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Chapter 1

Sets and Logic

Contents
1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Sets

Sets Theory was develop by Cantor in the end of XIX century and it has in-
fluenced almost all areas of Mathematics and constitutes a pilar of Modern
Mathematics. The term ”set” was coined by Bernard Bolzano as the trans-
lation of the German ”Menge”, appearing in his work ”The Paradoxes of the
Infinite”.

Definition 1.1.1 Sets A set is a collection of distinct and well-defined objects,
of any kind. These objects are the elements of the set. Usually we use capital
letters to designate a set and small letters for elements.
To say that x is an element of set X x ∈ X meaning that ”x belongs to X”.
To represent that ”x is not in X” we write x /∈ X reading ”x does not belong to
X”.

In what follows A and B are two arbitrary set.

Definition 1.1.2 Subsets A is a subset of B and we say that A is contained
in B, writing A ⊆ B, if every element of A is also an element of B. Otherwise
we write A * B, in which case at least one element from A is not an element
of B.
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A ⊆ B ↔ ∀a ∈ A, a ∈ B
A * B ↔ ∃a ∈ A, a /∈ B
A ⊆ A, ∀A (1.1)

Definition 1.1.3 Similar sets A and B are similar if they have the same ele-
ments and we write that A = B.

A = B ↔ ∀a ∈ A, a ∈ B and

∀a ∈ B, a ∈ A
A = B ↔ A ⊆ B and B ⊆ A.

Example 1.1.4 Let A = {1, 2, 3, 5}, B = {1, 3} e C = {2, 4, 5}.

2 ∈ A, but 2 /∈ B.

B ⊆ A, but B $ A.

B * C and C * B.

Definition 1.1.5 Empty set An empty set is a set without any element rep-
resented by {}or ∅.

Some common sets are:

N - Set of natural numbers

Z -Set of integer numbers

Q - Set of racional numbers

R - Set of real numbers

C - Set of complex numbers.

Definition 1.1.6 Representation of Sets We can represent a set using

Tabular Form Listing all the elements of a set, separated by commas and
enclosed within curly brackets {{.

Descriptive Form State in words the elements of the set.

Set Builder Form Writing in symbolic form the common characteristics shared
by all the elements of the set

Example 1.1.7 These are different representations of the same set



• Tabular Form - A = {1, 3, 5, 7, 9, . . . }.

• Descriptive Form - A =Set of positive odd integer.

• Set Builder Form - A = {x : x = 2n− 1, n ∈ N}

Definition 1.1.8 Operations with sets Given sets A and B, we m

Union A ∪B - set that consists of all elements belonging to either set A or set
B (or both).

Intersection A ∩B - set composed of all elements that belong to both A and
B.

Setminus A \B - set composed by all elements in A that are not in B.

Complemet Ac - set of all elements in the universe U that are not in A. We
admit that the admissible elements are restricted to some fixed class of
objects U called the universal set (or universe). Also can be described as
U \A

Cartesian Product A×B - set consisting of all ordered pairs (a, b) for which
a ∈ A and b ∈ B.

Example 1.1.9 Given A = {1, 5} , B = {1, 4} and U = {1, 2, 3, 4, 5}

A ∪B = {1, 4, 5}
A ∩B = {1}
A \B = {5}

Ac = {2, 3, 4}
A×B = {(1, 1), (1, 4), (5, 1), (5, 4)}
B ×A = {(1, 1), (1, 5), (4, 1), (4, 5)}

1.2 Logic

Definition 1.2.1 Propositional logic is a mathematical model that allows us to
reason about the truth or falsehood (T,F) of logical expressions.

Definition 1.2.2 Truth tables

Negation (NO)
p ∼ p
T F
F T

Conjunction (AND)
p q p ∧ q
T T T
T F F
F T F
F F F



Disjunction (OR)
p q p ∨ q
T T T
T F T
F T T
F F F

Exclusive Disjunction (XOR)
p q p∨̇q
T T F
T F T
F T T
F F F

Implication (IF THEN)
p q p⇒ q
T T T
T F F
F T T
F F T

Equivalence (IIF)
p q p⇔ q
T T T
T F F
F T F
F F T

1.2.1 Properties

Properties Conjunction Disjunction
Comutativity (p ∧ q) ⇔ (q ∧ p) (p ∨ q) ⇔ (q ∨ p)
Associativity [(p ∧ q) ∧ r] ⇔ [p ∧ (q ∧ r)] [(p ∨ q) ∨ r] ⇔ [p ∨ (q ∨ r)]
Idempotence (p ∧ p) ⇔ p (p ∨ p) ⇔ p

Identity (p ∧ V ) ⇔ p ⇔ (V ∧ p) (p ∨ F ) ⇔ p ⇔ (F ∨ p)
Annihilator (p ∧ F ) ⇔ F ⇔ (F ∧ p) (p ∨ V ) ⇔ V ⇔ (V ∨ p)

Properties Disjunction - Conjunction

Distributivity of ∧ over ∨

[p ∧ (q ∨ r)] ⇔ [(p ∧ q) ∨ (p ∧ r)]

[(q ∨ r) ∧ p] ⇔ [(q ∧ p) ∨ (r ∧ p)].

Distributivity of ∨ over ∧ ,

[p ∨ (q ∧ r)] ⇔ [(p ∨ q) ∧ (p ∨ r)]

[(q ∧ r) ∨ p] ⇔ [(q ∨ p) ∧ (r ∨ p)].



Chapter 2

Operations with real
numbers, solving equations
and inequalities
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Chapter 3

Sequences

Contents
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3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Basics definitions

In this chapter we will study a special case of functions, named sequences.

Definition 3.1.1 (Sequence)
A sequence (infinite) is a function of N in R

To simplify notation instead of f(n) we use fn and in general we adopt the
letter u, v, w to designate sequences.

Unlike a set, the same elements can appear multiple times at different posi-
tions in a sequence, and order matters. The variable n is called an index. The
position of an element in a sequence is its rank or index
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Example 3.1.2

un =
n+ 1

n+ 2
(3.1)

For un in 3.1, the element of rank 1 is u1 = 1+1
1+2 = 2/3. The element of rank 5

is 6/7.

A sequence can be defined by a list of its first elements, vn = {1, 4, 9, 16, 25, . . . }
by the general term vn = n2 or by recursion. In a sequence defined by recursion
a term depends on previous terms, like the Fibonacci numbers

Example 3.1.3 
w1 = 0

w2 = 1

wn+2 = wn + wn+1

For the Fibonacci sequence to find the element of rank 5 we have first to find
the element of rank 3, w3 = w2 + w1 = 1, of rank 4 w4 = w3 + w2 = 2 and
finally w5 = w4 + w3 = 2 + 1 = 3.

Example 3.1.4 For the sequence defined by recursion:{
a1 = 1

an+1 = an + n+ 1, ∀n ∈ N

the first 7 elements are 1, 3, 6, 10, 15, 21, 28.

The sequence: 
a1 = 1

a2 = 1

an+2 = 2an+1 + an, ∀n ∈ N

has as first elements 1, 1, 3, 7, 17, 41.

3.2 Properties

There are several properties that are important to study a sequence.

Definition 3.2.1 (Increasing and decreasing)
A sequence un is said to be

• monotonically increasing if un+1 ≥ un, ∀n ∈ N.

• strictly monotonically increasing if un+1 > un, ∀n ∈ N.

• monotonically decreasing if un+1 ≤ un, ∀n ∈ N.

• strictly monotonically decreasing if un+1 < un, ∀n ∈ N.



Example 3.2.2 Lets study the monotonicity of the sequence

an =
n+ 1

2n
.

By definition lets study the sign of

an+1 − an =
(n+ 1) + 1

2n+1
− n+ 1

2n
=

n+ 2

2n × 2
− n+ 1

2n

=
n+ 2− (n+ 1)× 2

2n × 2
=
n+ 2− 2n− 2

2n × 2

=
−n

2n+1
, ∀n ∈ N.

its is clear that this difference is alway negative so we may conclude that an is
strictly monotonically decreasing. Now for

bn =
1

7− 2n
.

just looking at the first elements of this sequence,

b1 =
1

5
; b2 =

1

3
; b3 = 1; b4 = −1

we see that b1 < b2 < b3 but b3 > b4 so we may conclude that bn is not monotone.

Definition 3.2.3 (Bounded)
A sequence un is said to be

• bounded from above if all the terms are less than some real number
M , there is if,

∃M ∈ R, ∀n ∈ N : un ≤M.

• bounded from below if all the terms are greater than some real
number M , there is if,

∃M ∈ R, ∀n ∈ N : un ≥M.

• bounded if it is both bounded from above and bounded from below,

∃M ∈ R, ∀n ∈ N : |un| ≤M.

3.3 Arithmetic and Geometric Progressions

The sequences (an) with elements 1, 4, 7, 10, 13, . . . and (bn) with elements 1,
1

2
,

1

4
,

1

8
, . . .

, have some special features. In fact we can easily note that for (an){
a1 = 1

an+1 = an + 3, ∀n ∈ N



and for (bn) {
b1 = 1

bn+1 = 1
2bn, ∀n ∈ N

Sequences with these behavior are known as Progressions.

Definition 3.3.1 (Progressions)
A sequence un is said to be

• an Arithmetic Progressions if the difference between the consecu-
tive terms is constant.

∀n ∈ N : un+1 = un + k = u1 + nk, k ∈ R

k is the common difference.

• a Geometric Progressions if the quotient of any two successive
members of the sequence is a constant

∀n ∈ N : un+1 = run = rnu1, r ∈ R \ {0}

r 6= 0 is the common ratio and u1 is a scale factor

We may observe that an arithmetic progression is monotonically

• increasing if the common difference k > 0

• decreasing if k < 0.

• if k = 0 then the sequence is constant.

Regarding the monotonicity of a geometric progression with common ratio r
and scale factor u1 its is

• Increasing if u1 > 0 and r > 1 or if a1 < 0 and 0 < r < 1;

• Decreasing if a1 > 0 and 0 < r < 1 or if a1 < 0 and r > 1;

• Constant if r = 1;

• Not monotone if r < 0.

The sum Sn of the first n terms of an arithmetic progression (an), is given by

Sn =
a1 + an

2
× n.

The sum Sn of the first n terms of a geometric progression (an), is given by

Sn = a1
1− rn

1− r
where r is the common ratio and a1 the scale factor.



3.4 Limits

Consider (an) the sequence 1 +
1

2
, 1 +

1

4
, 1 +

1

8
, . . . , 1 +

1

2n
, . . .. This sequence

is monotonically decreasing, with elements positive and approaching 1. In fact
the distance between the elements of the sequence and 1, given by

|an − 1|

takes the values
1

2
,

1

4
,

1

8
, . . . ,

1

2n
, . . .. No matter how small we consider this

distance, say ε, we know that we will find a rank p such that the distance of
the elements of the sequence For every real number ε > 0, there is a natural

Figure 3.1: Plot |an − 1|.

number p such that for every natural number n > p, we have |an − 1| < ε”.

Definition 3.4.1 (Limit)
A sequence an is said to converge to the limit a and we write

lim
n→+∞

an = a or an → a if

∀ε > 0 ∃ p ∈ N ∀n ∈ N : n > p⇒ |an − a| < ε.



3.4.1 Algebra of limits

We shall introduce some results regarding arithmetic operations on limits.

Theorem 3.4.2 If (an) and (bn) are convergent sequences, then the
sequence (an + bn) is convergent and

lim (an + bn) = lim an + lim bn.

Theorem 3.4.3 If (an) and (bn) are convergent sequences, then the
sequence (an × bn) is convergent and

lim(an × bn) = lim an × lim bn.

Theorem 3.4.4 If (an) is a convergent sequence and p is a natural
number, then the sequence (an)p is convergent and

lim(an)p = (lim an)p.

Theorem 3.4.5 If (an) and (bn) are convergent sequences, then the
sequence (an − bn) is convergent and

lim (an − bn) = lim an − lim bn.

Theorem 3.4.6 If (an) and (bn) are convergent sequences,

bn 6= 0, ∀n ∈ N, and lim bn 6= 0 then the sequence,

(
an
bn

)
is

convergent and
lim

an
bn

=
lim an
lim bn

.

Theorem 3.4.7 If p is a natural number and (an) is a convergent se-
quence with non-negative elements, then the sequence ( p

√
an) is conver-

gent and
lim p
√
an = p

√
lim an.



3.4.2 Infinite limits

Theorem 3.4.8 A sequence (an) is said to tend to infinity (as n tends
to infinity), or to have infinity as its limit, and we write lim an = +∞,
if ∀L > 0 ∃p ∈ N ∀n ∈ N : n > p⇒ an > L.

Theorem 3.4.9 A sequence (an) is said to tend to minus infinity (as
n tends to minus infinity), or to have −∞ as its limit, and we write
lim an = −∞, if ∀L > 0 ∃p ∈ N ∀n ∈ N : n > p⇒ an < −L.

Question: What about bn = (−2)n?

Show that lim an = +∞ using the definition for

an =

{
n+ 1, se n é par

n2 − 10, se n é ı́mpar

In R:

a×∞ =∞ (a 6= 0)
a

0
=∞ (a 6= 0)

a

∞
= 0 (a 6=∞)

∞
a

=∞ (a 6=∞)

∞p =∞ (p ∈ N)

p
√
∞ =∞ (p ∈ N)

∞k = 0 (k < 0)

3.4.3 Indeterminates

In calculus limits involving an algebraic combination of sequences are evaluated
by replacing the sequences by their limits; if the expression obtained after this
substitution cannot be evaluates because of lack of information it is said to take
on an indeterminate form.

The most common indeterminate forms are:

0

0
,
∞
∞
, 0×∞, 1∞,∞−∞, 00 and ∞0.



3.4.4 Special limits - ratio of polynomial in n

For k, r ∈ N,

lim
akn

k + ak−1n
k−1 + · · ·+ a0

brnr + br−1nr−1 + · · ·+ b0
=

 ∞ if k > r
ak/br if k = r

0 if k < r

Example 3.4.10 lim

(
n2 − 3

2n2 + 1

)
= 1/2

Exercices:

1.

(
n2 − 3

2n2 + 3n+ 1

)
;

2.

(
n2 − 3

n+ 1

)
;

3.

(
n2 − 3

4n3 + n2 + 1

)
;

4.

(
4n4 + n3 + 2

2n4 + 6n+ +1

)
;

3.4.5 Special limits - Generalization of ratio of polynomi-
als

The previous result cam be generalized to powers of racional exponent, for
example:

lim
3
√

3n3 + 3
2
√

2n2 + 3
= lim

6
√

(3n3 + 3)2

6
√

(2n2 + 3)3
= lim 6

√
(3n3 + 3)2

(2n2 + 3)3
=

6

√
32

23
=

3
√

3
2
√

2

For k, r ∈ Q+,

lim
akn

k + ak−1n
k−1 + · · ·+ a0

brnr + br−1nr−1 + · · ·+ b0
=

 ∞ if k > r
ak/br if k = r

0 if k < r

Example 3.4.11 lim
2
√
n2 − 3

2
√

4n2 + n+ 1
=

2
√

1
2
√

4

Exercices:

1. lim
n2 2
√
n2 + 1

2
√

3n6 + n+ 1
;

2. lim
2n 2
√
n− 3 + n2

6
√

4n6 + n2 + 1
;

3. lim
n 4
√
n2 − 3 + n2

4n3 + 1
;

4. lim
n4 + 2

√
n− 3 + n2

5
√

4n10 + n2 + 1
;



3.4.6 Special limits - Exponential an

Value a Monotony an

a > 1 increasing

a = 1 constant

0 < a < 1 decreasing

a = 0 constant

a < 0 not monotone

Value of a Limit of an

a > 1 +∞

a = 1 1

−1 < a < 1 0

a = −1 does not exist

a < −1 ∞

Example 3.4.12

(
3

4

)n
= 0

Exercise

(
4n

2n+ 1

)n



3.4.7 Special limits - Nepper

lim

(
1 +

k

n

)n
= ek

If un −→ +∞

lim

(
1 +

k

un

)un

= ek

If vn −→ −∞

lim

(
1 +

k

vn

)vn
= ek

Example 3.4.13 (
n+ 2

n

)n+2

=

(
n+ 2

n

)n(
n+ 2

n

)2

=

=

(
1 +

2

n

)n(
n+ 2

n

)2

= e2.1 = e2

Exercise

1.

(
n− 3

n

)n+1

;

2.

(
1− 1

n+ 1

)n
;

3.

(
1 +

2

3n

)n
;

4.

(
2n− 1

3n+ 2

)n
;

5.

(
1− 4

n2

)2n

;

6.

(
2n+ 3

−3n+ 5

)4n

;

7.

(
1− 2

n2

)n3

.

3.4.8 Special limits - Product of an infinitesimal by a
bounded sequence

If un −→∞ and vn −→ 0 then lim (unvn) = 0.

Example 3.4.14 To find lim
(

(−1)n 1
n2+1

)
we cannot apply the algebra of lim-

its because lim(−1)n does not exists but it is bounded since −1 ≤ (−1)n ≤ 1.

Since lim 1
n2+1 −→ 0 we may conclude that lim

(
(−1)n 1

n2+1

)
−→ 0.

Exercise



1. lim
(
−1
n+1

)n
; 2.

(
sin(n)

1

n+ 1

)
;

3.5 Exercises

1. Consider the sequence un =
2n− 1

n+ 1
.

(a) Find the terms of rank 5, 20 and n+1.

(b) Given the real numbers
29

16
,

40

19
find it they are elements of un.

(c) Prove that:

(i) (un) is monotonically increasing;

(ii) ∀n ∈ N, 1
2 ≤ un < 2;

(iii) (un) is convergent.

(d) Find an upper and lower limit.

2. Given un =

√
2n

1 +
√
n

:

(a) Show that limun =
√

2

(b) Find the rank of the first element of the sequence that verifies

|un −
√

2| < 10−1.

3. Show that the sequence bn =
2n

(n+ 1)!
é is strictly decreasing.

4. Consider
un = −2× 3n−5.

(a) Show that un is a geometic progression .

(b) Study its monotonicity.

(c) Find

8∑
k=2

uk.

5. In a aritmetic progression with common diffrence 5 we know that the
element of rank 10 its three times the element of rank 8. Find the sum of
the first 20 elements.

6. Find the limit of

(a)
4− n2

n3 − 2

(b)
2

n3 + 5
×
√
n− 3

(c)
5n + (−7)n+1

4n+2 − 3n

(d)

(
n+ 5

n+ 2

)n



(e)

(
n3 − 2

n3

)n2−3

7. Let (an) be the general term . Write an+1, a2n and an+p, p ∈ N, for the
following cases:

(a) an =
2n

n+ 1

(b) an =
(n+ 1)!

(3n− 1)!

(c) an =
(n− 1)2

2n+ 1

(d) an = n

√
(2n− 1)!

2n+1 + log n

(e) an =
(n2 + 1)!

(n2 − 1)!

8. Write the general term of the following sequences and check if they are
bounded.

(a) The sequence formed by the simetrics of the perfect squares.

(b) The sequence of the powers of base (−2) and natural exponent.
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4.1 Basic Definitions

Definition 4.1.1 (Function)
Let A e B be two sets. A function f is a rule that assigns to each
element x in A exactly one element, y = f(x), in B.

The variable x is the independent variable and y is the dependent variable.

Definition 4.1.2 (Domain and Range)
Given a real function f of real variable, the domain of f is the set of
values in R such that f(x) can be algebraically calculated. The range is
the set of values y = f(x) for every which x in the Domain of f .
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Definition 4.1.3 (Properties)
A function f from A to B is

• Injective if x1 6= x2 ⇒ f(x1) 6= f(x2).

• Surjective if ∀y ∈ B, ∃x ∈ A : y = f(x).

• Bijective if it is injective and surjective.

• Even if f(x) = f(−x).

• Odd if f(x) = −f(−x).

• Increasing if x1 > x2 ⇒ f(x1) ≥ f(x2).

• Strictly increasing if x1 > x2 ⇒ f(x1) > f(x2).

• Decreasing if x1 > x2 ⇒ f(x1) ≤ f(x2).

• Strictly decreasing if x1 > x2 ⇒ f(x1) < f(x2).

Definition 4.1.4 (Composition of functions)
Composition of function is a sequence of nested functions, where the
input of one function is the output of the previous function. For the
composition of two functions we say f after g and write f ◦ g and the
expression is given by f ◦ g(x) = f(g(x)).
The domain of f ◦ g is given by

Df◦g = {x ∈ R : x ∈ Dg ∧ y = g(x) ∈ Df}

Definition 4.1.5 (Roots, maximum and minimum)
We say that x0 is a root or a zero of f if f(x) = 0.
(f(x1)) is a relative or local minimum of f if

Definition 4.1.6 (Inverse function)
We say that f and g are inverse functions if f ◦ g = g ◦ f = I where I
is the identity function I(x) = x.



Definition 4.1.7 (Algebric operations on functions)

• (f + g)(x) = f(x) + g(x) and

Df+g = {x ∈ R : x ∈ Dg ∧ x ∈ Df}

• (fg)(x) = f(x).g(x) and

Dfg = {x ∈ R : x ∈ Dg ∧ x ∈ Df}

• (f − g)(x) = f(x)− g(x) and

Df−g = {x ∈ R : x ∈ Dg ∧ x ∈ Df}

• (f/g)(x) = f(x)/g(x) and

Df/g = {x ∈ R : x ∈ Dg ∧ g(x) 6= 0 ∧ x ∈ Df}

Definition 4.1.8 (Stepwise function)
We say that f is a stepwise function if

f =


g1(x) if x ∈ A1

g2(x) if x ∈ A2

. . .
gk(x) if x ∈ Ak

where A1 ∩A2 ∩ · · · ∩Ak = ∅ and

Df = {x ∈ R : (x ∈ A1 ∧ x ∈ Dg1) ∨ · · · ∨ (x ∈ Ak ∧ x ∈ Dgk)}

4.1.1 Exercises

1. Find the domain of the following functions

(a) f =

{ √
x− 1 if x ≥ 0

x− 1

x+ 2
if x < 0

(b) g =

{
x2 + 2 if x ≥ 4

1

x2 − 4
if x < 4

(c) h =


1

2x2 − 8x+ 6
if x ≤ 1

1

x2
if x > 1

2. For f(x) = 1
x2 and r(x) = 2x− 1 write f ◦ r and r ◦ f .



3. For g(x) = x3 + 3 and h(x) = x+ 2 write g ◦ h and h ◦ g.

4. Find the inverse function of f(x) = 3x− 7.

5. For g(x) = x + 1 and s(x) = x3 write g ◦ s. Define the inverse of g, the
inverse of s and the inverse of g ◦ s and relate (g ◦ s)−1 with g−1 and s−1 .

6. Check if the function f(x) = (x − 1)3 + 2 have inverse and in case of a
positive answer find the expression of f−1.

7. Check if the function h(x) = x2 − 6 have inverse and in case of a positive
answer find the expression of h−1.



4.2 Exponential and logarithmic functions

The exponential function is given by the expression

f(x) = ax

with a > 0. The domain is R, the range is R+.

• ax · ay = ax+y,∀a ∈ R+, ∀x, y ∈ R;

• ax

ay
= ax−y,∀a ∈ R+, ∀x, y ∈ R;

• (ax)y = ax·y,∀a ∈ R+, ∀x, y ∈ R;

• ax · bx = (a · b)x,∀a, b ∈ R+, ∀x ∈ R;

• ax

bx
=
(a
b

)x
,∀a, b ∈ R+, ∀x ∈ R.

The function has no zeros. It is strictly increasing for a > 1 and strictly de-
creasing for 0 < a < 1.
Let us remind some properties of exponentials. Among exponential functions

(a) The function ax, a > 1. (b) The function ax, 0 < a < 1.

Figure 4.1: Graphical representation of exponential function.

it is relevant, for its practical applications, the function of base a = e where
e is the number of Neper. In general we refer to ex simply as the exponential
function. The inverse of the exponential function is the logarithmic function.

Figure 4.2: Function ax, with a = 2, a = e e a = 3.



In fact we have

, x = ay ⇔ loga x = y

and

loga a
y = y and aloga x = x. (4.1)

From the definition of logarithm we have the following properties

loga a = 1 (because a1 = a)

e

loga 1 = 0 (because a0 = 1).

We have also the following properties, in which we consider a, b ∈ R+ \ {1},
x, y ∈ R+, z ∈ R e n ∈ N:

• loga(x.y) = loga x+ loga y

• loga
x
y = loga x− loga y

• loga (xz) = z · loga x

• loga n
√
x = 1

n loga x

• logb x = loga x
loga b

Note: In the case of a = e (Neper number) we will adopt the notation
loge x = log x.

Properties

• Domain is R+ and range is R;

• The function has only one root at x = 1.

• The function is surjective ans injective, so is bijective;

(a) The function loga x, a > 1. (b) The function loga x, 0 < a < 1.

Figure 4.3: Graphical representation of loga(x).



4.2.1 Exercises

1. Solve the equations:

(a) 2x = 128;

(b) 10x = 100;

(c) 15x = 225;

(d) 42x+1 =
1

64
;

(e) 32−x = 81;

(f) 53x+2 =
1

125
.

2. Simplify the expressions:

(a) log3 9 + log3 36− log3 4;

(b)
log5

1
8

log5 2
;

(c) log10(x+ 3)− 4 log10 x;

(d) 4 log x− 6 log(x+ 2);

(e) logb y
3 + logb y

2 − logb y
4;

(f)
1

2
log1/3 x

2 + 5 log1/3 x;

(g) log1/5 16 + log1/5 20− log1/5 43;

(h)
1

3
(3 log2 x− log2

1
y3 + 6 log2 z).

3. Solve the equations

(a) logb 256 = 4;

(b) log5 125 = x;

(c) logb 8 =
3

2
;

(d) log9(2x+ 1) =
1

2
;

(e) log1/2 (2− x) = 3;

(f) log (3x+ 2) = log 7.

4. Simplify the expressions:

(a) e3+log x;

(b) 16log2 x+3 log4

√
x;

(c)

(
1

3

)log3(x
2+4)−2 log3 x

;

(d) 253 log5 x;

(e) 75 log7 x−2 log7 x;

(f) 16log2 x;



5. Solve the equations :

(a) 3x−5 = 4;

(b) log10 x+ log10(x− 15) = 2;

(c)
1

16
= 644x−3;

(d) log3

√
2x+ 3 = 2;

(e) 4(log x)2 − 3 log x = 7;

(f)
1

3
log(xlog(x

3))− log(x5) + 4 = 0.

6. Consider f : R→ R such that f(x) = (0.2)x−1. Identify the true and false
propositions:

(a) f(x) < 1, ∀x ∈ R;

(b) f(0) = 3;

(c) f(x) > 25, ∀x ∈ R−;

(d) ∀x ≥ 1, 0 < f(x) ≤ 1;

(e) f(x) < 0, ∀x ∈ R;

(f) lim
x→+∞

f(x) = −∞.

7. Find the set os solution of the inequalities

(a)

(
1

3

)x−1
< 92−x;

(b) (0.1)x−x
2 ≤ 0.01;

(c) log 1
2
(x+ 5) > 0.

8. Solve the inequalities:

(a) x3 log2(2x) + x3 log 1
2
(x+ 5) < 0;

(b) log 1
3
(2x) < 2− log 1

3

(
1−x
x

)
;

(c) 3
x2−4

x2+5 < 1.

9. Consider the function g(x) = 5 + log 1
2
(3x− 1).

(a) Find Dg e CDg.
(b) Solve g(x) > 0.

(c) Find the zeros of g.

(d) Study the injectivity of g.

(e) Find the inverse of g, g−1.

10. Find the domain of function f defined by f(x) =
5(x− 2)3

e3(x−2) − 1
.



4.3 Trignometric functions

4.3.1 Background

The unit circle is a circle whose radius is 1 and whose center is at the origin of
a rectangular coordinate system. The unit circle, with radius 1 has a circum-
ference of length 2π. In other words, for one revolution around the unit circle
the length of the arc is 2π units.

Figure 4.4: Trigonometric circle.

• sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

• cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

• cos2(α) =
1

1 + tan2(α)

4.3.2 Function sine

f : R → R
x → sin (x)

• Df = R and CDf = [−1, 1].

• It is a periodic function with period 2π,there is,

sen (2π + x) = sen (x), ∀x ∈ R

.



Figure 4.5: Graphical representation of sin(x).

• It is odd

sin (−x) = − sin (x), ∀x ∈ R.

• It is increasing in intervals]
−π

2
+ 2kπ,

π

2
+ 2kπ

[
, k ∈ Z,

e and decreasing in intervals]
π

2
+ 2kπ,

3π

2
+ 2kπ

[
, k ∈ Z.

• Has a maximum at x =
π

2
+ 2kπ, k ∈ Z, and minimum at x = −π

2
+

2kπ, k ∈ Z. The maximun is 1 and the minimum −1.

• The zeros are of the form x = kπ, k ∈ Z.

4.3.3 Function cosine

g : R → R
x → cos (x)

Figure 4.6: Graphical representation of cos(x).

• Dg = R e CDg = [−1, 1].

• It is periodic with period 2π, that is,

cos (2π + x) = cos (x), ∀x ∈ R.



• Is even,
cos (−x) = cos (x), ∀x ∈ R.

• Is increasing in the intervals

]π + 2kπ, 2π + 2kπ[ , k ∈ Z,

e and decreasing at
]2kπ, π + 2kπ[ , k ∈ Z.

• Reaches a maximum at x = 2kπ, k ∈ Z, and the minimum at x = π +
2kπ, k ∈ Z.The maximun is 1 and the minimum is −1.

• The zeros are the points x =
π

2
+ kπ, k ∈ Z.

4.3.4 Function tangent

t : R → R
x → tan (x) = sin(x)

cos(x)

• Dh = R \ {π2 + kπ, k ∈ Z} e CDh = R.

• Is periodic with period π, that is,

tg (π + x) = tg (x), ∀x ∈ Dh.

• Is odd
tg (−x) = −tg (x), ∀x ∈ Dh.

• Is increasing in ]
−π

2
+ kπ,

π

2
+ kπ

[
, k ∈ Z.

• Has no maximun or minimum.

• The zeros are x = kπ, k ∈ Z.

Figure 4.7: Graphical representation of tangent.



4.3.5 Function cotangent

t : R → R
x → cot (x) = cos(x)

sin(x)

Figure 4.8: The graphical representation of cot.

• Di = R \ {kπ, k ∈ Z} e CDi = R.

• Is periodic with period π, that is,

cotg (π + x) = cotg (x), ∀x ∈ Di.

• Is odd

cotg (−x) = −cotg (x), ∀x ∈ Di.

• Is increasing in intervals

]kπ, π + kπ[ , k ∈ Z.

• Has no minimum or maximum.

• The zeros are x =
π

2
+ kπ, k ∈ Z.

In Summary



f(x) Domain Range Zeros Odd/Even Period Maximum attained at Minimum attained at

sen(x) R [−1, 1] x = kπ odd 2π x =
π

2
+ 2kπ x = −

π

2
+ 2kπ

cos(x) R [−1, 1] x =
π

2
+ kπ even 2π x = 2kπ x = π + 2kπ

tg(x)

{
x ∈ R : x 6=

π

2
+ kπ

}
R x = kπ odd π − −

cotg(x) {x ∈ R : x 6= kπ} R x =
π

2
+ kπ odd π − −

4.3.6 Inverse Trignometric Functions

Clearly the previous functions are not invertible but we can consider a restriction
(sub-domain) in which they are injective and so invertible. We will choose a
sub-domain where the we have full range (the range is the same of the original
function).

Let f(x) = sen (x) and consider the main restriction of the function the

restriction of f to the interval
[
−π

2
,
π

2

]
. Let it be g than

g :
[
−π

2
,
π

2

]
→ [−1, 1]

x → sen (x).

Being bijective g invertible and let g−1 be the inverse. For g−1, we have

Dg−1 = [−1, 1], CDg−1 =
[
−π

2
,
π

2

]
and to each y ∈ [−1, 1] we have x ∈

[
−π

2
,
π

2

]
which sin is y; such angle is

represented by arcsin(y) and the function g−1 is the arc-sin function. Then for

every x ∈
[
−π

2
,
π

2

]
and y ∈ [−1, 1]

y = sin (x)⇔ x = arcsin (y).

Let f(x) = cos (x) and consider the main restriction of the function the
restriction of f to the interval [0, π]. Let it be g than

g : [0, π] → [−1, 1]

x → cos (x).

Being bijective g is invertible and let g−1 be the inverse. For g−1, we have

Dg−1 = [−1, 1], CDg−1 = [0, π]



Figure 4.9: Graphical representation of arcsin.

and to each y ∈ [−1, 1] we have x ∈ [0, π] which cos is y; such angle is represented
by arccos(y) and the function g−1 is the arc-cos function. Then for every x ∈
[0, π] and y ∈ [−1, 1]

y = cos (x)⇔ x = arccos (y).

Figure 4.10: Graphical representation of arccos.



Let f(x) = tan (x) and consider the main restriction of the function the

restriction of f to the interval
]
−π

2
,
π

2

[
. Let it be g than

g :
]
−π

2
,
π

2

[
→ R

x → tan (x).

Being bijective g invertible and let g−1 be the inverse. For g−1, we have

Dg−1 = R, CDg−1 =
]
−π

2
,
π

2

[
and to each y ∈ R we have x ∈

]
−π

2
,
π

2

[
which tan is y; such angle is represented

by arctan(y) and the function g−1 is the arc-tan function. Then for every

x ∈
]
−π

2
,
π

2

[
e y ∈ R

y = tan (x)⇔ x = arctan (y).

Figure 4.11: Graphical representation of arctan.



4.4 Limits and continuity

Definition 4.4.1 (Limit of function)
We say that

lim
x→a

f(x) = b

iff
∀δ > 0,∃ε > 0 : x ∈ Df ∧ |x− a| < ε⇒ |f(x)− b| < δ

(a) For every δ > 0 (b) there exists a ε >
0 such that

(c) if |x− a| < ε (d) then |f(x)− b| <
δ

Figure 4.12

(a) (b)

Figure 4.13: The value of ε depends of δ.

Example 4.4.2 Considering f(x) = x2−1
x−1 let us prove that lim

x→1

x2 − 1

x− 1
= 2.

∣∣∣∣x2 − 1

x− 1
− 2

∣∣∣∣ =

∣∣∣∣x2 − 1− 2(x− 1)

x− 1

∣∣∣∣ =

∣∣∣∣x2 − 2x+ 1

x− 1

∣∣∣∣ =

=

∣∣∣∣ (x− 1)2

x− 1

∣∣∣∣ = |(x− 1)|

(4.2)

(4.3)

So, for every δ > 0 if |x − 1| < ε and ε ≤ δ then |f(x) − 2| < δ. This
concludes the proof.



Definition 4.4.3 (Relative limits)

lim
x→a+

f(x) = b⇔

∀δ > 0,∃ε > 0 : x ∈ Df ∧ x > a ∧ |x− a| < ε⇒ |f(x)− b| < δ

lim
x→a−

f(x) = b⇔

∀δ > 0,∃ε > 0 : x ∈ Df ∧ x < a ∧ |x− a| < ε⇒ |f(x)− b| < δ

lim
x→a
x 6=a

f(x) = b⇔

∀δ > 0,∃ε > 0 : x ∈ Df ∧ x 6= a ∧ |x− a| < ε⇒ |f(x)− b| < δ

Theorem 4.4.4 The lim
x→a
x 6=a

f(x) = b if and only if lim
x→a+

f(x) = b and

lim
x→a−

f(x) = b. If a /∈ Df then there is no difference between lim
x→a
x6=a

f(x)

and lim
x→a

f(x). If a ∈ Df then if lim
x→a
x 6=a

f(x) = b then lim
x→a

f(x) exists if

and only if b = f(a). In that case also lim
x→a

f(x) = b = f(a)

Example 4.4.5 Consider the function f : R→ R defined by

f(x) =

{
0, se x < 2

1, se x ≥ 2

(see Figure 4.14).

Figure 4.14



We have lim
x→2−

f(x) = 0 and lim
x→2+

f(x) = 1. so, lim
x→ 2
x 6= 2

f(x) does not exists and

as a consequence also lim
x→2

f(x) does not exist.

Example 4.4.6 Consider the function f : R→ R defined by

f(x) =

{
|x− 4|, se x 6= 4

2, se x = 4

Figure 4.15

We see that lim
x→4−

f(x) = 0 and lim
x→4+

f(x) = 0. So, lim
x→ 4
x 6= 4

f(x) = 0, but

lim
x→4

f(x) does not exist because f(4) = 2 6= 0.

Definition 4.4.7 We say that the limit of f when x→ +∞ is b if

∀ δ > 0 ∃ ε > 0 : x ∈ D ∧ x >
1

ε
⇒ |f(x)− b| < δ

and we write lim
x→+∞

f(x) = b.

Definition 4.4.8 We say that the limit of f when x→ −∞ is b if

∀ δ > 0 ∃ ε > 0 : x ∈ D ∧ x < −1

ε
⇒ |f(x)− b| < δ

and we write lim
x→−∞

f(x) = b.



Figure 4.16: The value of εdepends on δ.

Definition 4.4.9 We say that the limit of f when x→ a is +∞ if

∀ δ > 0 ∃ ε > 0 : x ∈ D ∧ |x− a| < ε⇒ f(x) >
1

δ

and we write lim
x→a

f(x) = +∞.

Figure 4.17: O valor de ε depende do valor de δ.

Definition 4.4.10 We say that the limit of f when x→ a is −∞ if

∀ δ > 0 ∃ ε > 0 : x ∈ D ∧ |x− a| < ε⇒ f(x) < −1

δ

and we write lim
x→a

f(x) = −∞.

Example 4.4.11 a) lim
x→a−

1

x− a
= −∞ e lim

x→a+
1

x− a
= +∞;

lim
x→a

1

x− a
não existe.

b) lim
x→a−

1

(x− a)2
= +∞ e lim

x→a+
1

(x− a)2
= +∞;

lim
x→a

1

(x− a)2
= +∞.

c) lim
x→+∞

1

x
= 0 = lim

x→−∞

1

x
.

d) lim
x→0+

(1 + x)1/x = lim
y→+∞

(
1 +

1

y

)y
= e.



Some special limits

lim
x→0

sin(x)

x
= 1 (4.4)

lim
x→0

cos(x)− 1

x
= 0 (4.5)

lim
x→0

ex − 1

x
= 1 (4.6)

lim
x→+∞

anx
n + · · ·+ a0

bmxm + · · ·+ b0
=


+∞ if n > m
an
bm

if n = m

0 if n < m

(4.7)

Theorem 4.4.12 The limit of f in a, when it exists is unique.

Proof: Supose that b, c ∈ R exist such that lim
x→a

f(x) = b, lim
x→a

f(x) = c e b 6= c.

Let δ = |b− c|/2. Since b 6= c, then δ > 0. by definition ??,

∃ ε1 > 0 : x ∈ D ∧ |x− a| < ε1 ⇒ |f(x)− b| < δ

and

∃ ε2 > 0 : x ∈ D ∧ |x− a| < ε2 ⇒ |f(x)− c| < δ.

Let ε = min{ε1, ε2} and x ∈ D such that |x− a| < ε. Then

|f(x)− b| < δ ∧ |f(x)− c| < δ,

so

|b− c| = |b− f(x) + f(x)− c| ≤ |b− f(x)|+ |f(x)− c| < δ + δ = 2 δ = |b− c|,

which is impossible.

Theorem 4.4.13 If lim
x→a

f(x) = b and lim
x→a

g(x) = c then:

a) lim
x→a

[f(x) + g(x)] = b+ c;

b) lim
x→a

[f(x)− g(x)] = b− c;

c) lim
x→a

[f(x)g(x)] = b c;

d) Se c 6= 0, lim
x→a

f(x)

g(x)
=
b

c
.

Theorem 4.4.14 Let f : D ⊂ R→ R and g : E ⊂ R→ R such that g(E) ⊂ D.
Se lim

x→a
g(x) = b and lim

x→b
f(x) = c then lim

x→a
(f ◦ g)(x) = c.



Definition 4.4.15 (Continuity)
We say that f is continuous in a ∈ Df if lim

x−→a
f(x) exists.

(By the definition of limit we must have lim
x−→a

f(x) = f(a)) We say

that f is a continuous function if it is continuous on every point of the
domain.

All the elementary functions studied before are continuous.

Exercises:

1. Study the existence of asymptotes of the following functions:

(a) f(x) =
x2 + 1

x2 − 1
;

(b) f(x) =


4− x2

x2 − 9
, se x ≥ 0

−x− 4

9
, se x < 0;

(c) f(x) =
4x

4− x2
− x+ 2;

(d) f(x) = x+ 1 +
1

2x2
;

(e) f(x) =
(x− 2)2

x− 1
;

(f) f(x) =


x+ 2− 1

3− x
, se x ≥ 0

x2 +
5

3
, se x < 0.

2. Consider the function f : R→ R defined by

f(x) =


√

1 + x− 1

x
, se x 6= 0

k, se x = 0

where k ∈ R. Find k such that f is continuous in x = 0.

3. Consider the function f : R→ R defined by

f(x) =


2

π
arctg

(
1

x

)
, se x < 0

x2 − x− a se x ≥ 0,

where a ∈ R. Study the continuity of f .

4. Consider the function f : R→ R defined by

f(x) =


2x2 + 2x− 4

x2 − 4
, se x ≤ −2

2k − 3x2

k + 1
, se x > −2



onde k ∈ R \ {−1}.Find k such that f is continuous in x = −2.

5. Consider the function f : R→ R defined by

f(x) =

−(x2 + 2x+ 2) e−x, se x > −1

log
(
(x2 − 4)2

)
, se x ≤ −1.

(a) Find the domain of f .

(b) Study the continuity of f

(c) Find lim
x→−2+

f(x) and lim
x→−2−

f(x).

6. Consider the function f : R→ R defined by

f(x) =

log

(
x2

|x− 1|

)
, se x 6= 0

0, se x = 0.

(a) Find the domain of f .

(b) Study the continuity of f

(c) Find the range of f .

7. Consider the function f : R→ R defined by

f(x) =

log(1− x) + x+ 1, se x < 0

x2 + 3x+ 3, se x ≥ 0.

(a) Find the domain of f .

(b) Study the continuity of f .

8. Consider the function f : R→ R defined by f(x) = log (log2(x)− 1).

(a) Find the domain of f .

(b) Study the continuity of f

(c) Find the range of f

9. Consider the function f : R→ R defined by

f(x) =


π

2
+ log(1− x2), se x ≤ 0

arctg

(
1

x

)
+

1

2
x, se x > 0

(a) Find the domain of f .

(b) Study the continuity of f

(c) Find the range of f



4.5 Derivatives

Definition 4.5.1 (Derivative)
Let f : D ⊂ R→ R and a one point in the interior of Df . We say that
the derivative of f in a exists if

lim
x→a

f(x)− f(a)

x− a

exists in R), and we designate this limit by f ′(a) or
df

dx
(a).

We may also consider x− a = h, and write lim
h→0

f(a+ h)− f(a)

h
·

If this limit is finite then we say that f is differentiable in a.If
f is differentiable in every point of the domain we say that f is
differentiable.

The racio
f(x)− f(a)

x− a
is the slope of the secant. A secant line is a straight

line joining two points on a function, in this case (a, f(a)) and (x, f(x)).

When Derivative of f(x) = c

Figure 4.18: Geometric interpretation of the derivative .

lim
x→a

f(x)− f(a)

x− a
= lim
x→a

0

x− a
= 0

Derivative of f(x) = x

lim
x→a

f(x)− f(a)

x− a
= lim
x→a

x− a
x− a

= 1

Derivative of f(x) = sin(x)

lim
h→0

sin(x+ h)− sin(x)

h
= lim
h→0

2 sin
(
h
2

)
cos
(
x+ h

2

)
h

= cos(x)



So

(sin)′(x) = cos(x), ∀x ∈ R.

Derivative of f(x) = ex

lim
h→0

ex+h − ex

h
= ex lim

h→0

eh − 1

h
= ex.

So

(ex)
′

= ex

Definition 4.5.2 (Left and right Derivative)
Let f : D ⊂ R→ R and a one point in the interior of Df . The left and
right derivative of f in a are given by,

f ′d(a) = lim
x→a+

f(x)− f(a)

x− a

f ′e(a) = lim
x→a−

f(x)− f(a)

x− a
If f ′d(a) = f ′e(a) then f ′(a) = f ′d(a) = f ′e(a)

Theorem 4.5.3 If f is differentiable in a, then f is continuous in a.

Proof:

lim
x→a

f(x) = lim
x→a

f(x)− f(a) + f(a) = lim
x→a

(x− a)
f(x)− f(a)

x− a
+ f(a) =

= lim
x→a

(x− a) lim
x→a

f(x)− f(a)

x− a
+ lim
x→a

f(a) = 0.f ′(a) + f(a) = f(a)

Theorem 4.5.4 If f and g are differentiable in a, then f + g and f · g
are also differentiable in a, and

(f + g)′(a) = f ′(a) + g′(a)

(f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a).

If g(a) 6= 0, then f/g is differentiable in a and(
f

g

)′
(a) =

f ′(a) · g(a)− f(a) · g′(a)

(g(a))2
.



Proof: If f ′(a) and g′(a) are finite, then for the sum we have:

(f + g)′(a) = lim
x→a

(f + g)(x)− (f + g)(a)

x− a

= lim
x→a

f(x) + g(x)− f(a)− g(a)

x− a

= lim
x→a

(
f(x)− f(a)

x− a
+
g(x)− g(a)

x− a

)
= lim

x→a

f(x)− f(a)

x− a
+ lim
x→a

g(x)− g(a)

x− a
= f ′(a) + g′(a)

proving that f + g is differentiable in a.

For the product

(f · g)′(a) = lim
x→a

(f · g)(x)− (f · g)(a)

x− a

= lim
x→a

f(x) · g(x)− f(a) · g(a)

x− a

= lim
x→a

f(x) · g(x)− f(a) · g(x) + f(a) · g(x)− f(a) · g(a)

x− a

= lim
x→a

(f(x)− f(a)) · g(x) + f(a) · (g(x)− g(a))

x− a

= lim
x→a

(
g(x) · f(x)− f(a)

x− a
+ f(a) · g(x)− g(a)

x− a

)
= lim

x→a
g(x) · lim

x→a

f(x)− f(a)

x− a
+ f(a) · lim

x→a

g(x)− g(a)

x− a
= g(a) · f ′(a) + f(a) · g′(a)

we used the fact that differentiability in g at a implies continuity of g in a.
For the ratio we start by considering the special case of f(x) = 1;

(
1

g

)′
(a) = lim

x→a

(
1

g

)
(x)−

(
1

g

)
(a)

x− a
= lim
x→a

1

g(x)
− 1

g(a)

x− a

= lim
x→a

g(a)− g(x)

g(x) · g(a)

x− a
= lim
x→a

g(x)− g(a)

x− a
·
(
− 1

g(x) · g(a)

)
= − 1

g(a)
· lim
x→a

1

g(x)
· lim
x→a

g(x)− g(a)

x− a
= − 1

g(a)
· 1

g(a)
· g′(a)

= − g′(a)

(g(a))2
.

Now noting that
f

g
= f · 1

g
, we have:



(
f

g

)′
(a) = f ′(a) ·

(
1

g

)
(a) + f(a) ·

(
1

g

)′
(a)

=
f ′(a) · g(a)− f(a) · g′(a)

(g(a))2
.

Theorem 4.5.5 Chain rule: If g : E → R is differentiable in a and
f : D → R is differentiable in b = g(a), then f ◦ g is differentiable in a
and

(f ◦ g)′(a) = f ′(b) · g′(a) = f ′(g(a)) · g′(a).

Theorem 4.5.6 Basic derivative rules

f f ′

c 0
cg cg′

x 1
xp pxp−1

sin(x) cos(x)
cos(x) − sin(x)

tan(x)
1

cos2(x)
ex ex

log(x)
1

x

4.6 Exercises

1. For f(x) = sin(x2 + 2) find f ′(x).

2. For f(x) = tan(ex) find f ′(x).

3. For f(x) = log(
√
x+ 2 + x) find f ′(x).

4. For f(x) = x log(x2 + 1) find f ′(x).

5. For f(x) = 3
√
x+ 2 find f ′(x).

6. For f(x) = x2 4
√

2x+ 6 find f ′(x).

7. For f(x) = x+1
ex+x find f ′(x).

7. For f(x) = e
1
x+2x find f ′(x).



8. Study the continuity and differentiability of f , defined by

f(x) =

(x− 1)3, se x > 0
1

4
x2 − 1, se x ≤ 0.

9. Study the continuity and differentiability of f , defined by

f(x) =


−π − 1− x, se x ≤ −π
cos(x), se −π < x < 0

1

1 + x2
, se x ≥ 0.

10. Study the continuity and differentiability of f , defined by

f(x) = 2 ex
2−4x.

11. Study the continuity and differentiability of f , defined by g(x) =
x2e4x

4
.

12. Study the continuity and differentiability of f , defined by

f(x) =

{
ex

2+1, se x ≤ 0

x cos(x), se x > 0.


