Export 3 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Montilla, F., A. Galindo, V. Rosa, and T. Aviles. "Effect of trimethylsilyl substitution on the chemical properties of triarylphosphines and their corresponding metal-complexes: Solubilising effect in supercritical carbon dioxide." Dalton T (2004): 2588-2592. AbstractWebsite

The donor strengths of the following triarylphosphine ligands P(Ar)(2)(Ar') (Ar = Ar' = 4-Me3SiC6H4, 1b; 4-Me3CC6H4, 1d; 4-F3CC6H4, 1e; Ar = C6H5, Ar' = 4-Me3SiC6H4, 1c) have been evaluated experimentally and theoretically. The measurements of the J(P-Se) coupling constants of the corresponding synthesised selenides Se=P(Ar)(2)(Ar'), 2b, c and the DFT calculation of the energies of the phosphine lone-pair ( HOMO) reveal insignificant influence on the electronic properties of the substituted phosphines when the trimethylsilyl group is attached to the aryl ring, in marked contrast to the strong electronic effect of the trifluoromethyl group. These triarylphosphine ligands P(Ar)(2)(Ar') reacted with (eta(5)-C5H5)Co(CO)(2), (eta(5)-C5H5)Co(CO)I-2 or PdCl2 to yield the new compounds (eta(5)-C5H5)Co(CO)[P(Ar)(2)(Ar')], 3b, d; (eta(5)-C5H5)COI[P(Ar)(2)(Ar')], 4b-e; and PdCl2[P(Ar)(2)(Ar')](2), 5b, c, respectively. These complexes have been characterized and their spectroscopic properties compared with those reported for the known triphenylphosphine complexes. Again, the contrast of the P-31 NMR and C-13 NMR chemical shifts or C-O or M-Cl stretching frequencies, when applied, does not show an important electronic effect on the metal complex of the trimethylsilyl substituted phosphines with respect to P(C6H5)(3) derivatives. Solubility measurements of complexes 3a and 3b in scCO(2) were performed. We conclude that Me3Si groups on the triarylphosphine improve the solubility of the corresponding metal complex in scCO(2).

Teixeira, M. G., F. Paolucci, M. Marcaccio, T. Aviles, C. Paradisi, F. Maran, and S. Roffia. "Electroinduced and spontaneous metal-halide bond dissociation in [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)I]." Organometallics. 17 (1998): 1297-1304. AbstractWebsite

The electrochemical behavior of the species [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)I] and [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](+) in ACN solutions, at 25 degrees C, is described. The kinetic analysis of the cyclic voltammetry curves indicates that the introduction of one electron in the former complex is concerted with the dissociation of the Co-I bond. The ensuing radical undergoes fast solvation to yield the solvato complex [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](.), which then acts as an efficient electron donor toward the starting material with the formation of[Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](+); finally, the cation is electroreduced at the working potentials to conclude an overall autocatalytic sequence. The solvato complex [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](.), formed as a product of the above reduction process, can be reversibly reduced to the corresponding anion at more negative potentials. Confirmation of the above mechanism and of the fact that the solvato complex can act as a solution electron donor toward the starting material was obtained by studying the electrochemical behavior of the solvato complex itself and through calculations aimed to better define the dissociative electron-transfer process to [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)I]. The dissociation of the metal-halide bond in the neutral complex [Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)I], with the formation of[Co(eta(5)-C5H5)(eta(3)-2-MeC3H4)(ACN)](+), was also found to occur spontaneously, in the bulk, through the observation of a progressive change of the cyclic voltammetric pattern. Support for the occurrence of the reaction between the starting complex and the solvent was confirmed by conductivity and spectroscopic measurements, which allowed the rate constant for the homogeneous solvolysis to be determined.

Aviles, T., and M. L. H. Green. "Eta-Cyclopentadienylcobalt Chemistry - Allylic, Alkyl, and Hydrido-Derivatives." J Chem Soc Dalton (1979): 1116-1120. AbstractWebsite