⇒ K∗∗ = K.

• Lemma K̂ ⊆ K ⇒ K̂∗ ⊇ K∗.
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Copositive Optimization

Completely Positive Cone - Dual Copositive Cone

Definition (Cone of Completely Positive matrices)

CPn =
{
X ∈Mn : X =

k∑
i=1

zi(zi)T : k ∈ N, zi ≥ 0
}

=
{
X ∈Mn : X = Y Y T , Y ∈ Rn×k, Y ≥ O

}
Theorem
The dual of Cn is the cone of Completely Positive matrices.
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Copositive Optimization

Theorem

CPn = C∗n
CP∗n = Cn

C∗∗n = Cn
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Copositive Optimization

Proof

Any A ∈ C and B =
k∑

i=1
zi(zi)T , zi ≥ 0 ∈ CP

〈A,B〉 =
〈
A,

k∑
i=1

zi(zi)T

〉
=

k∑
i=1

(zi)TAzi ≥ 0(because A ∈ C)

B ∈ C∗ ⇒ CP ⊆ C∗

Any A ∈ CP∗ then 〈A,B〉 ≥ 0 in particular B = vvT (v ≥ 0) we have〈
A, vvT

〉
= vTAv ≥ 0 and so A ∈ C and CP∗ ⊆ C

From the previous result we have that CP ⊇ C∗ so

C∗ = CP .

�
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Copositive Optimization

• C∗n is closed, convex, pointed and full dimensional.

• The extremal rays of C∗n are the rank-one matrices X = xxT with x ≥ 0
and x 6= 0.

• Characterization of the interior of the completely positive cone.
[Dür and Still(2008)]

int(C∗) = {AAT : A = [A1|A2], with A1 > 0 nonsingular, A2 ≥ 0}

• Checking that a matrix is in C∗n is NP-hard. [Dickinson and Gijben(2014)]
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Copositive Optimization

D∗n = Sn +Nn

Cn

Sn NnC∗n

Dn
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Copositive Optimization

Detecting Copositivity

Based on Submatrices

A principal submatrix of A is a matrix which is constructed by selecting some of
the rows and columns of A simultaneously. Given I = 1, . . . , n, AII = [Aij ] for
i, j ∈ I.
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Copositive Optimization

Eigenvector and eigenvalues

[Kaplan(2001)]

The matrix A is copositive if and only if all principal submatrices
of A have no positive eigenvector with negative eigenvalue.

AIIv = λv if v > 0⇒ λ ≥ 0
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Copositive Optimization

Similar to the Schur Complement

[
a bT

b C

]

The matrix A is copositive (a ≥ 0) if and only one of the following conditions
hold.

• C ∈ C ∧ (aC − bbT ) ∈ CD with D =
{
y : bT y ≤ 0, y ≥ 0

}
Remember?

• b ≥ 0 ∧ C ∈ C

• b ≤ 0 ∧ (aC − bbT ) ∈ C
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Copositive Optimization

Theorem
A ∈M, D ⊆ Rn a polyhedral cone and R a matrix whose columns are represen-
tatives of the extremal rays of D then A ∈ CD iif RTAR ∈ C.

Checking copositivity in polynomial time,

• {−1,+1}n×n,

• diagonal matrices,

• tridiagonal matrices,

• acyclic matrices.
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Copositive Optimization

Based on Simplicial Partitions
[Sponsel et al.(2012)Sponsel, Bundfuss, and Dür], [Bundfuss(2009)]

Lemma
Let A ∈Mn.

A ∈ Cn ⇔ xTAx ≥ 0,∀x ∈ Rn
+, with ‖x‖ = 1

A ∈ C+
n ⇔ xTAx > 0,∀x ∈ Rn

+, with ‖x‖ = 1

Proof ⇐ Let x ∈ Rn
+, x̃ = x

‖x‖ , such that ‖x̃‖ = 1 so x̃TAx̃ ≥ 0 but since
x̃TAx̃ = 1

‖x‖2x
TAx we have that xTAx ≥ 0. �
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Copositive Optimization

Choose the 1-norm, ‖x‖1, define the standard simplex

∆S = {x ∈ Rn
+ : ‖x‖1 = 1} = conv{e1, e2, . . . , en}

e1 e3

e2
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Copositive Optimization

For all x ∈ ∆S , there are unique λ = [λ1, λ2, . . . , λn] with λ ≥ 0 such that

x =
n∑

i=1
λiei with

n∑
i=1

λi = 1.

xTAx =
(

n∑
i=1

λie
T
i

)
A

(
n∑

i=1
λie

T
i

)
=

n∑
i,j=1

λiλie
T
i Aej

Sufficient condition eT
i Aej ≥ 0⇔ A(i, j) ≥ 0, ∀i, j ⇔ A ∈ Nn
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Copositive Optimization

v1 v3

v2

v4

A family of Ps of simplices {∆1, . . . ,∆m} satisfying

m⋃
i=1

∆i = ∆S and int(∆i) ∩ int(∆j) = ∅, i 6= j

is called a simplicial partition of ∆S .
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Copositive Optimization

∆ is the convex hull of n affinely independent points (vertices) ∆ = conv{v1, . . . , vn}
For all x ∈ ∆ = conv{v1, . . . , vn}, there are unique λ = [λ1, λ2, . . . , λn] with
λ ≥ 0 such that (barycentric coordinates with respect to ∆):

x =
n∑

i=1
λivi with

n∑
i=1

λi = 1.

As a simplex ∆ is determined by its vertices, it can be represented by a matrix
V∆ whose columns are these vertices. V∆ = [v1 v2 . . . vn]

xTAx =
(

n∑
i=1

λiv
T
i

)
A

(
n∑

i=1
λiv

T
i

)
=

n∑
i,j=1

λiλiv
T
i Avj

Sufficient condition vT
i Avj ≥ 0 ∀i, j

Necessary condition vT
i Avi ≥ 0 ∀i
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Copositive Optimization

Theorem
Let A ∈Mn, and let P be a simplicial partition of ∆S . If

(vk
i )TA(vk

j ) ≥ 0, ∀∆k = conv{vk
1 , . . . , v

k
2} ∈ P

then A is copositive.

Proof
V k = [vk

1 , . . . , v
k
n]

x ∈ ∆k

xTAx = (V kλ)TA(V kλ) = λT
(
V kTAV k

)
λ ≥ 0

�
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Copositive Optimization

Data: A ∈Mn,

Result: Copositive certificate = "Yes" or "No"
P s = {∆S};
while P s 6= ∅ do

choose ∆ = conv{v1, . . . , vn} ∈ P s;
if ∃vi ∈ {v1, . . . , vn} : vTi Avi < 0 then

return "No"
else

if vTi Avj ≥ 0 for all i, j = 1, . . . , n then
P s← P s \∆ ;

else
P s← P s \∆ ;
partition ∆ into ∆1 and ∆2 ;
P s← P s \∆ ∪ {∆1, ∆2}

end
end

end
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Copositive Optimization

Ps = {∆1, . . . ,∆m}

(Fineness of a Partition Ps) 7→ δ(Ps) = max
∆∈P s

max
u,v∈V (∆)

‖u− v‖

Theorem
Let A ∈Mn. The following assertions are equivalent

• A is not copositive,

• There exists ε > 0 such that for all partitions Ps of ∆S with δ(Ps) < ε

there exists a v ∈ V (Ps) with vTAv < 0.

Theorem
Let A ∈ Mn, strict-copositive, A ∈ C+ then there exits ε > 0 such that for all
partitions Ps of ∆S with δ(Ps) < ε, vTAu > 0 for all (u, v) ∈ V (Ps).
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Copositive Optimization

Algorithm may not terminate

Theorem
Let A ∈ Mn, be copositive, and ∆ = conv{v1, . . . , vn}, with vT

i Avi > 0. If
∃x ∈ ∆\{v1, . . . , vn} such that xTAx = 0 then there ∃i, j ∈ {1, 2, . . . , n} such
that vT

i Avj < 0.

Spring School on MINLP and Applications | April 6, 2016 35/84



Copositive Optimization

Proof By contradition vT
i Avj ≥ 0.

xTAx =
(

n∑
i=1

λiv
T
i

)
A

(
n∑

i=1
λiv

T
i

)
=

n∑
i,j=1

λiλi

>0︷ ︸︸ ︷
vT

i Avj

≥
n∑

i=1
λ2

i v
T
i Avi > 0.

�
Require only that A is ε−copositive, xTAx ≥ −ε
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Copositive Optimization

Subdivision

∆ = conv{v1, . . . , vn}

• bisection of the simplex along the longest edge

• δ(P )→ 0

• vTAu < 0 , w = λv + (1− λ)u such that vTAw ≥ 0 and uTAw ≥ 0
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Copositive Optimization

Polyhedral inner approximations of the copositive cone

P = {∆1, . . . ,∆m}

∆k = conv{vk
1 , v

k
2 , . . . , v

k
n}

IP =

A ∈M : (vk
i )TAvk

j︸ ︷︷ ︸
linear

≥ 0, ∀k = 1, . . . ,m, ∀i, j ∈ {1, . . . , n}


I∆S

= {A ∈M : Aij ≥ 0, ∀i, j ∈ {1, . . . , n}} = Nn

Lemma
Let P,P1,P2 denote two simplicial partitions of ∆S . Then

• IP is a closed convex polyhedral cone,
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Copositive Optimization

• If IP ⊆ C (IP is an inner approximation of C),

• if P2 is a refinement of P1, then IP1 ⊂ IP2 .

v1 v3

v2

v4
v1 v3

v2

v4

Theorem
Let Pr be a sequence of simplicial partitions of ∆S with δ(Pr)→ 0. Then we
have

C =
⋃

r∈N
IPr
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Copositive Optimization

M ∈W ⊆ C
Sufficient condition vT

i Avj ≥ 0 ∀i, j

V T
∆AV∆ ∈ N

V T
∆AV∆ ∈ W ⊆ C

The choice M = N is not always desirable. To check whether a matrix is
non negative does not take much effort but the non negative cone is a poor
approximation of the copositive cone.

• the choice of the set M influences the number of iterations and the runtime

• the set M should be a good approximation of C

• checking membership of M should be cheap
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Copositive Optimization

Data: A ∈Mn, W ∈ C
Result: Copositive certificate = "Yes" or "No"
P s = {∆S};
while P s 6= ∅ do

choose ∆ ∈ P s;
if ∃v ∈ V T

∆ : vTAv < 0 then
return "No" ;
P s = ∅

else
if V T

∆ AV∆ ∈ W then
P s← P s \∆ ;

else
P s← P s \∆ ;
partition ∆ into ∆1 and ∆2 ;
P s← P s \∆ ∪ {∆1, ∆2}

end
end

end
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Based on Polinomials [Parrilo(2000)], [Bomze and de Klerk(2002)],

[Peña et al.(2007)Peña, Vera, and Zuluaga], [Lasserre(2000/01)]

x = [x1, . . . , xn]T ∈ Rn+ can be written as xox = [x2
1, . . . , x

2
n]T ∈ Rn

xTAx ≥ 0, x ≥ 0 replacing xi by x2
i we have P (x) = (xox)TA(xox) ≥ 0

[
x1 x2 x3

]a11 a12 a13

a12 a22 a23

a13 a23 a33

x1

x2

x3

 =

〈a11 a12 a13

a12 a22 a23

a13 a23 a33

 ,
 x2

1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3

〉 =

a11x
2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + a13x1x3 + a23x2x3

〈a11 a12 a13

a12 a22 a23

a13 a23 a33

 ,
 x4

1 x2
1x

2
2 x2

1x
2
3

x2
1x

2
2 x4

2 x2
2x

2
3

x2
1x

2
3 x2

2x
2
3 x4

3

〉 =

a11x
4
1 + a22x

4
2 + a33x

4
3 + 2a12x

2
1x

2
2 + 2a13x

2
1x

2
3 + 2a23x

2
2x

2
3
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Copositive Optimization

wTx =
[
x2

1 x2
2 . . . x2

n x1x2 . . . x1xn . . . xn−1xn
]

wTxMwx =
〈
M,wxw

T
x

〉
and M is of order n+ 1

2n(n− 1)
x4

1 x2
1x

2
2 x2

1x
2
3 x3

1x2 x3
1x3 x2

1x2x3
x2

1x
2
2 x4

2 x2
2x

2
3 x3

2x1 x2
2x1x3 x3

2x3
x2

1x
2
3 x2

2x
2
3 x4

3 x2
3x1x2 x3

3x1 x3
3x2

x3
1x2 x3

1x3 x2
3x1x2 x2

1x
2
2 x2

1x2x3 x2
2x1x3

x3
1x3 x2

2x1x3 x3
3x2 x2

1x2x3 x2
1x

2
3 x2

3x1x2
x2

1x2x3 x3
2x3 x3

3x2 x2
2x1x3 x2

3x1x2 x2
2x

2
3



α1 µ12 µ13 0 0 η123
µ12 α2 µ23 0 η213 0
µ13 µ23 α3 η312 0 0
0 0 η312 ν12 δ123 δ213
0 η213 0 δ123 ν13 δ312

η123 0 0 δ213 δ312 ν23


x4
i → αi = aii, i = 1, . . . , n
x3
ixk → βik = 0,
x2
ixjxk → 2ηijk + 2δijk = 0
x2
ix

2
j → 2µij + νij = 2aij

xixjxkxs → πijks = 0
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Copositive Optimization

L0
A =

{
M ∈Md : (xox)TA(xox) = wTxMwx

}
Theorem
The matrix A is copositive if there is a matrix M ∈ L0

A nonnegative
or positive semidefinite.

Lemma
Condition (xox)TA(xox) ≥ 0 hold if the polynomial wTxMwx can
be written as a sum of squares

∑r

i=1 fi(x)2, for some polynomial
functions fi. A sum of squares decomposition is possible if and only if
a representation of wTxMwx exists where M = S̃ + Ñ where S̃ ∈ Sd
and Ñ ∈ Nd.
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Example [
1 1 1
1 1 −1
1 −1 1

]

xTAx = x2
1 + x2

2 + x2
3 + 2x1x2 + 2x1x3 − 2x2x3

(xox)TA(xox) = x4
1 + x4

2 + x4
3 + 2x2

1x
2
2 + 2x2

1x
2
3 − 2x2

2x
2
3

wTx =
[
x2

1 x2
2 x2

3 x1x2 x1x3 x2x3
]

wTxMwx = wTx


1 0 0 0 0 0
0 1 −1 0 0 0
0 −1 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 0

wx =

= (x2
1)2 + (

√
2x12x2)2 + (

√
2x1x3)2 + (x2

2 − x2
3)2
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Lemma

L0
A ∩Nd 6= 0⇔ A ∈ Nn

L0
A ∩ Sd 6= 0⇔ A ∈ (Nn + Sn)

How to obtain higher order sufficient conditions?

P (x) = (xox)A(xox) = wTxMwx

P r(x) = P (x)

(
n∑

k=1

x2
k

)r
P (x) ≥ 0 ⇔ P r(x) ≥ 0

P r(x) ≥ 0 ⇐ P r(x) =
s∑
i=1

fi(x)2
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L0
A =

{
M ∈Md : P (x) = (xox)TA(xox) = wTxMwx

}
LrA =

{
M ∈Mdr : P r(x) = P (x)

(
n∑
k=1

x2
k

)r
= wTxrMwxr

}

Lemma

LrA ∩ Sd 6= 0⇒ A ∈ Cn
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Copositive Optimization

P (x) = (xox)A(xox) = wTxMwx

P r(x) = P (x)

(
n∑

k=1

x2
k

)r

P r(x) =
s∑
i=1

fi(x)2

Definition
The convex cone Krn consists of the matrices inMn for which P r(x)
allows a polynomial sum of squares decomposition (sos). K0

n =
Nn + Sn.

Spring School on MINLP and Applications | April 6, 2016 48/84



Copositive Optimization

Lemma

Krn ⊆ Kr+1
n for all r

Proof

P r+1(x) = P (x)

(
n∑
k=1

x2
k

)r+1

=

= P (x)

(
n∑

k=1

x2
k

)r( n∑
k=1

x2
k

)
=

= P r(x)

(
n∑

k=1

x2
k

)

=
l∑
i=1

fi(x)2

(
n∑
k=1

x2
k

)
=
∑
ik

(xkfi)2
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A ∈ Krn?

The copositive cone can be approximate to a given accuracy by a sufficiently large set of
linear matrix inequalities. Each copositive programming problem can be approximated
to a given accuracy by a sufficiently large SDP.

d = O(nr+2). In practice we are restricted to r = 1. Degree 6.

For r > 2 the resulting problems become too large for current SDP solvers even for
small values of n.

Also possible to have LP approximations of the copositive cone, that are weaker than
the SDP approximations but are easier to solved.
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Definition
The convex cone Prn consists of the matrices inMn for which P r(x)
has no negative coefficients. P0

n = Nn and Prn ⊆ Krn and Prn ⊆ Pr+1
n .

A ∈ Prn?

The copositive cone can be approximate to a given accuracy by a sufficiently large set
of linear inequalities. Each copositive programming problem can be approximated to a
given accuracy by a sufficiently large LP.
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Theorem
Let A ∈ C+

n such that A /∈ Nn + Sn. Then there are integers rK and
rP with 1 ≤ rK ≤ rP ≤ +∞ such that

Nn = P0
n ⊆ P1

n ⊆ · · · ⊆ Prn

A ∈ Prn for all r ≥ rP but A /∈ PrP−1
n

and
Nn + Sn = K0

n ⊆ K1
n ⊆ · · · ⊆ Krn

A ∈ Krn for all r ≥ rK but A /∈ KrK−1
n
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Approximations for the C∗

The dual cone of C is the cone C∗ of completely positive matrices. By duality, the dual
cone of an inner (resp. outer) approximation of C is an outer (resp. inner) approximation
of C∗.

C
Ik+1
Ik

I∗
k

I∗
k+1
C∗
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Duality

Definition (Dual)
The dual of conic problem P

v∗P ← inf 〈C,X〉
s.t. 〈Ai, X〉 = bi, i ∈ {1, . . . ,m}

X ∈ K

is the conic problem D

v∗D ← sup bT y

s.t. C −
m∑
i=1

yiAi ∈ K∗

y ∈ Rm
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Attainability

Definition (Conic duality theorem)
If there exists an interior feasible solution of (P) (X0 ∈ int(K)), and
a feasible solution of (D) then v∗P = v∗D and the supremum in (D) is
attained. Similarly, if there exist y0 ∈ Rm such that C−

∑m

i=1 y
0
iAi ∈

int (K∗) and a feasible solution of (P), then v∗P = v∗D and the infimum
in (P) is attained.
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Dual of a Copositive Program - Completely Positive
Program
Definition (Dual)
The dual of conic problem P

v∗P ← inf 〈C,X〉
s.t. 〈Ai, X〉 = bi, i ∈ {1, . . . ,m}

X ∈ C

is the conic problem D

v∗D ← sup bT y

s.t. C −
m∑
i=1

yiAi ∈ C∗

y ∈ Rm

Spring School on MINLP and Applications | April 6, 2016 57/84



Copositive Optimization

Formulation of Problems as Conic Programs
• Single Quadratic Constraint Quadratic Programs

[Preisig(1996)]

• Standard Quadratic Program (maximum clique)
[Bomze et al.(2000)Bomze, Dür, de Klerk, Roos, Quist, and Terlaky],
[Bomze and de Klerk(2002)]

• Binary and continuous nonconvex quadratic programs [Burer(2009)]

• mixed-integer fractional quadratic [Amaral and Bomze(2015)]

• binary and ternary fractional quadratic [Amaral and Bomze(2015)]

• fractional quadratic programs. [Preisig(1996)],
[Amaral et al.(2014)Amaral, Bomze, and Júdice]
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The pioneer work of Preisig
[Preisig(1996)] (SQC) min xTQx

s.t. xTAx = b

x ≥ 0

Without loss of generality b = 1. Consider y = x/
√
b.

(SQC1) min xTQx

s.t. xTAx = 1
x ≥ 0

Lemma
A ∈ C+ then {x : xTAx = 1, x ≥ 0} is compact.
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Lemma
A ∈ C+, Q ∈M, then ∃y0 such that

(Q− yA) ∈ C \ C+ for y = y0 (1)
(Q− yA) ∈ C+, ∀y < y0

(Q− yA) /∈ C, ∀y > y0

Lemma
A ∈ C+, Q ∈M, then ∃x0 ≥ 0, and x0 6= 0, such that

xT0 (Q− y0A)x0 = 0

and

x0 = arg min
x≥0

eT x=1

xT (Q− y0A)x

where y0 is as defined in 1.
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Lemma
A ∈ C+, Q ∈M, then ∃x0 ≥ 0, and x0 6= 0, such that

min
x≥0

eT x=1

xT (Q− y0A)x > 0 ∀y < y0

min
x≥0

eT x=1

xT (Q− y0A)x < 0 ∀y > y0

where y0 is as defined in 1.

Theorem
A ∈ C+, Q ∈M

x∗ = arg min
x≥0

xT Ax=1

xTQx

y∗ = min
x≥0

xT Ax=1

xTQx

and y0 is as defined in 1, then y0 = y∗.
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Relationship to fractional programming

Theorem
A ∈ C+, Q ∈M

y∗ = min
x≥0

xT Ax=1

xTQx

y∗1 = min
x≥0

eT x=1

xTQx

xTAx

then y∗ = y∗1 .
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Single Quad. Constrained Quad. Programs (A ∈ C+ and b > 0)
[Preisig(1996)] (SQC) min xTQx

s.t. xTAx = b

x ≥ 0

Completely Positive Formulation
(SQCCp) min 〈Q,X〉

s.t. 〈A,X〉 = b

X ∈ C∗

Copositive Formulation
(SQCCo) max by

s.t. Q− yA ∈ C
y ∈ R
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A ∈ C+ and b > 0.

(SQC) min xTQx

s.t. xTAx = b

x ≥ 0

xTQx =
〈
Q, xxT

〉
and xTAx =

〈
A, xxT

〉
. Also X = xxT then X ∈ C∗ and

rank(X) = 1.

(SQCCpR1) min 〈Q,X〉
s.t. 〈A,X〉 = b

X has rank one
X ∈ C∗
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Theorem
The extremal points of {X : 〈A,X〉 = b, X ∈ C∗} are rank-one matrices X = xxT

with xTAx = b and x ≥ 0.

Proof
Fea(SQC) = {x ∈ Rn : xTAx = b , x ≥ 0}
Fea(SQCCp) = {X ∈Mn : 〈A,X〉 = b ,X ∈ C∗}

Let x ∈ Fea(SQC) and consider X = xxT . Then X ∈ Fea(SQCCp). Now suppose
that

X = λX1 + (1− λ)X2

with X1 and X2 in Fea(SQCCp). We know that the extreme rays of the Com-
pletely Positive cone are the rank-one matrices. If X is an extreme ray of the cone
then X = D1 + D2 implies that X = ν1D1 and X = ν2D2. In this case, from
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X = λX1 + (1− λ)X2 there are µ1 and µ1 such that X = µ1X1 and X = µ2X2. But
since X1 and X2 in Fea(SQCCp) we have:

b = 〈A,X〉 = µ1 〈A,X1〉︸ ︷︷ ︸
b

= µ2 〈A,X2〉︸ ︷︷ ︸
b

so
µ1 = µ2 = 1

then from X = µ1X1 and X = µ2X2 we obtain X = X1 and X = X2, and X is an
extreme point of Fea(SQCCp).

Now let X be an extreme point of Fea(SQCCp) and suppose that

X =
d∑
i=1

xi(xi)T with xi ≥ 0 and xi 6= 0

Consider ui =
√

b

xT
i
Axi

xi then uiAui =
√

b

xT
i
Axi

√
b

xT
i
Axi

xTi Axi = b
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since xi =
√

xT
i
Axi

b
ui, considering Ui = ui(ui)T

X =
d∑
i=1

xi(xi)T =
d∑
i=1

(√
xTi Axi

b
ui

)(√
xTi Axi

b
ui

)T

=
d∑
i=1

(
xTi Axi

b

)
uiu

T
i =

d∑
i=1

(
xTi Axi
b

)
Ui

since 〈A,X〉 = b,
〈
A,
∑d

i=1 xi(xi)
T
〉

=
∑d

i=1 x
T
i Axi = b, then

∑d

i=1
xT

i Axi

b
= 1

and xT
i Axi

b
> 0 then X is a convex combination of U1, . . . , Ud but since X is a extreme

point of Fea(SQCCp), we have U1 = · · · = Ud. In that case

X = U1

d∑
i=1

(
xTi Axi

b

)
X = U1 = u1u

T
1
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Standard Quadratic Programs
[Bomze et al.(2000)Bomze, Dür, de Klerk, Roos, Quist, and Terlaky], [Bomze and de Klerk(2002)]

(StQ) min xTQx

s.t. eTx = 1
x ≥ 0

Completely Positive Formulation : (StQCp) min 〈Q,X〉
s.t. 〈E,X〉 = 1

X ∈ C∗

Copositive Formulation : (StQCo) max y

s.t. Q− yE ∈ C
y ∈ R
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Binary and continuous nonconvex quadratic programs
[Burer(2009)]

(MBQ) min xTQx+ 2cTx
s.t. aTi x = bi for i = 1, . . . ,

xj ∈ {0, 1} ∀j ∈ B
x ≥ 0

L = {x ≥ 0 : aTi x = bi, ∀i = 1, . . . ,m}

Key assumption: x ∈ L⇒ 0 ≤ xj ≤ 1 ∀j ∈ B
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(MBQ) min xTQx+ 2cTx
s.t. aTi x = bi for i = 1, . . . ,m

xj ∈ {0, 1} ∀j ∈ B
x ≥ 0

(MBQ) min 〈Q,X〉+ 2cTx
s.t. aTi x = bi for i = 1, . . . ,m

xj = Xjj ∀j ∈ B
x ≥ 0
X = xxT
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(MBQ) min 〈Q,X〉+ 2cTx
s.t. aTi x = bi for i = 1, . . . ,

xj = Xjj ∀j ∈ B
x ≥ 0
X = xxT

(MBQC∗) min 〈Q,X〉+ 2cTx
s.t. aTi x = bi for i = 1, . . . ,

aTi Xai = b2i for i = 1, . . . ,
xj = Xjj ∀j ∈ B[

1 xT

x X

]
∈ C∗
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Theorem
(MBQ) ⇔ (MBQC∗)

Eliminate x from the formulation

∃y ∈ Rm s.t. α =
m∑
i=1

yiai ≥ 0,
m∑
i=1

yibi = 1
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Binary and ternary fractional quadratic
[Amaral and Bomze(2015)]

τ∗MI := inf
{
f(x)
g(x) : x ∈ Rn+, Ĉx = ĉ , xi ∈ [Li, Ui] for all i ∈ I

}
xi = Li +

∑li
j=0 z

(j)
i 2j , i ∈ I ., z(j)

i ∈ {0, 1}, j ∈ [0, li], where li = blog2(Ui − Li)c,

Example: x ∈ [2, 17]

x = 2 + z(0)20 + z(1)21 + z(2)22 + z(3)23

= 2 + z(0) + z(1)2 + z(2)4 + z(3)8 with z(0), . . . , z(3) ∈ {0, 1}

B :=
⋃
i∈I

{i} × [0 : li] .
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Replace x by v ∈ Rd with d = n+
∑
i∈I

li

v = [x1, x2, . . . , xr, . . . ...z
(j)
i . . . ]

τ∗MB := inf
{
f(v)
g(v) : v ∈ Rd+, Cv = c , vi ∈ {0, 1} for all i ∈ B

}
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Homogenize a general quadratic constraint vTQv + qT v + γ considering new variables
w = [1, vT ]T

Q =

[
γ qT

q Q

]
∈Md+1

as well as

Y = wwT =

[
1 vT

v vvT

]
∈ C∗d+1 .

vTQv + qT v + γ = Q • Y .
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Cv = c⇔ ‖Cv − c‖2 = 0

Cc = [−cT |CT ]T [−c|C] =
[

cT c −cTC
−CT cT CTC

]
∈ Sd+1 ,

Y = wwT =

[
1 vT

v vvT

]

‖Cv − c‖2 = 0→ Cc • Y = 0
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Y00 = 1

Y0i = Yii ensure that vi = v2
i for all i ∈ B, which in turn is equivalent to vi ∈ [0, 1], so

that we arrive at

τ∗MB := inf
{
f(v)
g(v) : v ∈ Rd+, Cv = c , vi ∈ {0, 1} for all i ∈ B

}

τ∗rk 1 := inf
{
A • Y
B • Y

: Cc • Y = 0, Y0i − Yii = 0 , Y00 = 1, all i ∈ B , Y ∈ C∗,rk 1
d+1

}
,

where C∗,rk 1
d denotes the (non-convex, not closed) subcone of all completely positive

d× d matrices Y of rank one.
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Under conditions{
x ∈ Rd+ : Cx = 0

}
= 0 (

{
x ∈ Rd+ : Cx = 0

}
is bounded )

wTBw > 0 if Cw = 0 for w ∈ Rd+1
x \ 0

we have Y00 > 0 and B • Y > 0 and we replace Y rank-one by Y 6= 0.
So !!

τ∗rk 1 := inf
{
A • Y
B • Y

: Cc • Y = 0, Y0i − Yii = 0 , Y00 = 1, all i ∈ B , Y ∈ C∗,rk 1
d+1

}
,

Under previous conditions and Burer’s key condition we have an equivalent formulation
B • Y = 1.

τ∗COP := inf
{
A • Y : , B • Y = 1 , Cc • Y = 0, Y0i − Yii = 0 , all i ∈ B , Y ∈ C∗d+1

}
,
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Fractional quadratic programs
. [Amaral et al.(2014)Amaral, Bomze, and Júdice]

TO BE CONTINUED ....

Infeasibility, Fractional Quadratic Problems and Copositivity
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