Export 21 results:
Sort by: Author Title Type [ Year  (Desc)]
Kauf, Thomas, Vitor Rosa, Christophe Fliedel, Roberto Pattacini, Naina Deibel, Teresa Aviles, Biprajit Sarkar, and Pierre Braunstein. "{Reactivity of TCNE and TCNQ derivatives of quinonoid zwitterions with Cu(I)}." {DALTON TRANSACTIONS}. {44} (2015): {5441-5450}. Abstract

{The reactions of TCNE- and TCNQ-functionalized (TCNE: tetracyanoethylene and TCNQ: 7,7', 8,8'-tetra-cyanoquinodimethane) zwitterionic benzoquinonemonoimines with a Cu(I)-BIAN complex (BIAN = bis-(o, o'-bisisopropylphenyl)acenaphthenequinonediimine) have been investigated and found to follow a diversity of interesting patterns. The complexes {[}Cu(BIAN)(NCMe)(L2)]BF4 (2) and {[}Cu(BIAN)(L2)(2)]BF4 (4) were obtained by reacting {[}Cu(BIAN)(NCMe) 2] BF4 (1) with one and two equivalents of L2, respectively. Following similar procedures, the complexes {[}Cu(BIAN)(NCMe)(L3)] BF4 (6) and {[}Cu(BIAN)(L3)(2)]BF4 (7) were obtained by reaction of 1 with L3. The reaction of 2 with 0.5 equiv. of 4,4'-bipyridine afforded {[}\{Cu(BIAN)-(L2)\}(2)(mu-4,4'-bipyridine)](BF4)(2) (3). The complexes were characterized by multinuclear NMR, IR and UV-Vis spectroscopic techniques, mass spectrometry, cyclic voltammetry and elemental analysis. The molecular structures of complexes 3 center dot 4CH(2)Cl(2) and 4 center dot CH2Cl2 were determined by single crystal X-ray diffraction. An unexpected coordination polymer {[}Cu(L2(-))(2)](infinity) (5) was also structurally characterized, which contains Cu(II) centres chelated by two N, O-bound ligands resulting from the monodeprotonation of L2.}

Maiti, Biplab K., Teresa Aviles, Isabel Moura, Sofia R. Pauleta, and Jose J. G. Moura. "{Synthesis and characterization of {[}S2MoS2Cu(n-SPhF)](2-) (n = o, m, P) clusters: Potential F-19-NMR structural probes for Orange Protein}." {INORGANIC CHEMISTRY COMMUNICATIONS}. {45} (2014): {97-100}. Abstract

{Three fluorinated Mo-Cu-thiolate isomers,{[}Ph4Ph{[}S2MoS2Cu(n-SPhF)], {[}n-SPhF = 2-fluorothiophenol (la)], 3-fluorothiophenol (lb), and 4-fluorothiophenol (1c)] were synthesized and spectroscopically characterized. The F-19-NMR signal of the fluorine atom in the.benzene has different chemical shift for each isomer, which is highly influenced by the local environment that can be manipulated by different solvents and solutes. The fluorine-19 chemical shift is an advantageous NMR structural probe in alternative to H-1-NMR {[}B.K. Maiti, T. Aviles, M. Matzapetakis, I. Moura, S.R. Pauleta, JJ.G. Moura, Eur. J. Inorg. Chem. (2012) 4159.], that can be used to provide local information on the pocket of the metal cluster in the Orange Protein (ORP). (C) 2014 Elsevier B.V. All rights reserved.}

Maiti, Biplab K., Luisa B. Maia, Kuntal Pal, Bholanath Pakhira, Teresa Aviles, Isabel Moura, Sofia R. Pauleta, Jose L. Nunez, Alberto C. Rizzi, Carlos D. Brondino, Sabyasachi Sarkar, and Jose J. G. Moura. "{One Electron Reduced Square Planar Bis(benzene-1,2-dithiolato) Copper Dianionic Complex and Redox Switch by O-2/HO-}." {INORGANIC CHEMISTRY}. {53} (2014): {12799-12808}. Abstract

{The complex {[}Ph4P](2){[}Cu(bdt)(2)] (1(red)) was synthesized by the reaction of {[}Ph4P]2{[}S2MoS2CuCl] with H2bdt (bdt = benzene-1,2-dithiolate) in basic medium. 1(red) is highly susceptible toward dioxygen, affording the one electron oxidized diamagnetic compound {[}Ph4P]{[}Cu(bdt)(2)] (1(ox)). The interconversion between these two oxidation states can be switched by addition of O-2 or base (Et4NOH = tetraethylammonium hydroxide), as demonstrated by cyclic voltammetry and UV-visible and EPR spectroscopies. Thiomolybdates, in free or complex forms with copper ions, play an important role in the stability of 1(red) during its synthesis, since in its absence, 1(ox) is isolated. Both 1(red) and 1(ox) were structurally characterized by X-ray crystallography. EPR experiments showed that 1(red) is a Cu(II)-sulfur complex and revealed strong covalency on the copper-sulfur bonds. DFT calculations confirmed the spin density delocalization over the four sulfur atoms (76%) and copper (24%) atom, suggesting that 1(red) has a ``thiyl radical character{''}. Time dependent DFT calculations identified such ligand to ligand charge transfer transitions. Accordingly, 1(red) is better described by the two isoelectronic structures {[}Cu(I)(bdt(2), 4S(3-{*}))](2-) {[}Cu-II(bdt(2), 4S(4-))](2-). On thermodynamic grounds, oxidation of 1(red) (doublet state) leads to 1(ox) singlet state, {[}Cu-III(bd(t)2, 4S(4-))](1-).}

Maiti, Biplab K., Teresa Avilés, Marta S. P. Carepo, Isabel Moura, Sofia R. Pauleta, and José J. G. Moura. "Rearrangement of Mo-Cu-S Cluster Reflects the Structural Instability of Orange Protein Cofactor." Z. Anorg. Allg. Chem.. 639.8-9 (2013): 1361-1364.
Vitor Rosa, Christophe Fliedel, Alessio Ghisolfi, Roberto Pattacini, Teresa Aviles, and Pierre Braunstein. "{Influence of a thioether function in short-bite diphosphine ligands on the nature of their silver complexes: structure of a trinuclear complex and of a coordination polymer}." {DALTON TRANSACTIONS}. {42} (2013): {12109-12119}. Abstract

{New cationic Ag(I) complexes were prepared by reaction of AgBF4 with two thioether-functionalized bis-(diphenylphosphino) amine ligands, Ph2PN(p-ArSMe)PPh2 (L1) and Ph2PN(n-PrSMe)PPh2 (L2), and compared with those obtained from the unfunctionalized ligands Ph2PN(Ph)PPh2 (L3) and Ph2PN(n-Bu)PPh2 (L4), respectively. The complex {[}Ag-3(mu(3)-Cl)(2)(mu(2)-L1-P, P)(3)](BF4) (1 center dot BF4) contains a triangular array of Ag centres supported by three bridging L1 ligands and two triply-bridging chlorides. In contrast, ligand L2 led to the coordination polymer {[}\{Ag-2(mu(3)-L2,-P,P,S)(2)(MeCN)(2)\}\{Ag-2(mu(2)-L2-P,P)(2)(MeCN)(2) \}(BF4)(4)](n) (2) in which the tethered thioether group connects intermolecularly a Ag2 unit to the diphosphine bridging the other Ag2 unit. With L3 and L4, two similar complexes were obtained, {[}Ag-2(mu(2)-L3)(BF4)(2)] (3) and {[}Ag-2(mu(2)-L4)(BF4)(2)] (4), respectively, with bridging diphosphine ligands and a BF4 anion completing the coordination sphere of the metal. Complexes 1 center dot BF4 center dot CH2Cl2, 2 center dot THF, 3 center dot 3CH(2)Cl(2) and 4 have been fully characterized, including by single crystal X-ray diffraction.}

Maiti, Biplab K., Teresa Aviles, Manolis Matzapetakis, Isabel Moura, Sofia R. Pauleta, and Jose J. G. Moura. "{Synthesis of {[}MoS4](2-)-M (M=Cu and Cd) Clusters: Potential NMR Spectroscopic Structural Probes for the Orange Protein}." {EUROPEAN JOURNAL OF INORGANIC CHEMISTRY} (2012): {4159-4166}. Abstract

{Two synthetic strategies of tetrathiomolybdate-metal clusters with the potential to be used as NMR structural probes for the location of the metal cofactor in the orange protein (ORP) are described. The first strategy is based on the substitution reaction in which small organic ligands bind directly to the metal centre in a molybdenumcopper hetero-dinuclear cluster. Interaction between {[}PPh4]2{[}MoS4CuCl] and either aliphatic {[}beta-mercaptoethanol (b-me)] or aromatic {[}o-aminobenzenethiol (abt)] thiols in the presence of a strong base resulted in the formation of {[}Ph4P]2{[}S2MoS2Cu(b-me)] (1a) and {[}Et4N]2{[}S2MoS2Cu(abt)]center dot H2O center dot 0.25DMF (1b), which can be used to obtain intermolecular NOEs. The compound 1a readily hydrolyzed to {[}Ph4P]2{[}OSMoS2Cu(b-me)] (1ahydro) in contact with a protic solvent. The second strategy consisted of the incorporation of cadmium into tetrathiomolybdate ({[}MoS4]2), which gives rise to the trinuclear cluster compound {[}PPh4]2{[}(MoS4)2Cd] (2). All clusters were characterized spectroscopically and their structure determined by X-ray diffraction. The NMR spectroscopic data are consistent with the formation of a complex with a 1:1 ratio of \{MoS4Cu\} and thiol. The 113Cd NMR chemical shift of compound 2 is consistent with the cadmium having a tetrahedral geometry and coordinated by four sulfur ligands. The tetraphenylphosphonium cation in compound 1a was replaced by a tetramethylammonium countercation originating in the water-soluble compound {[}Me4N-1a]. Solubility in aqueous buffers is a requirement for incorporating this cluster into apo-ORP. These compounds will be used to identify the exact location of the ORP heterometallic cluster using NMR methodologies.}

Pedras, B., E. Oliveira, H. Santos, L. Rodriguez, R. Crehuet, T. Aviles, J. L. Capelo, and C. Lodeiro. "A new tripodal poly-imine indole-containing ligand: Synthesis, complexation, spectroscopic and theoretical studies." Inorg Chim Acta. 362 (2009): 2627-2635. AbstractWebsite

A novel flexible tripodal ligand derived from 3-methylindole, ("InTREN" L), and its mononuclear Zn(II), Cu(II), Ni(II), Hg(II) and Pd(II) complexes are described. All compounds gave analytically pure solid samples. Characterisation of the compounds was accomplished by (1)H NMR, IR and absorption spectroscopies, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and elemental analysis and their geometry optimized using density functional theory (DFT).Time-dependent-density functional theory (TD-DFT) calculations have been used to assign the lowest energy absorption bands of the free ligand and the Zn(II) complex. The system is a very good candidate for in situ recognition/coordination effects by MALDI-TOF-MS spectrometry and absorption spectroscopy. The presence of three indole groups in InTREN opens up the possibility to synthesize new three-dimensional self-assembly supramolecular structures. (C) 2008 Elsevier B.V. All rights reserved.

Pedras, B., H. M. Santos, L. Fernandes, B. Covelo, A. Tamayo, E. Bertolo, J. L. Capelo, T. Aviles, and C. Lodeiro. "Sensing metal ions with two new azomethine-thiophene pincer ligands (NSN): Fluorescence and MALDI-TOF-MS applications." Inorg Chem Commun. 10 (2007): 925-929. AbstractWebsite

The two new pincer azomethine-thiophene ligands (N,NE',N,NE')-N,N'-(thiophene-2,5-diylbis(methan-1-yl-1-ylidene))bis(naphathalen-2-ylmethanamine) (L1) and (E)-(4,6-dihydropyren-1-yl)-N-((5-((E)-(pyren-1-ylmethylimino)ethyl)thiophen-2-yl)methylene)methanamine (L2), their absorption, fluorescence and MALDI-TOF-MS spectroscopic studies are described. The two systems synthesised combine the emissive probes pyrene and naphthyl with the good chelating properties of a tridentate SN2 donor-set from a thiophene Schiff-base ligand. Both ligands gave analytically pure solid complexes with Ni(II) and Pd(II) salts. The bichromophoric pyrene derivative L2 presents two emission bands in solution, one corresponding to the monomer species and a red-shifted band attributable to the intramolecular excimer. Ni(II) and Pd(II) complexation affects the conformation in solution, increasing the monomer emission at the expense of the excimer band; this effect could be explored in metal ion sensing. System L1 behaves as a non emissive probe. In situ complexation reactions followed by MALDI-TOF-MS spectrometry without matrix support have also been performed; these experiments show that L1 could be a potential chemosensor for Ni(II) and Pd(11). (c) 2007 Elsevier B.V. All rights reserved.

Rosa, V., P. J. Gonzalez, T. Aviles, P. T. Gomes, R. Welter, A. C. Rizzi, M. C. G. Passeggi, and CD Brondino. "Synthesis, solid-state structures, and EPR spectroscopic studies on polycrystalline and single-crystal samples of alpha-diimine cobalt(II) complexes." Eur J Inorg Chem (2006): 4761-4769. AbstractWebsite

Cobalt compounds of the general formula [COX2(alpha-diimine)], where X = Cl or I and the alpha-diimines are 1,4-diaryl-2,3-dimethyl-1,4-diaza-1,3-butadiene (Ar-DAB) and bis(aryl)acenaphthenequinonediimine (Ar-BIAN) were synthesized by the direct reaction of the anhydrous cobalt salts CoCl2 or CoI2 and the corresponding alpha-diinline ligand in dried CH2Cl2. The synthesized compounds are [Co(Ph-DAB)Cl-2] (1a), [Co(o,o',p-Me3C6H2-DAB)Cl-2] (1b), and [Co(o,o'iPr(2)C(6)H(3)-DAB)Cl-2] (1c) with the ligands Ar-DAB, and also [Co(o,o',p-Me3C6H2-BIAN)I-2] (2'b) with the ligand Ar-BIAN. The crystal structures of all the compounds were solved by single-crystal X-ray diffraction. In all cases the cobalt atom is in a distorted tetrahedron, which is built up of two halide atoms and two nitrogen atoms of the alpha-dimune ligand. X-band EPR measurements of polycrystalline samples performed on compounds 1b, 1c, and 2'b indicate a high-spin Col, ion (S = 3/2) in an axially distorted environment. Single-crystal EPR experiments on compounds 1b and 1c allowed us to evaluate the orientation of the g tensor in the molecular frame. (c) Wiley-VCH Verlag GmbH & Co.

Casimiro, T., F. Montilla, S. Garcia, T. Aviles, S. Raeissi, A. Shariati, C. J. Peters, M. N. da Ponte, and A. Aguiar-Ricardo. "Phase behaviour of the catalyst dicarbonyl (eta(5)-cyclopentadienyl)-cobalt in carbon dioxide." J Supercrit Fluid. 31 (2004): 1-8. AbstractWebsite

The phase behaviour of the binary mixture of carbon dioxide and the cobalt complex dicarbonyl(eta(5)-cyclopentadienyl)-cobalt, CPCo(CO)(2), has been investigated. This organometallic compound is one of the most effective catalysts of cyclotrimerization reactions of arylisocyanates and alkynes. Vapour-liquid equilibrium (VLE) measurements were undertaken in a static analytical apparatus at 313.15, 323.15 and 363.15 K at pressures up to 15 MPa. p, T isopleths were measured by a synthetic method in a Cailletet apparatus. Nine different compositions ranging from 17.56 to 94.23 mol% of CO2 were measured up to 15 MPa. Modelling with the Peng-Robinson equation of state (PR EOS) gave reasonable results in the correlation of the experimental phase equilibrium compositions using two temperature-dependent interaction parameters. (C) 2003 Elsevier B.V. All rights reserved.