Publications

Export 5 results:
Sort by: Author [ Title  (Asc)] Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
B
Karlovich, Alexei Yu. "Banach algebra of the Fourier multipliers on weighted Banach function spaces." Concrete Operators. 2.1 (2015): 27-36. AbstractWebsite

Let \(\mathcal{M}_{X,w}(\mathbb{R})\) denote the algebra of the Fourier multipliers on a separable weighted Banach function space \(X(\mathbb{R},w)\). We prove that if the Cauchy singular integral operator \(S\) is bounded on \(X(\mathbb{R},w)\), then \(\mathcal{M}_{X,w}(\mathbb{R})\) is continuously embedded into \(L^\infty(\mathbb{R})\). An important consequence of the continuous embedding \(\mathcal{M}_{X,w}(\mathbb{R})\subset L^\infty(\mathbb{R})\) is that \(\mathcal{M}_{X,w}(\mathbb{R})\) is a Banach algebra.

Fernandes, Cláudio A., Alexei Yu. Karlovich, and Yuri I. Karlovich. "Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers." Banach Journal of Mathematical Analysis. 15 (2021): 29.Website
Karlovych, Oleksiy, and Eugene Shargorodsky. "Bounded compact and dual compact approximation properties of Hardy spaces: new results and open problems." Indagationes Mathematicae. 35.1 (2024): 143-158.Website
Karlovich, Alexei Yu. "Boundedness of pseudodifferential operators on Banach function spaces." Operator Theory, Operator Algebras and Applications. Operator Theory: Advances and Applications, 242. Eds. Maria Amélia Bastos, Amarino Lebre, Stefan Samko, and Ilya M. Spitkovsky. Basel: Birkhäuser/Springer, 2014. 185-195. Abstract

We show that if the Hardy-Littlewood maximal operator is bounded on a separable Banach function space \(X(\mathbb{R}^n)\) and on its associate space \(X'(\mathbb{R}^n)\), then a pseudodifferential operator \(\operatorname{Op}(a)\) is bounded on \(X(\mathbb{R}^n)\) whenever the symbol \(a\) belongs to the Hörmander class \(S_{\rho,\delta}^{n(\rho-1)}\) with \(0<\rho\le 1\), \(0\le\delta<1\) or to the the Miyachi class \(S_{\rho,\delta}^{n(\rho-1)}(\varkappa,n)\) with \(0\le\delta\le\rho\le 1\), \(0\le\delta<1\), and \(\varkappa>0\). This result is applied to the case of variable Lebesgue spaces \(L^{p(\cdot)}(\mathbb{R}^n)\).

Karlovich, Alexei, and Eugene Shargorodsky. "The Brown-Halmos theorem for a pair of abstract Hardy spaces." Journal of Mathematical Analysis and Applications. 472 (2019): 246-265.Website