Publications

Export 47 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
V
Vitor Rosa, Sara Realista, Ana Mourato, Luisa Maria Abrantes, Joao Henriques, Maria Jose Calhorda, Teresa Aviles, Michael G. B. Drew, and Vitor Felix. "{1,1 `-Bis(diphenylphosphino)ferrocene bridging two mono(cyclopentadienyl) cobalt moieties: Synthesis, structure, electrochemistry and DFT studies}." {JOURNAL OF ORGANOMETALLIC CHEMISTRY}. {712} (2012): {52-56}. Abstract

{Reaction of {[}Co(eta(5)-C5H5)(CO)(2)], 1, with 1,1'-bis(diphenylphosphino)ferrocene (dppf) yields the new trinuclear complex {[}Co(eta(5)-C5H5)(CO)](2)(mu-dppf), 2, which was structurally characterised by single crystal X-ray diffraction and showed two Co(eta(5)-C5H5)(CO) moieties covalently linked by a dppf bridge. Electrochemical studies in dichloromethane revealed that both Co(I) and Fe(II) in the precursors were oxidized to Co(II)/Co(III) and Fe(III), respectively. On the other hand, in 2 the two first oxidation waves were assigned to Co, the Fe(II) centre requiring a higher potential than in free dppf. DFT calculations showed that the HOMOs of 2 were localised in the Co fragments, owing to the destabilisation of the Co(eta(5)-C5H5)(CO) orbitals after binding dppf. (C) 2012 Elsevier B.V. All rights reserved.}

Vitor Rosa, Christophe Fliedel, Alessio Ghisolfi, Roberto Pattacini, Teresa Aviles, and Pierre Braunstein. "{Influence of a thioether function in short-bite diphosphine ligands on the nature of their silver complexes: structure of a trinuclear complex and of a coordination polymer}." {DALTON TRANSACTIONS}. {42} (2013): {12109-12119}. Abstract

{New cationic Ag(I) complexes were prepared by reaction of AgBF4 with two thioether-functionalized bis-(diphenylphosphino) amine ligands, Ph2PN(p-ArSMe)PPh2 (L1) and Ph2PN(n-PrSMe)PPh2 (L2), and compared with those obtained from the unfunctionalized ligands Ph2PN(Ph)PPh2 (L3) and Ph2PN(n-Bu)PPh2 (L4), respectively. The complex {[}Ag-3(mu(3)-Cl)(2)(mu(2)-L1-P, P)(3)](BF4) (1 center dot BF4) contains a triangular array of Ag centres supported by three bridging L1 ligands and two triply-bridging chlorides. In contrast, ligand L2 led to the coordination polymer {[}\{Ag-2(mu(3)-L2,-P,P,S)(2)(MeCN)(2)\}\{Ag-2(mu(2)-L2-P,P)(2)(MeCN)(2) \}(BF4)(4)](n) (2) in which the tethered thioether group connects intermolecularly a Ag2 unit to the diphosphine bridging the other Ag2 unit. With L3 and L4, two similar complexes were obtained, {[}Ag-2(mu(2)-L3)(BF4)(2)] (3) and {[}Ag-2(mu(2)-L4)(BF4)(2)] (4), respectively, with bridging diphosphine ligands and a BF4 anion completing the coordination sphere of the metal. Complexes 1 center dot BF4 center dot CH2Cl2, 2 center dot THF, 3 center dot 3CH(2)Cl(2) and 4 have been fully characterized, including by single crystal X-ray diffraction.}

Vitor Rosa, Teresa Aviles, Gabriel Aullon, Berta Covelo, and Carlos Lodeiro. "{A new bis(1-naphthylimino)acenaphthene compound and its Pd(II) and Zn(II) complexes: Synthesis, characterization, solid-state structures and density functional theory studies on the syn and anti isomers}." {INORGANIC CHEMISTRY}. {47} (2008): {7734-7744}. Abstract

{A new rigid bidentate ligand, bis(1-naphthylimino)acenaphthene, L1, and its Zn(II) and Pd(II) complexes {[}ZnCl(2)(L1)], 1, and {[}PdCl(2)(L1)], 2, were synthesized. L1 was prepared by the ``template method{''}, reacting 1-naphthyl amine and acenaphthenequinone in the presence of ZnCl(2), giving 1, which was further demetallated. Reaction of 1-naphthyl amine with acenaphthenequinone and PdCl(2) afforded dichloride bis(1-naphthyl)acenaphthenequinonediimine palladium, 2. L1, 1, and 2 were obtained as a mixture of syn and anti isomers. Compound 2 was also obtained by the reaction of PdCl(2) activated by refluxing it in acetonitrile followed by the addition of L1; by this route also a mixture of syn and anti isomers was obtained, but at a different rate. The solid-state structures of L1 and the anti isomer of compound 2 have been determined by single-crystal X-ray diffraction. All compounds have been characterized by elemental analyses; matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry; IR; UV-vis; (1)H, (13)C, and (1)H-(1)H correlation spectroscopy; (1)H-(13)C heteronuclear single quantum coherence; (1)H-(13)C heteronuclear single quantum coherence-total correlation spectroscopy; and (1)H-(1)H nuclear Overhauser effect spectrometry NMR spectroscopies when applied. Density functional theory studies showed that both conformers for {[}PdCl(2)(BIAN)] are isoenergetic, and they can both be obtained experimentally. However, we can predict that the isomerization process is not available in a square-planar complex, but it is possible for the free ligand. The molecular geometry is very similar in both isomers, and only different orientations for naphthyl groups can be expected.}

T
Teixeira, M. G., F. Paolucci, M. Marcaccio, T. Aviles, C. Paradisi, F. Maran, and S. Roffia. "Electroinduced and spontaneous metal-halide bond dissociation in [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)I]." Organometallics. 17 (1998): 1297-1304. AbstractWebsite

The electrochemical behavior of the species [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)I] and [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](+) in ACN solutions, at 25 degrees C, is described. The kinetic analysis of the cyclic voltammetry curves indicates that the introduction of one electron in the former complex is concerted with the dissociation of the Co-I bond. The ensuing radical undergoes fast solvation to yield the solvato complex [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](.), which then acts as an efficient electron donor toward the starting material with the formation of[Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](+); finally, the cation is electroreduced at the working potentials to conclude an overall autocatalytic sequence. The solvato complex [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](.), formed as a product of the above reduction process, can be reversibly reduced to the corresponding anion at more negative potentials. Confirmation of the above mechanism and of the fact that the solvato complex can act as a solution electron donor toward the starting material was obtained by studying the electrochemical behavior of the solvato complex itself and through calculations aimed to better define the dissociative electron-transfer process to [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)I]. The dissociation of the metal-halide bond in the neutral complex [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)I], with the formation of[Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](+), was also found to occur spontaneously, in the bulk, through the observation of a progressive change of the cyclic voltammetric pattern. Support for the occurrence of the reaction between the starting complex and the solvent was confirmed by conductivity and spectroscopic measurements, which allowed the rate constant for the homogeneous solvolysis to be determined.

Teixeira, G., T. Aviles, A. R. Dias, and F. Pina. "{A KINETIC-STUDY OF PHOTOSUBSTITUTION OF CARBON-MONOXIDE AND TRIPHENYLPHOSPHINE IN COMPLEXES MN(ETA-5-CH3C5H4)(CO)3-N(PPH3)N (N=0, 1 AND 2)}." {JOURNAL OF ORGANOMETALLIC CHEMISTRY}. {353} (1988): {83-91}. Abstract

n/a

S
Sellin, M. F., I. Bach, J. M. Webster, F. Montilla, V. Rosa, T. Aviles, M. Poliakoff, and D. J. Cole-Hamilton. "Hydroformylation of alkenes in supercritical carbon dioxide catalysed by rhodium trialkylphosphine complexes." J Chem Soc Dalton (2002): 4569-4576. AbstractWebsite

Rhodium complexes modified by simple trialkylphosphines can be used to carry out homogeneous hydroformylation in supercritical carbon dioxide (scCO(2)). The catalyst derived from PEt3 is more active and slightly more selective for the linear products in scCO2 than in toluene, and under the same reaction conditions [100degreesC, 40 bar of CO/H-2 (1:1)] P(OPri)(3) is also an effective ligand giving good catalyst solubility and activity. Other ligands such as PPh3, POct(3), PCy3, and P(4-C6H4But)(3) are less effective because of the low solubility of their rhodium complexes in scCO(2). P(4-C6H4SiMe3)(n) Ph3-n (n = 3 or 1) and P(OPh)(3) impart activity despite their complexes only being poorly soluble in scCO(2). Under subcritical conditions, using PEt3 as the ligand, C7-alcohols from hydrogenation of the first formed aldehydes are the main products whilst above a total pressure of 200 bar, where the solution remains supercritical (monophasic) throughout the reaction, aldehydes are obtained with 97% selectivity. High pressure IR studies in scCO(2) using PEt3 as the ligand are reported.

Schnee, Gilles, Christophe Fliedel, Teresa Aviles, and Samuel Dagorne. "{Neutral and Cationic N-Heterocyclic Carbene Zinc Adducts and the BnOH/Zn(C6F5)(2) Binary Mixture - Characterization and Use in the Ring-Opening Polymerization of beta-Butyrolactone, Lactide, and Trimethylene Carbonate}." {EUROPEAN JOURNAL OF INORGANIC CHEMISTRY}. {2013} (2013): {3699-3709}. Abstract

{{Abstract A variety of N-heterocyclic carbene (NHC) zinc adducts of the type NHC-ZnMe2 {[}2a

R
Rosa, V., C. I. M. Santos, R. Welter, G. Aullon, C. Lodeiro, and T. Aviles. "Comparison of the Structure and Stability of New alpha-Diimine Complexes of Copper(I) and Silver(I): Density Functional Theory versus Experimental." Inorg Chem. 49 (2010): 8699-8708. AbstractWebsite

New compounds of the general formulas [M(Ar-BIAN)(2)]BF(4) and [M(Ar-BIAN)(NCMe)(2)]BF(4), where M=Cu(1) or Ag(1) and Ar-BIAN = bis(aryl)acenaphthenequinonediimine, were synthesized by the direct reaction of [Cu(NCMe)(4)]BF(4) or [Ag(NCMe)(4)]BF(4) with the corresponding Ar-BIAN ligand in dried CH(2)Cl(2). The synthesized compounds are [M(o, d, p-Me(3)C(6)H(2)-BIAN)(2)]BF(4) where M = Cu(1) (1) and Ag(1) (2), [M(o,d-iPr(2)C(6)H(3)-BIAN)(NCMe)(2)]BF(4) where M = Cu(1) (3) and Ag(1) (4), and [Ag(o,d-iPr(2)C(6)H(3)-BIAN)(2)]BF(4) (5). The crystal structures of compounds 1-3 and 5 were solved by singlecrystal X-ray diffraction. In all cases copper(I) or silver(I) are in a distorted tetrahedron that is constructed from the four nitrogen atoms of the two a-diimine ligands or, in 3, from one a-diimine ligand and two acetonitrile molecules. All compounds were characterized by elemental analyses, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and IR, UV-vis, and (1)H NMR spectroscopy. The analysis of the molecular geometry and the energetic changes for the formation reactions of the complexes, in a CH(2)Cl(2) solution, were evaluated by density functional theory calculations and compared with the experimental results.

Rosa, V., P. J. Gonzalez, T. Aviles, P. T. Gomes, R. Welter, A. C. Rizzi, M. C. G. Passeggi, and CD Brondino. "Synthesis, solid-state structures, and EPR spectroscopic studies on polycrystalline and single-crystal samples of alpha-diimine cobalt(II) complexes." Eur J Inorg Chem (2006): 4761-4769. AbstractWebsite

Cobalt compounds of the general formula [COX2(alpha-diimine)], where X = Cl or I and the alpha-diimines are 1,4-diaryl-2,3-dimethyl-1,4-diaza-1,3-butadiene (Ar-DAB) and bis(aryl)acenaphthenequinonediimine (Ar-BIAN) were synthesized by the direct reaction of the anhydrous cobalt salts CoCl2 or CoI2 and the corresponding alpha-diinline ligand in dried CH2Cl2. The synthesized compounds are [Co(Ph-DAB)Cl-2] (1a), [Co(o,o',p-Me3C6H2-DAB)Cl-2] (1b), and [Co(o,o'iPr(2)C(6)H(3)-DAB)Cl-2] (1c) with the ligands Ar-DAB, and also [Co(o,o',p-Me3C6H2-BIAN)I-2] (2'b) with the ligand Ar-BIAN. The crystal structures of all the compounds were solved by single-crystal X-ray diffraction. In all cases the cobalt atom is in a distorted tetrahedron, which is built up of two halide atoms and two nitrogen atoms of the alpha-dimune ligand. X-band EPR measurements of polycrystalline samples performed on compounds 1b, 1c, and 2'b indicate a high-spin Col, ion (S = 3/2) in an axially distorted environment. Single-crystal EPR experiments on compounds 1b and 1c allowed us to evaluate the orientation of the g tensor in the molecular frame. (c) Wiley-VCH Verlag GmbH & Co.