University Nova de Lisboa, Portugal

P. Amaral

Mathematics

Functions

Definition

(Function)

Let A e B be two sets. A function B is a rule that assigns to each element B in A exactly one element, B in B.

The variable x is the independent variable and y is the dependent variable.

Definition

(Domain and Range)

Given a real function f of real variable, the domain of f is the set of values in $\mathbb R$ such that f(x) can be algebraically calculated. The range is the set of values y=f(x) for every which x in the Domain of f.

Definition

(Properties)

A function f from A to B is

- Injective if $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.
- Surjective if $\forall y \in B, \exists x \in A : y = f(x)$.
- Bijective if it is injective and surjective.
- Even if f(x) = f(-x).
- $\bullet \quad \mathsf{Odd} \ \mathsf{if} \ f(x) = -f(-x).$
- Increasing if $x_1 > x_2 \Rightarrow f(x_1) \geq f(x_2)$.
- Strictly increasing if $x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$.
- Decreasing if $x_1 > x_2 \Rightarrow f(x_1) \leq f(x_2)$.
- Strictly decreasing if $x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$.

Definition

(Composition of functions)

Composition of function is a sequence of nested functions, where the input of one function is the output of the previous function. For the composition of two functions we say f after g and write $f\circ g$ and the expression is given by $f\circ g(x)=f(g(x)).$

The domain of $f \circ g$ is given by

$$D_{f \circ g} = \{ x \in \mathbb{R} : x \in D_g \land y = g(x) \in D_f \}$$

Definition

(Roots, maximum and minimum) We say that x_0 is a root or a zero of f if f(x)=0. $(f(x_1))$ is a relative or local minimum of f if

Definition

(Inverse function)

We say that f and g are inverse functions if $f \circ g = g \circ f = I$ where I is the identity function I(x) = x.

Definition

(Algebric operations on functions)

•
$$(f+g)(x)=f(x)+g(x)$$
 and
$$D_{f+g}=\{x\in\mathbb{R}:x\in D_g\wedge x\in D_f\}$$

$$\bullet \quad (fg)(x) = f(x).g(x) \text{ and }$$

$$D_{fg} = \{x \in \mathbb{R} : x \in D_g \land x \in D_f\}$$

$$(f-g)(x) = f(x) - g(x) \text{ and }$$

$$D_{f-g} = \{x \in \mathbb{R} : x \in D_g \land x \in D_f\}$$

$$\qquad \qquad (f/g)(x) = f(x)/g(x) \text{ and }$$

$$D_{f/g} = \{x \in \mathbb{R} : x \in D_g \land g(x) \neq 0 \land x \in D_f\}$$

Definition

(Stepwise function)

We say that f is a stepwise function if

$$f = \begin{cases} g_1(x) & \text{if } x \in A_1 \\ g_2(x) & \text{if } x \in A_2 \\ \dots & \\ g_k(x) & \text{if } x \in A_k \end{cases}$$

where $A_1 \cap A_2 \cap \cdots \cap A_k = \emptyset$ and

$$D_f = \{x \in \mathbb{R} : (x \in A_1 \land x \in D_{g_1}) \lor \dots \lor (x \in A_k \land x \in D_{g_k})\}$$

Exercises

1. Find the domain of the following functions

a)
$$f = \begin{cases} \sqrt{x-1} & \text{if } x \ge 0\\ \frac{x-1}{x+2} & \text{if } x < 0 \end{cases}$$

b)
$$g = \begin{cases} x^2 + 2 & \text{if } x \ge 4 \\ \frac{1}{x^2 - 4} & \text{if } x < 4 \end{cases}$$

c)
$$h = \begin{cases} \frac{1}{2x^2 - 8x + 6} & \text{if } x \le 1\\ \frac{1}{x^2} & \text{if } x > 1 \end{cases}$$

2. For $f(x) = \frac{1}{x^2}$ and r(x) = 2x - 1 write $f \circ r$ and $r \circ f$.

- 3. For $g(x)=x^3+3$ and h(x)=x+2 write $g\circ h$ and $h\circ g.$
- 4. Find the inverse function of f(x) = 3x 7.
- 5. For g(x)=x+1 and $s(x)=x^3$ write $g\circ s$. Define the inverse of g, the inverse of s and the inverse of $g\circ s$ and relate $(g\circ s)^{-1}$ with g^{-1} and s^{-1} .
- 6. Check if the function $f(x) = (x-1)^3 + 2$ have inverse and in case of a positive answer find the expression of f^{-1} .
- 7. Check if the function $h(x)=x^2-6$ have inverse and in case of a positive answer find the expression of h^{-1} .

Exponential and logarithmic functions

The exponential function is given by the expression

$$f(x) = a^x$$

with a > 0. The domain is \mathbb{R} , the range is \mathbb{R}^+ .

- $a^x \cdot a^y = a^{x+y}, \forall a \in \mathbb{R}^+, \ \forall x, y \in \mathbb{R};$
- $\frac{a^x}{a^y} = a^{x-y}, \forall a \in \mathbb{R}^+, \ \forall x, y \in \mathbb{R};$
- $(a^x)^y = a^{x \cdot y}, \forall a \in \mathbb{R}^+, \ \forall x, y \in \mathbb{R};$
- $a^x \cdot b^x = (a \cdot b)^x, \forall a, b \in \mathbb{R}^+, \ \forall x \in \mathbb{R};$
- $\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x, \forall a, b \in \mathbb{R}^+, \ \forall x \in \mathbb{R}.$

The function has no zeros. It is strictly increasing for a>1 and strictly decreasing for 0< a<1.

Let us remind some properties of exponentials.

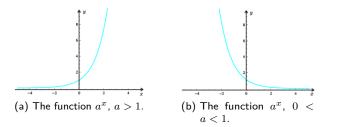


Figure 1: Graphical representation of exponential function.

Among exponential functions it is relevant, for its practical applications, the function of base a=e where e is the number of Neper. In general we refer to e^x simply as the exponential function.

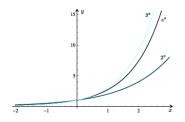


Figure 2: Function a^x , with a=2, a=e e a=3.

The inverse of the exponential function is the logarithmic function. In fact we have

$$, x = a^y \Leftrightarrow \log_a x = y$$

and

$$\log_a a^y = y \text{ and } a^{\log_a x} = x. \tag{1}$$

From the definition of logarithm we have the following properties

$$\log_a a = 1$$
 (because $a^1 = a$)

e

$$\log_a 1 = 0$$
 (because $a^0 = 1$).

We have also the following properties, in which we consider $a,b\in\mathbb{R}^+\setminus\{1\}$, $x,y\in\mathbb{R}^+$, $z\in\mathbb{R}$ e $n\in\mathbb{N}$:

- $\log_a(x.y) = \log_a x + \log_a y$
- $\log_a \frac{x}{y} = \log_a x \log_a y$
- $log_a(x^z) = z \cdot \log_a x$
- $\log_a \sqrt[n]{x} = \frac{1}{n} \log_a x$
- $\log_b x = \frac{\log_a x}{\log_a b}$

<u>Note</u>: In the case of a=e (Neper number) we will adopt the notation $\log_e x = \log x$.

Properties

- Domain is \mathbb{R}^+ and range is \mathbb{R} ;
- The function has only one root at x = 1.
- The function is surjective ans injective, so is bijective;

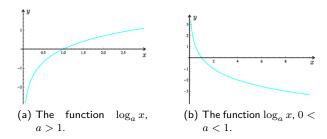


Figure 3: Graphical representation of $log_a(x)$.

Exercises

- 1. Solve the equations:
 - a) $2^x = 128$;
 - b) $10^x = 100$;
 - c) $15^x = 225$;
 - d) $4^{2x+1} = \frac{1}{64}$;
 - e) $3^{2-x} = 81$;
 - $f) \ 5^{3x+2} = \frac{1}{125}.$
- 2. Simplify the expressions:
 - a) $\log_3 9 + \log_3 36 \log_3 4$;

b)
$$\frac{\log_5 \frac{1}{8}}{\log_5 2}$$
;

c)
$$\log_{10}(x+3) - 4\log_{10}x$$
;

d)
$$4 \log x - 6 \log(x+2)$$
:

e)
$$\log_b y^3 + \log_b y^2 - \log_b y^4$$
;

f)
$$\frac{1}{2}\log_{1/3}x^2 + 5\log_{1/3}x$$
;

g)
$$\log_{1/5} 16 + \log_{1/5} 20 - \log_{1/5} 4^3$$
;

h)
$$\frac{1}{3}(3\log_2 x - \log_2 \frac{1}{y^3} + 6\log_2 z)$$
.

3. Solve the equations

a)
$$\log_b 256 = 4$$
;

b)
$$\log_5 125 = x$$
;

c)
$$\log_b 8 = \frac{3}{2}$$
;

d)
$$\log_9(2x+1) = \frac{1}{2}$$
;

e)
$$\log_{1/2}(2-x)=3$$
;

f)
$$\log(3x+2) = \log 7$$
.

- 4. Simplify the expressions:
 - a) $e^{3+\log x}$;
 - b) $16^{\log_2 x + 3\log_4 \sqrt{x}}$;
 - c) $\left(\frac{1}{3}\right)^{\log_3(x^2+4)-2\log_3 x}$;

d)
$$25^{3\log_5 x}$$
;

e)
$$7^{5 \log_7 x - 2 \log_7 x}$$
;

f)
$$16^{\log_2 x}$$
:

5. Solve the equations:

a)
$$3^{x-5} = 4$$
:

b)
$$\log_{10} x + \log_{10} (x - 15) = 2;$$

c)
$$\frac{1}{16} = 64^{4x-3}$$
;

d)
$$\log_3 \sqrt{2x+3} = 2$$
;

e)
$$4(\log x)^2 - 3\log x = 7$$
;

f)
$$\frac{1}{3}\log(x^{\log(x^3)}) - \log(x^5) + 4 = 0.$$

- 6. Consider $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = (0.2)^{x-1}$. Identify the true and false propositions:
 - a) $f(x) < 1, \forall x \in \mathbb{R}$;
 - b) f(0) = 3;
 - c) $f(x) > 25, \forall x \in \mathbb{R}^-$:
 - d) $\forall x > 1, 0 < f(x) < 1$;
 - e) $f(x) < 0, \forall x \in \mathbb{R}$;
 - f) $\lim_{x \to +\infty} f(x) = -\infty$.
- 7. Find the set os solution of the inequalities
 - a) $\left(\frac{1}{3}\right)^{x-1} < 9^{2-x}$;

- b) $(0.1)^{x-x^2} \le 0.01$;
- c) $\log_{\frac{1}{2}}(x+5) > 0$.
- 8. Solve the inequalities:
 - a) $x^3 \log_2(2x) + x^3 \log_{\frac{1}{2}}(x+5) < 0$;
 - b) $\log_{\frac{1}{3}}(2x) < 2 \log_{\frac{1}{3}}(\frac{1-x}{x});$
 - c) $3^{\frac{x^2-4}{x^2+5}} < 1$.
- 9. Consider the function $g(x) = 5 + \log_{\frac{1}{6}}(3x 1)$.
 - a) Find \mathcal{D}_g e $\mathcal{C}\mathcal{D}_g$.
 - b) Solve g(x) > 0.
 - c) Find the zeros of g.

- d) Study the injectivity of g.
- e) Find the inverse of g, g^{-1} .
- 10. Find the domain of function f defined by $f(x)=\frac{5(x-2)^3}{e^{3(x-2)}-1}$.

Trignometric functions

Background

The unit circle is a circle whose radius is 1 and whose center is at the origin of a rectangular coordinate system. The unit circle, with radius 1 has a circumference of length $2\pi.$ In other words, for one revolution around the unit circle the length of the arc is 2π units.

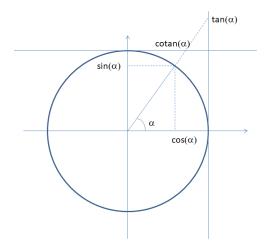


Figure 4: Trigonometric circle.

•
$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

•
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\bullet \quad \cos^2(\alpha) = \frac{1}{1 + \tan^2(\alpha)}$$

Function sine

$$\begin{array}{ccc} f: \mathbb{R} & \to & \mathbb{R} \\ x & \to & \sin(x) \end{array}$$

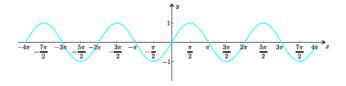


Figure 5: Graphical representation of sin(x).

•
$$\mathcal{D}_f = \mathbb{R}$$
 and $\mathcal{C}\mathcal{D}_f = [-1, 1]$.

- It is a periodic function with period $2\pi, \mbox{there}$ is,

$$\operatorname{sen}(2\pi + x) = \operatorname{sen}(x), \quad \forall x \in \mathbb{R}$$

.

It is odd

$$\sin(-x) = -\sin(x), \quad \forall x \in \mathbb{R}.$$

It is increasing in intervals

$$\left[-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \right[, \ k \in \mathbb{Z},$$

e and decreasing in intervals

$$\left] \frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi \right[, \ k \in \mathbb{Z}.$$

- Has a maximum at $x=\frac{\pi}{2}+2k\pi,\ k\in\mathbb{Z}$, and minimum at $x=-\frac{\pi}{2}+2k\pi,\ k\in\mathbb{Z}$. The maximum is 1 and the minimum -1.
- The zeros are of the form $x = k\pi, \ k \in \mathbb{Z}$.

Function cosine

$$g: \mathbb{R} \to \mathbb{R}$$
$$x \to \cos(x)$$

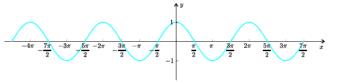


Figure 6: Graphical representation of cos(x).

- $lacksquare \mathcal{D}_g = \mathbb{R} \ \mathsf{e} \ \mathcal{C} \mathcal{D}_g = [-1,1].$
- It is periodic with period 2π , that is,

$$\cos(2\pi + x) = \cos(x), \quad \forall x \in \mathbb{R}.$$

Is even,

$$\cos(-x) = \cos(x), \quad \forall x \in \mathbb{R}.$$

Is increasing in the intervals

$$]\pi + 2k\pi, 2\pi + 2k\pi[\,,\ k \in \mathbb{Z},$$

e and decreasing at

$$|2k\pi, \pi + 2k\pi[, k \in \mathbb{Z}.$$

- Reaches a maximum at $x=2k\pi,\ k\in\mathbb{Z}$, and the minimum at $x=\pi+2k\pi,\ k\in\mathbb{Z}$. The maximum is 1 and the minimum is -1.
- The zeros are the points $x=\frac{\pi}{2}+k\pi,\ k\in\mathbb{Z}.$

Function tangent

$$t: \mathbb{R} \to \mathbb{R}$$

 $x \to \tan(x) = \frac{\sin(x)}{\cos(x)}$

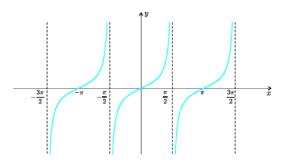


Figure 7: Graphical representation of tangent.

- $\mathcal{D}_h = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\} \text{ e } \mathcal{C}\mathcal{D}_h = \mathbb{R}.$
- Is periodic with period π , that is,

$$\operatorname{tg}(\pi + x) = \operatorname{tg}(x), \ \forall x \in \mathcal{D}_h.$$

Is odd

$$\operatorname{tg}(-x) = -\operatorname{tg}(x), \ \forall x \in \mathcal{D}_h.$$

Is increasing in

$$\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[, \ k \in \mathbb{Z}.$$

- Has no maximun or minimum.
- The zeros are $x = k\pi, \ k \in \mathbb{Z}$.

Function cotangent

$$\begin{array}{ccc} t: \mathbb{R} & \to & \mathbb{R} \\ x & \to & \cot{(x)} = \frac{\cos{(x)}}{\sin{(x)}} \end{array}$$

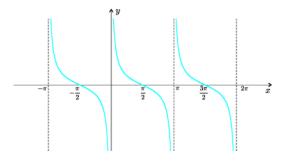


Figure 8: The graphical representation of $\cot. \label{eq:cot.}$

- $\mathcal{D}_i = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\} \text{ e } \mathcal{C}\mathcal{D}_i = \mathbb{R}.$
- Is periodic with period π , that is,

$$\cot g(\pi + x) = \cot g(x), \quad \forall x \in \mathcal{D}_i.$$

Is odd

$$\cot (-x) = -\cot (x), \quad \forall x \in \mathcal{D}_i.$$

• Is increasing in intervals

$$]k\pi, \pi + k\pi[, k \in \mathbb{Z}.$$

- Has no minimum or maximum.
- The zeros are $x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$.

f(x)	Domain	Range	Zeros	Odd/Even
sen(x)	\mathbb{R}	[-1, 1]	$x = k\pi$	odd
$\cos(x)$	\mathbb{R}	[-1, 1]	$x = \frac{\pi}{2} + k\pi$	even
tg(x)	$\left\{ x \in \mathbb{R} : x \neq \frac{\pi}{2} + k\pi \right\}$	\mathbb{R}	$x = k\pi$	odd
$\cot g(x)$	$\{x\in\mathbb{R}:x\neq k\pi\}$	R	$x = \frac{\pi}{2} + k\pi$	odd

Inverse Trignometric Functions

Clearly the previous functions are not invertible but we can consider a restriction (sub-domain) in which they are injective and so invertible. We will choose a sub-domain where the we have full range (the range is the same of the original function).

Let $f(x)=\mathrm{sen}\,(x)$ and consider the main restriction of the function the restriction of f to the interval $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Let it be g then

$$g: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow [-1, 1]$$

 $x \rightarrow \operatorname{sen}(x).$

Being bijective g invertible and let g^{-1} be the inverse. For g^{-1} , we have

$$\mathcal{D}_{g^{-1}} = [-1, 1], \quad \mathcal{C}\mathcal{D}_{g^{-1}} = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

and to each $y\in[-1,1]$ we have $x\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ which \sin is y; such angle is represented by $\arcsin(y)$ and the function g^{-1} is the arc-sin function. Then for every $x\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ and $y\in[-1,1]$

$$y = \sin(x) \Leftrightarrow x = \arcsin(y)$$
.

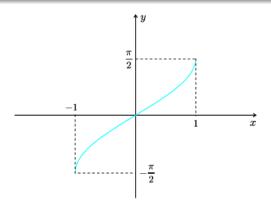


Figure 9: Graphical representation of arcsin.

Let $f(x) = \cos(x)$ and consider the main restriction of

the function the restriction of f to the interval $[0,\pi].$ Let it be g then

$$g: [0, \pi] \rightarrow [-1, 1]$$
$$x \rightarrow \cos(x).$$

Being bijective g is invertible and let g^{-1} be the inverse. For g^{-1} , we have

$$\mathcal{D}_{g^{-1}} = [-1, 1], \quad \mathcal{C}\mathcal{D}_{g^{-1}} = [0, \pi]$$

and to each $y\in[-1,1]$ we have $x\in[0,\pi]$ which \cos is y; such angle is represented by $\arccos(y)$ and the function g^{-1} is the arc-cos function. Then for every $x\in[0,\pi]$ and $y\in[-1,1]$

$$y = \cos(x) \Leftrightarrow x = \arccos(y)$$
.

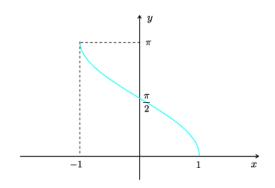


Figure 10: Graphical representation of arccos.

Let $f(x)=\tan{(x)}$ and consider the main restriction of the function the restriction of f to the interval $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$. Let it be g than

$$g: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\rightarrow \mathbb{R}$$
 $x \rightarrow \tan(x).$

Being bijective g invertible and let g^{-1} be the inverse. For g^{-1} , we have

$$\mathcal{D}_{g^{-1}} = \mathbb{R}, \quad \mathcal{C}\mathcal{D}_{g^{-1}} = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

and to each $y \in \mathbb{R}$ we have $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ which \tan is y; such angle is represented by $\arctan(y)$ and the function

$$g^{-1}$$
 is the arc-tan function. Then for every $x\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ e $y\in\mathbb{R}$
$$y=\tan\left(x\right)\Leftrightarrow x=\arctan\left(y\right).$$

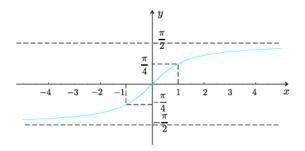


Figure 11: Graphical representation of arctan.

Limits and continuity

Definition

(Limit of function)

We say that

$$\lim_{x \to a} f(x) = b$$

iff

$$\forall \delta > 0, \exists \epsilon > 0 : x \in D_f \land |x - a| < \epsilon \Rightarrow |f(x) - b| < \delta$$

Definition

(Relative limits)

$$\lim_{x \to a^+} f(x) = b \Leftrightarrow$$

$$\forall \delta > 0, \exists \epsilon > 0 : x \in D_f \land x > a \land |x - a| < \epsilon \Rightarrow |f(x) - b| < \delta$$

$$\lim_{x\to a^-} f(x) = b \Leftrightarrow$$

$$\forall \delta>0, \exists \epsilon>0: x\in D_f \land x < a \land |x-a| < \epsilon \Rightarrow |f(x)-b| < \delta$$

$$\lim f(x) = b \in$$

$$\lim_{\substack{x\to a\\x\neq a}}f(x)=b\Leftrightarrow$$

$$\forall o>0, \exists \epsilon>0: x\in D_f/\backslash x\neq a/\backslash |x-a|<\epsilon\Rightarrow |f(x)-o|<\epsilon$$
 An introduction to Calculus | February, 2019

Definition

(Continuity)

We say that f is continuous in $a \in D_f$ if $\lim_{x \longrightarrow a} f(x)$ exists

(By the definition of limit we must have $\lim_{x \to a} f(x) = f(a)$) We say that f is a continuous function if it is continuous on every point of the domain.

All the elementary functions studied before are continuous.

Some special limits

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \tag{2}$$

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$
(4)

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \tag{4}$$

$$\lim_{x \to +\infty} \frac{a_n x^n + \dots + a_0}{b_m x^m + \dots + b_0} = \begin{cases} +\infty & \text{if } n > m \\ \frac{a_n}{b_m} & \text{if } n = m \text{ (5)} \\ 0 & \text{if } n < m \end{cases}$$