[ Publications ]

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2002
Jameson, G., W. Jin, C. Krebs, A. Perreira, P. Tavares, X. Liu, E. Theil, and B. Huynh. "{Stoichiometric production of hydrogen peroxide and parallel formation of ferric multimers through decay of the diferric-peroxo complex, the first detectable intermediate in ferritin mineralization}." Biochemistry. 41 (2002): 13435-13443. Abstract
The catalytic step that initiates formation of the ferric oxy-hydroxide mineral core in the central cavity of H-type ferritin involves rapid oxidation of ferrous ion by molecular oxygen (ferroxidase reaction) at a binuclear site (ferroxidase site) found in each of the 24 subunits. Previous investigators have shown that the first detectable reaction intermediate of the ferroxidase reaction is a diferric-peroxo intermediate, F(peroxo), formed within 25 ms, which then leads to the release of H(2)O(2) and formation of ferric mineral precursors. The stoichiometric relationship between F(peroxo), H(2)O(2), and ferric mineral precursors, crucial to defining the reaction pathway and mechanism, has now been determined. To this end, a horseradish peroxidase-catalyzed spectrophotometric method was used as an assay for H(2)O(2). By rapidly mixing apo M ferritin from frog, Fe(2+), and O(2) and allowing the reaction to proceed for 70 ms when F(peroxo) has reached its maximum accumulation, followed by spraying the reaction mixture into the H(2)O(2) assay solution, we were able to quantitatively determine the amount of H(2)O(2) produced during the decay of F(peroxo). The correlation between the amount of H(2)O(2) released with the amount of F(peroxo) accumulated at 70 ms determined by Mossbauer spectroscopy showed that F(peroxo) decays into H(2)O(2) with a stoichiometry of 1 F(peroxo):H(2)O(2). When the decay of F(peroxo) was monitored by rapid freeze-quench Mossbauer spectroscopy, multiple diferric mu-oxo/mu-hydroxo complexes and small polynuclear ferric clusters were found to form at rate constants identical to the decay rate of F(peroxo). This observed parallel formation of multiple products (H(2)O(2), diferric complexes, and small polynuclear clusters) from the decay of a single precursor (F(peroxo)) provides useful mechanistic insights into ferritin mineralization and demonstrates a flexible ferroxidase site.
1994
Tavares, P., N. Ravi, J. J. Moura, J. LeGall, Y. H. Huang, B. R. Crouse, M. K. Johnson, BH HUYNH, and I. Moura. "{Spectroscopic properties of desulfoferrodoxin from Desulfovibrio desulfuricans (ATCC 27774).}." Journal Of Biochemistry. 269 (1994): 10504-10510. Abstract
Desulfoferrodoxin, a non-heme iron protein, was purified previously from extracts of Desulfovibrio desulfuricans (ATCC 27774) (Moura, I., Tavares, P., Moura, J. J. G., Ravi, N., Huynh, B. H., Liu, M.-Y., and LeGall, J. (1990) J. Biol. Chem. 265, 21596-21602). The as-isolated protein displays a pink color (pink form) and contains two mononuclear iron sites in different oxidation states: a ferric site (center I) with a distorted tetrahedral sulfur coordination similar to that found in desulforedoxin from Desulfovibrio gigas and a ferrous site (center II) octahedrally coordinated with predominantly nitrogen/oxygen-containing ligands. A new form of desulfoferrodoxin which displays a gray color (gray form) has now been purified. Optical, electron paramagnetic resonance (EPR), and Mössbauer data of the gray desulfoferrodoxin indicate that both iron centers are in the high-spin ferric states. In addition to the EPR signals originating from center I at g = 7.7, 5.7, 4.1, and 1.8, the gray form of desulfoferrodoxin exhibits a signal at g = 4.3 and a shoulder at g = 9.6, indicating a high-spin ferric state with E/D approximately 1/3 for the oxidized center II. Redox titrations of the gray form of the protein monitored by optical spectroscopy indicate midpoint potentials of +4 +/- 10 and +240 +/- 10 mV for centers I and II, respectively. Mössbauer spectra of the gray form of the protein are consistent with the EPR finding that both centers are high-spin ferric and can be analyzed in terms of the EPR-determined spin Hamiltonian parameters. The Mössbauer parameters for both the ferric and ferrous forms of center II are indicative of a mononuclear high spin iron site with octahedral coordination and predominantly nitrogen/oxygen-containing ligands. Resonance Raman studies confirm the structural similarity of center I and the distorted tetrahedral FeS4 center in desulforedoxin and provide evidence for one or two cysteinyl-S ligands for center II. On the basis of the resonance Raman results, the 635 nm absorption band that is responsible for the gray color of the oxidized protein is assigned to a cysteinyl-S–>Fe(III) charge transfer transition localized on center II. The novel properties and possible function of center II are discussed in relation to those of mononuclear iron centers in other enzymes.