Publications

Export 120 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
André, Carlos, Maria Amélia Bastos, Alexei Yu. Karlovich, Bernd Silbermann, and Ion Zaballa(Eds.) Operator Theory, Operator Algebras, and Matrix Theory. Basel: Birkhäuser, 2018.Website
B
Bastos, Maria Amélia, Luís Castro, and Alexei Yu. Karlovich(eds.) Operator Theory, Functional Analysis and Applications. Basel: Birkhäuser, 2021.
Bini, Dario, Torsten Ehrhardt, Alexei Yu. Karlovich, and Ilya M. Spitkovsky(eds.) Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics. The Albrecht Böttcher Anniversary Volume. Basel: Birkhäuser Basel, 2017.Website
Böttcher, Albrecht, Alexei Yu. Karlovich, and Bernd Silbermann. "Generalized Krein algebras and asymptotics of Toeplitz determinants." Methods of Functional Analysis and Topology. 13.2 (2007): 236-261. AbstractWebsite

We give a survey on generalized Krein algebras \(K_{p,q}^{\alpha,\beta}\) and their applications to Toeplitz determinants. Our methods originated in a paper by Mark Krein of 1966, where he showed that \(K_{2,2}^{1/2,1/2}\) is a Banach algebra. Subsequently, Widom proved the strong Szeg\H{o} limit theorem for block Toeplitz determinants with symbols in \((K_{2,2}^{1/2,1/2})_{N\times N}\) and later two of the authors studied symbols in the generalized Krein algebras \((K_{p,q}^{\alpha,\beta})_{N\times N}\), where \(\lambda:=1/p+1/q=\alpha+\beta\) and \(\lambda=1\). We here extend these results to \(0<\lambda<1\). The entire paper is based on fundamental work by Mark Krein, ranging from operator ideals through Toeplitz operators up to Wiener-Hopf factorization.

Böttcher, Albrecht, Oleksiy Karlovych, Eugene Shargorodsky, and Ilya M. Spitkovsky(eds.) Achievements and Challenges in the Field of Convolution Operators. The Yuri Karlovich Anniversary Volume. Operator Theory: Advances and Applications, vol. 306. Cham: Birkhäuser, 2025.Website
C
Canarias, Tiago, Alexei Karlovich, and Eugene Shargorodsky. "Multiplication Is an open bilinear mapping in the Banach algebra of functions of bounded Wiener $p$-variation." Real Analysis Exchange. 46.1 (2021): 121-148.Website
Curbera, Guillermo P., Oleksiy Karlovych, and Eugene Shargorodsky. "On the full range of Zippin and inclusion indices of rearrangement-invariant spaces." Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 118 (2024): 93.Website
D
Diening, Lars, Oleksiy Karlovych, and Eugene Shargorodsky. "Addendum to "On interpolation of reflexive variable Lebesgue spaces on which the Hardy–Littlewood maximal operator is bounded"." Georgian Mathematical Journal . 30.2 (2023): 211-212.Website
Diening, Lars, Oleksiy Karlovych, and Eugene Shargorodsky. "On interpolation of reflexive variable Lebesgue spaces on which the Hardy-Littlewood maximal operator is bounded." Georgian Mathematical Journal . 29.3 (2022): 347-352.Website
F
Fernandes, Cláudio, Oleksiy Karlovych, and Samuel Medalha. "Invertibility of Fourier convolution operators with PC symbols on variable Lebesgue spaces with Khvedelidze weights." Journal of Mathematical Sciences. 266.3 (2022): 419-434.Website
Fernandes, Cláudio A., and Alexei Yu. Karlovich. "Semi-almost periodic Fourier multipliers on rearrangement-invariant spaces with suitable Muckenhoupt weights." Boletín de la Sociedad Matemática Mexicana. 26.3 (2020): 1135-1162.Website
Fernandes, Cláudio A., Alexei Yu. Karlovich, and Yuri I. Karlovich. "Noncompactness of Fourier convolution operators on Banach function spaces." Annals of Functional Analysis. 10.4 (2019): 553-561.
Fernandes, Cláudio A., Alexei Yu. Karlovich, and Márcio Valente. "Invertibility of Fourier convolution operators with piecewise continuous symbols on Banach function spaces." Transactions of A. Razmadze Mathematical Institute. 175.1 (2021): 49-61.Website
Fernandes, Cláudio A., Alexei Yu. Karlovich, and Yuri I. Karlovich. "Fourier convolution operators with symbols equivalent to zero at infinity on Banach function spaces." Current Trends in Analysis, its Applications and Computation. Eds. P. Cerejeiras, M. Reissig, I. Sabadini, and J. Toft. Springer, 2022. 335-343.
Fernandes, Cláudio, and Oleksiy Karlovych. "On pseudodifferential operators with slowly oscillating symbols on variable Lebesgue spaces with Khvedelidze weights." Achievements and Challenges in the Field of Convolution Operators. The Yuri Karlovich Anniversary Volume. Operator Theory: Advances and Applications, vol. 306. Eds. Albrecht Böttcher, Oleksiy Karlovych, Eugene Shargorodsky, and Ilya Spitkovsky. Cham: Birkhäuser, 2025. 201-214.
Fernandes, Cláudio A., Alexei Yu. Karlovich, and Yuri. I. Karlovich. "Algebra of convolution type operators with continuous data on Banach function spaces." Banach Center Publications. 119 (2019): 157-171.Website
Fernandes, Cláudio A., Alexei Yu. Karlovich, and Yuri I. Karlovich. "Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers." Banach Journal of Mathematical Analysis. 15 (2021): 29.Website
Fernandes, Cláudio, Oleksiy Karlovych, and Márcio Valente. "On the density of Laguerre functions in some Banach function spaces." Journal of Inequalities and Special Functions. 13.2 (2022): 37-45.Website
Fernandes, Cláudio A., Alexei Yu. Karlovich, and Yuri I. Karlovich. "Calkin images of Fourier convolution operators with slowly oscillating symbols." Operator Theory, Functional Analysis and Applications. Operator Theory: Advances and Applications, vol 282. Basel: Birkhäuser Basel, 2021. 193-218.
K
Karlovich, Alexei Yu. "Asymptotics of block Toeplitz determinants generated by factorable matrix functions with equal partial indices." Mathematische Nachrichten. 280 (2007): 1118-1127. AbstractWebsite

We prove asymptotic formulas for block Toeplitz matrices with symbols admitting right and left Wiener-Hopf factorizations such that all partial indices are equal to some integer number. We consider symbols and Wiener-Hopf factorizations in Wiener algebras with weights satisfying natural submultiplicativity, monotonicity, and regularity conditions. Our results complement known formulas for Holder continuous symbols due to Bottcher and Silbermann.

Karlovich, Alexei Yu., and Pedro A. Santos. "On asymptoties of Toeplitz determinants with symbols of nonstandard smoothness." Journal of Fourier Aanalysis and Applications. 11.1 (2005): 43-72. AbstractWebsite

We prove Szegö's strong limit theorem for Toeplitz determinants with a symbol having a nonstandard smoothness. We assume that the symbol belongs to the Wiener algebra and, moreover, the sequences of Fourier coefficients of the symbol with negative and nonnegative indices belong to weighted Orlicz classes generated by complementary \(N\)-functions both satisfying the \(\Delta_2^0\)-condition and by weight sequences satisfying some regularity, and compatibility conditions.

Karlovich, Alexei Yu. "Fredholmness of singular integral operators with piecewise continuous coefficients on weighted Banach function spaces." Journal of Integral Equations and Applications. 15.3 (2003): 263-320. AbstractWebsite

We prove necessary conditions for the Fredholmness of singular integral operators with piecewise continuous coefficients on weighted Banach function spaces. These conditions are formulated in terms of indices of submultiplicative functions associated with local properties of the space, of the curve, and of the weight. As an example, we consider weighted Nakano spaces \(L^{p(\cdot)}_w\) (weighted Lebesgue spaces with variable exponent). Moreover, our necessary conditions become also sufficient for weighted Nakano spaces over nice curves whenever \(w\) is a Khvedelidze weight, and the variable exponent \(p(t)\) satisfies the estimate \(|p(\tau)-p(t)|\le A/(-\log|\tau-t|)\).

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "One-sided invertibility criteria for binomial functional operators with shift and slowly oscillating data." Mediterranean Journal of Mathematics. 13.6 (2016): 4413-4435.Website
Karlovich, Alexei Yu. "Hardy-Littlewood maximal operator on reflexive variable Lebesgue spaces over spaces of homogeneous type." Studia Mathematica. 254.2 (2020): 149-178.
Karlovich, Alexei, and Eugene Shargorodsky. "A lower estimate for weak-type Fourier multipliers." Complex Variables and Elliptic Equations. 67.3 (2022): 642-660.Website