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Abstract. We say that an operator between Banach spaces is maxi-
mally noncompact if its operator norm coincides with its Hausdorff mea-
sure of noncompactness. We prove that a translation-invariant operator
acting from a translation-invariant Banach sequence space X(Zd) to a
translation-invariant Banach sequence space Y (Zd) is maximally non-
compact whenever the target space Y (Zd) satisfies mild additional con-
ditions. As a consequence, we show that the discrete Riesz transforms
Rj , j = 1, . . . , d on rearrangement-invariant Banach sequence spaces
with non-trivial Boyd indices are maximally noncompact. We also ob-
serve that the same results are valid for translation-invariant operators
between translation-invariant Banach function spacesX(Rd) and Y (Rd).

1. Introduction

For Banach spaces E,F , let B(E,F ) and K(E,F ) denote the sets of
bounded linear and compact linear operators from E to F , respectively.
We will abbreviate B(E) := B(E,E) and K(E) := K(E,E). The norm of
an operator A ∈ B(E,F ) is denoted by ∥A∥B(E,F ). The essential norm of
A ∈ B(E,F ) is defined by

∥A∥B(E,F ),e := inf{∥A−K∥B(E,F ) : K ∈ K(E,F )}.
For a bounded subset Ω of the space E, we denote by χ(Ω) the greatest
lower bound of the set of numbers r such that Ω can be covered by a finite
family of open balls of radius r. For A ∈ B(E,F ), set

∥A∥B(E,F ),χ := χ (A(BE)) ,

where BE denotes the closed unit ball in E. The quantity ∥A∥B(E,F ),χ is
called the (Hausdorff) measure of non-compactness of the operator A. It
follows from the definition of the essential norm and [27, inequality (3.29)]
that for every A ∈ B(E,F ) one has

(1.1) ∥A∥B(E,F ),χ ≤ ∥A∥B(E,F ),e ≤ ∥A∥B(E,F ).
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We refer to the monographs [1, 6, 10] for the general theory of measures of
non-compactness. We will say that an operator A ∈ B(E,F ) is maximally
noncompact if ∥A∥B(E,F ),χ = ∥A∥B(E,F ),e = ∥A∥B(E,F ).

For h ∈ Zd, let Vh denote the shift (translation) operator

(1.2) (Vhf)(x) := f(x− h), x ∈ Zd.

Let X = X(Zd), Y = Y (Zd) be Banach sequence spaces (see [11, Ch. 1]
or Section 2 below for the definition of this notion). One says that the
space X(Zd) is translation-invariant if ∥Vhf∥X = ∥f∥X for all f ∈ X(Zd)
and h ∈ Zd. If both X(Zd) and Y (Zd) are translation-invariant, then an
operator A ∈ B(X,Y ) is said to be translation-invariant if AVh = VhA for
all h ∈ Zd.

The discrete Hilbert transform H defined by

(Hf)(x) :=
1

π

∑
y∈Z\{x}

f(y)

y − x
, x ∈ Z,

is one of the most important translation-invariant operators. Its bound-
edness on ℓp(Z) with 1 < p < ∞ was established by Marcel Riesz [30].
Calderón and Zygmund [14, Theorem 14] extended this result to the mul-
tidimensional case of the discrete Riesz transforms Rj , j = 1, . . . , d given
by

(Rjf)(x) :=
1

πn

∑
y∈Zd\{x}

yj − xj
|y − x|d+1

f(y), x = (x1, . . . , xd) ∈ Zd,

where j = 1, . . . , d and |x| =
√
x21 + · · ·+ x2d. Andersen [3] generalized

the above results to the setting of rearrangement-invariant Banach sequence
spaces X(Zd) and proved that the Hilbert transform H is bounded on X(Z)
(respectively, the Riesz transforms Rj , j = 1, . . . , d, are bounded on X(Zd))

if and only if the Boyd indices of X(Z) (respectively, of the space X(Zd))
satisfy 0 < αX , βX < 1 (see Theorem 3.1).

Note that the norm and the essential norm of the continuous analogue H
of the operator H on the space Lp(R) for 1 < p <∞ are well known:

(1.3) ∥H∥B(Lp(R)) = ∥H∥B(Lp(R)),e = cot(π/(2p∗)),

where

p∗ := max{p, p/(p− 1)}
(see, e.g., [16, Ch. 13, Theorem 1.3] and [25, Ch. II, Example 4.2]). The
lower estimate was obtained by Gohberg and Krupnik in 1968, and the
upper estimate was proved four years later by Pichorides (we refer to the
survey [26] for a more detailed history). Recently, Bañuelos and Kwaśnicki
[8] proved the long standing conjecture on the norm of the discrete Hilbert
transform:

(1.4) ∥H∥B(ℓp(Z)) = cot(π/(2p∗)), 1 < p <∞.
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We also refer to [7, 9] for further results on sharp estimates for discrete
singular integrals.

The values of the essential norm and of the Hausdroff measure of noncom-
pactness of the discrete Hilbert transform on ℓp(Z) do not seem to be known.
Our initial motivation was to fill in this gap, but we realised that one can
study the problem of maximal noncompactness of more general translation-
invariant operators in much more general settings of translation-invariant or
rearrangement-invariant Banach function spaces.

Let S0(Zd) denote the set of all finitely supported sequences. If a Banach
sequence space Y (Zd) is non-separable, then S0(Zd) is not dense in it, but it
may happen that every element of Y (Zd) can be approximated by elements
of S0(Zd) in a norm weaker than ∥ · ∥Y . This possibility is described in the
next theorem by introducing an auxiliary Banach sequence space Z(Zd).

Theorem 1.1 (Main result). Let X = X(Zd), Y = Y (Zd), and Z = Z(Zd)
be translation-invariant Banach sequence spaces such that Y is a subset of
the closure of S0(Zd) in Z. If A ∈ B(X,Y ) is a translation-invariant oper-
ator, then it is maximally noncompact.

We will show that the assumption on the space Y (Zd) is satisfied if Y (Zd)
is rearrangement-invariant and its lower Boyd index satisfies αY > 0 (see
Corollary 3.8). In particular, one can consider nonseparable target spaces,
like the weak-ℓp space ℓp,∞(Zd). Hence Theorem 1.1 and Andersen’s results
(see Theorem 3.1) on the boundedness of the Riesz transforms Rj , 1 ≤ j ≤ d,
on rearrangement-invariant Banach function spaces imply the following.

Corollary 1.2. Let X = X(Zd) be a rearrangement-invariant Banach se-
quence space with the Boyd indices satisfying 0 < αX , βX < 1. For all
a, b ∈ C and j = 1, . . . , d, the operators aI + bRj are maximally noncompact
on the space X.

Combining this corollary with (1.4), we get

∥H∥B(ℓp(Z)),χ = ∥H∥B(ℓp(Z)),e = ∥H∥B(ℓp(Z)) = cot(π/(2p∗)), 1 < p <∞.

The paper is organized as follows. In Section 2, we recall the definitions
and basic properties of Banach sequence spaces and their associate spaces.
In Section 3, we deal with rearrangement-invariant Banach sequence spaces,
their Boyd indices αX , βX (see [13]) and Zippin indices pX , qX (see [31]).
We show that if the lower Zippin index of a rearrangement-invariant Banach
sequence space X(Zd) satisfies pX > 1/p, where 1 < p <∞, then X(Zd) ↪→
ℓp(Zd). This fact and the inequality αX ≤ pX imply that the assumptions
of Theorem 1.1 are satisfied if X(Zd) = Y (Zd) is a rearrangement-invariant
Banach function space with nontrivial Boyd indices, which tells us that
Corollary 1.2 follows from Theorem 1.1 and Andersen’s Theorem 3.1. So, it
remains to prove Theorem 1.1, which is done in Section 4. In Section 5, we
present continuous analogues of Theorem 1.1 and Corollary 1.2.
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2. Banach sequence spaces

2.1. Definition of a Banach sequence space. Let S ∈ {N,Zd}, let ℓ0(S)
be the linear space of all sequences f : S → C, and let ℓ0+(S) be the cone of
nonnegative sequences in ℓ0(S). We equip S with the counting measure, i.e.
the purely atomic measure with atoms having equal measure 1. According
to [11, Ch. 1, Defintion 1.1], a Banach function norm ϱ : ℓ0+(S) → [0,∞] is a
mapping which satisfies the following axioms for all f, g, {fn} in ℓ0+(S), for
all finite subsets E ⊂ S, and all constants a ≥ 0:

(A1) ϱ(f) = 0 ⇔ f = 0, ϱ(af) = aϱ(f), ϱ(f + g) ≤ ϱ(f) + ρ(g),

(A2) 0 ≤ g ≤ f ⇒ ϱ(g) ≤ ϱ(f) (the lattice property),

(A3) 0 ≤ fn ↑ f ⇒ ϱ(fn) ↑ ϱ(f) (the Fatou property),

(A4) ϱ(χE) <∞,

(A5)
∑
x∈E

f(x) ≤ CEϱ(f),

where χE is the characteristic (indicator) function of E, and the constant
CE ∈ (0,∞) may depend on ϱ and E, but is independent of f . The set X(S)
of all sequences f ∈ ℓ0(S) for which ϱ(|f |) <∞ is called a Banach sequence
space. For each f ∈ X(S), the norm of f is defined by ∥f∥X(S) := ρ(|f |).
The set X(S) equipped with the natural linear space operations and this
norm becomes a Banach space (see [11, Ch. 1, Theorems 1.4 and 1.6]). If ϱ
is a Banach function norm, its associate norm ϱ′ is defined on ℓ0+(S) by

ϱ′(g) := sup

{∑
x∈S

f(x)g(x) : f ∈ ℓ0+(S), ϱ(f) ≤ 1

}
, g ∈ ℓ0+(S).

It is a Banach function norm itself [11, Ch. 1, Theorem 2.2]. The Banach
sequence space X ′(S) determined by the Banach function norm ϱ′ is called
the associate space (Köthe dual) of X(S). The associate space X ′(S) can be
viewed as a subspace of the Banach dual space X∗(S).

Recall that S0(Zd) denote the set of all finitely supported sequences. The
following lemma was proved in [22, Lemma 2.10] in the case of Banach
function spaces. Its proof in the case of Banach sequence spaces is essentially
the same.

Lemma 2.1. Let X(Zd) be a Banach sequence space and X ′(Zd) be its
associate space. For every f ∈ X(Zd),

∥f∥X(Zd) = sup


∣∣∣∣∣∣
∑
x∈Zd

f(x)s(x)

∣∣∣∣∣∣ : s ∈ S0(Zd), ∥s∥X′(Zd) ≤ 1

 .

2.2. Translation-invariant Banach sequence spaces and their asso-
ciate spaces. The next lemma was proved in [22, Lemma 2.1] in the case of
translation-invariant Banach function spaces. Its proof in the case of Banach
sequence spaces is essentially the same.
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Lemma 2.2. Let X(Zd) be a Banach sequence space and X ′(Zd) be its
associate space. Then X(Zd) is translation-invariant if and only if X ′(Zd)
is translation-invariant.

3. Rearrangement-invariant Banach sequence spaces
and their Boyd and Zippin indices

3.1. Rearrangement-invariant Banach sequence spaces. The distri-
bution function of a sequence f ∈ ℓ0(S) is defined by

df (λ) := card{x ∈ S : |f(x)| > λ}, λ ≥ 0.

For any sequence f ∈ ℓ0(S), its decreasing rearrangement is given by

f∗(n) := inf{λ ≥ 0 : df (λ) ≤ n− 1}, n ∈ N.

One says that sequences f, g ∈ ℓ0(S) are equimeasurable if df = dg. A
Banach function norm ϱ : ℓ0+(S) → [0,∞] is said to be rearrangement-
invariant if ϱ(f) = ϱ(g) for every pair of equimeasurable functions f, g ∈
ℓ+0 (S). In that case, the Banach sequence space X generated by ρ is said
to be a rearrangement-invariant Banach sequence space (cf. [11, Ch. 2,
Definition 4.1]). It follows from [11, Ch. 2, Proposition 4.2] that if a Banach
sequence space X(S) is rearrangement-invariant, then its associate space
X ′(S) is also a rearrangement-invariant Banach sequence space.

3.2. Boyd indices. Let X(Zd) be a rearrangement-invariant Banach se-
quence space generated by a rearrangement-invariant Banach function norm
ϱ : ℓ0+(Zd) → [0,∞]. By the Luxemburg representation theorem (see [11,
Ch. 2, Theorem 4.10]), there exists a unique rearrangement-invariant Banach
function norm ϱ : ℓ0+(N) → [0,∞] such that

ϱ(f) = ϱ(f∗), f ∈ ℓ0+(Zd).

The rearrangement-invariant Banach function space generated by ρ is de-
noted by X(N) and is called the Luxemburg representation of X(Zd).

Let t ≥ 0. We denote by ⌊t⌋ the greatest integer less than or equal to t,
and by ⌈t⌉ the least integer greater than or equal to t. Thus ⌈t⌉ = ⌊t⌋ = t if
t ∈ N ∪ {0} and ⌈t⌉ = ⌊t⌋+ 1 otherwise.

For f : N → [0,∞), consider the following operators:

(Emf)(n) := f(mn), (Fmf)(n) := f(⌊(n− 1)/m⌋+ 1), m, n ∈ N.

For m ∈ N, let

H(m,X) := sup
{
ϱ(Emf

∗) : f ∈ X(N), ϱ(f) ≤ 1
}
,

K(m,X) := sup
{
ϱ(Fmf

∗) : f ∈ X(N), ϱ(f) ≤ 1
}
.

It follows from [13, Lemmas 3–5] that the following limits

αX := lim
m→∞

− logH(m,X)

logm
, βX := lim

m→∞

logK(m,X)

logm
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exist and satisfy

(3.1) 0 ≤ αX ≤ βX ≤ 1, αX′ = 1− βX , βX′ = 1− αX .

The numbers αX and βX are called the lower and the upper Boyd indices,
respectively. One says that the Boyd indices are nontrivial if

(3.2) 0 < αX , βX < 1.

The importance of the concept of (nontrivial) Boyd indices for our work lies
in the following result.

Theorem 3.1 ([2, Theorems 3.9 and 4.2], [3]). (a) The discrete Hilbert
transform H is bounded on a rearrangement-invariant Banach se-
quence space X(Z) if and only if its Boyd indices satisfy (3.2).

(b) The discrete Riesz transform Rj, 1 ≤ j ≤ d is bounded on a rear-

rangement-invariant Banach sequence space X(Zd) if and only if its
Boyd indices satisfy (3.2).

3.3. Zippin indices. The results of this subsection might be known to
experts. They are analogous to the case of rearrangement-invariant Banach
function spaces considered in [29, Section 4]. Since we were not able to find
their proofs in the literature and since there are some technical differences
between the case of rearrangement-invariant Banach function spaces (spaces
over nonatomic measure spaces) and the case of Banach sequence spaces
(spaces over purely atomic measure spaces) considered in this paper, we
decided to provide detailed proofs.

Let X(Zd) be a rearrangement-invariant Banach function space with the
Luxemburg representation X(N). For m ∈ N, let χm ∈ X(N), X ′(N) be the
sequence given by

χm := (1, . . . , 1︸ ︷︷ ︸
m

, 0, 0, . . . ).

For s ≥ 1, consider

L(s,X) := inf
n∈N

∥χ⌊sn⌋∥X(N)

∥χn∥X(N)
, M(s,X) := sup

n∈N

∥χ⌈sn⌉∥X(N)

∥χn∥X(N)
.

Lemma 3.2. For s, t ≥ 1,

L(st,X) ≥ L(s,X)L(t,X),(3.3)

M(st,X) ≤M(s,X)M(t,X).(3.4)

Proof. Let n ∈ N and s, t ≥ 1. Then ⌊stn⌋ ≥ ⌊s⌊tn⌋⌋ and

∥χ⌊stn⌋∥X(N)

∥χn∥X(N)
≥

∥χ⌊s⌊tn⌋⌋∥X(N)

∥χn∥X(N)
=

∥χ⌊s⌊tn⌋⌋∥X(N)

∥χ⌊tn⌋∥X(N)

∥χ⌊tn⌋∥X(N)

∥χn∥X(N)

≥ L(x,X)L(t,X),



DISCRETE RIESZ TRANSFORMS 7

which implies (3.3). Similarly, since ⌈stn⌉ ≤ ⌈s⌈tn⌉⌉, we have

∥χ⌈stn⌉∥X(N)

∥χn∥X(N)
≤

∥χ⌈s⌈tn⌉⌉∥X(N)

∥χn∥X(N)
=

∥χ⌈s⌈tn⌉⌉∥X(N)

∥χ⌈tn⌉∥X(N)

∥χ⌈tn⌉∥X(N)

∥χn∥X(N)

≤M(x,X)M(t,X),

which implies (3.4). □

Lemma 3.3. For s ≥ 1, one has 1 ≤ L(s,X) and M(s,X) ≤ ⌈s⌉.

Proof. It is clear that n ≤ ⌊sn⌋ for s ≥ 1. Then

1 ≤
∥χ⌊sn⌋∥X(N)

∥χn∥X(N)
,

whence 1 ≤ L(s,X). On the other hand, since n ≤ ⌈sn⌉, it follows from [11,
Ch. 2, Corollary 5.3] that

∥χ⌈sn⌉∥X(N)

∥χn∥X(N)
=

∥χ⌈sn⌉∥X(N)

n

n

∥χn∥X(N)

≤
∥χ⌈sn⌉∥X(N)

n

⌈sn⌉
∥χ⌈sn⌉∥X(N)

=
⌈sn⌉
n

≤ ⌈s⌉,

which implies that M(s,X) ≤ ⌈s⌉ and completes the proof. □

Consider the following quantities:

pX := sup
s>1

logL(s,X)

log s
, qX := inf

s>1

logM(s,X)

log s
.

They were introduced by Zippin [31, pp. 283–284], who stated without proof
the following result. For the convenience of the readers, we give its proof
here.

Theorem 3.4. We have

pX = sup
n∈N

logL(n,X)

log n
= lim

n→∞

logL(n,X)

log n
,(3.5)

qX = inf
n∈N

logM(n,X)

log n
= lim

n→∞

logM(n,X)

log n
.(3.6)

Proof. The idea of the proof is borrowed from that of [2, Theorem 3.1(i)].
Consider the functions

φ(s) := − logL(es, X), ψ(s) := logM(es, X), s > 0.

It follows from Lemmas 3.2 and 3.3 that for all s, t > 0,

φ(s+ t) ≤ φ(s) + φ(t), ψ(s+ t) ≤ ψ(s) + ψ(t), φ(s) <∞, ψ(s) <∞.

By [17, Theorem 7.6.1],

(3.7) inf
t>0

φ(t)

t
= lim

t→∞

φ(t)

t
, inf

t>0

ψ(t)

t
= lim

t→∞

ψ(t)

t
.
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Hence, making the substitution t = es, we get

pX = sup
s>1

logL(s,X)

log s
= − inf

s>1

− logL(s,X)

log s
= − inf

t>0

φ(t)

t
(3.8)

= − lim
t→∞

φ(t)

t
= − lim

s→∞

− logL(s,X)

log s
= lim

s→∞

logL(s,X)

log s

= lim
n→∞

logL(n,X)

log n
≤ sup

n∈N

logL(n,X)

log n
.

On the other hand, obviously,

(3.9) pX = sup
s>1

logL(s,X)

log s
≥ sup

n∈N

logL(n,X)

log n
.

Combining (3.8) and (3.9), we arrive at (3.5).
Similarly, using the second equality in (3.7), we get

qX = inf
s>1

logM(s,X)

log s
= inf

t>0

ψ(t)

t
= lim

t→∞

ψ(t)

t
= lim

s→∞

logM(s,X)

log s
(3.10)

= lim
n→∞

logM(n,X)

log n
≥ inf

n∈N

logM(n,X)

log n
.

On the other hand, clearly,

(3.11) qX = inf
s>1

logM(s,X)

log s
≤ inf

n∈N

logM(n,X)

log n
.

Combining (3.10) and (3.11), we arrive at (3.6). □

Lemma 3.5. If X(Zd) is a rearrangement-invariant Banach sequence space
and X ′(Zd) is its associate space, then

(3.12) pX′ = 1− qX , qX′ = 1− pX .

Proof. By [11, Ch. 2, Theorem 5.2], for m,n ∈ N,

∥χmn∥X(N)

∥χn∥X(X)
= m

∥χn∥X′(N)

∥χmn∥X′(X)
.

Therefore, for m ∈ N,

L(m,X) = inf
n∈N

∥χmn∥X(N)

∥χn∥X(N)
= m inf

n∈N

(
∥χmn∥X′(N)

∥χn∥X′(N)

)−1

(3.13)

= m

(
sup
n∈N

∥χmn∥X′(N)

∥χn∥X′(N)

)−1

=
m

M(m,X ′)

and

M(m,X) = sup
n∈N

∥χmn∥X(N)

∥χn∥X(N)
= m sup

n∈N

(
∥χmn∥X′(N)

∥χn∥X′(N)

)−1

(3.14)
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= m

(
inf
n∈N

∥χmn∥X′(N)

∥χn∥X′(N)

)−1

=
m

L(m,X ′)
.

It follows from Theorem 3.4 and formula (3.13) that

pX = lim
m→∞

logL(m,X)

logm
= 1− lim

m→∞

logM(m,X ′)

logm
= 1− qX .

The second equality in (3.12) can be proved analogously by using (3.14)
instead of (3.13). □

Lemma 3.6. If X(Zd) is a rearrangement-invariant Banach sequence space,
then its Boyd and Zippin indices satisfy

0 ≤ αX ≤ pX ≤ qX ≤ βX ≤ 1.

Proof. We already know the inequalities 0 ≤ αX and βX ≤ 1 (see (3.1)).
Since L(n,X) ≤M(n,X) for n ∈ N, it follows from Theorem 3.4 that

pX = lim
n→∞

logL(n,X)

log n
≤ lim

n→∞

logM(n,X)

log n
= qX .

Let us prove that qX ≤ βX . It is not difficult to see that for m,n ∈ N,

χmn

∥χn∥X(N)
= Fm

(
χn

∥χn∥X(N)

)
, m, n ∈ N.

Then, for m ∈ N,

M(m,X) = sup
n∈N

∥χnm∥X(N)

∥χn∥X(N)
= sup

n∈N
ϱ

(
χmn

∥χn∥X(N)

)

= sup
n∈N

ϱ

(
Fm

(
χn

∥χn∥X(N)

))
≤ sup

{
ϱ(Fmf

∗) : f ∈ X(N), ϱ(f) ≤ 1
}
= K(m,X).

It follows from the definition of βX , the above inequality and Theorem 3.4
that

qX = lim
m→∞

logM(m,X)

logm
≤ lim

m→∞

logK(m,X)

logm
= βX .

Finally, the above inequality applied to the associate space and the duality
relations given in (3.1) for the Boyd indices and in Lemma 3.5 for the Zippin
indices imply that αX = 1 − βX′ ≤ 1 − qX′ = pX , which completes the
proof. □

3.4. Continuous embedding of a rearrangement-invariant Banach
sequence space into ℓp. The idea of the proof of the following lemma is
borrowed from the proof of [28, Lemma 4.2].

Lemma 3.7. Let 1 < p < ∞. If X(Zd) is a rearrangement-invariant Ba-
nach sequence space with the lower Zippin index satisfying pX > 1/p, then

X(Zd) ↪→ ℓp(Zd).
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Proof. If pX > 1/p, then there exists ε > 0 such that

(3.15) (pX − ε)p > 1.

By Hölder’s inequality [11, Ch. 1, Theorem 2.4], for m ∈ N,
m∑
j=1

f∗(j) = ∥χmf
∗∥ℓ1(N) ≤ ∥f∗∥X(N)∥χm∥X′(N)

= ∥f∥X(Zd)∥χ1∥X′(N)
∥χm∥X′(N)

∥χ1∥X′(N)

≤ ∥f∥X(Zd)∥χ1∥X′(N) sup
n∈N

∥χnm∥X′(N)

∥χn∥X′(N)

= c∥f∥X(Zd)M(m,X ′),

where c := ∥χ1∥X′(N). This inequality and equality (3.14) imply that for

m ∈ N,

(3.16) f∗(m) ≤ 1

m

m∑
j=1

f∗(j) ≤ c∥f∥X(Zd)

M(m,X ′)

m
=
c∥f∥X(Zd)

L(m,X)
.

It follows from the second equality in (3.5) that there exists m0 ∈ N such
that for all m > m0,

pX − ε <
logL(m,X)

logm
< pX + ε,

whence for m > m0,

(3.17) mpX−ε < L(m,X) < mpX+ε.

Combining inequality (3.16) with the first inequality in (3.17), we arrive at

∞∑
m=m0+1

(f∗(m))p ≤ cp∥f∥p
X(Zd)

∞∑
m=m0+1

(
1

m

)(pX−ε)p

(3.18)

= Ctail∥f∥pX(Zd)
,

where

Ctail := cp
∞∑

m=m0+1

(
1

m

)(pX−ε)p

<∞

in view of (3.15). On the other hand, inequality (3.16) and Lemma 3.3 imply
that

(3.19)

m0∑
m=1

(f∗(m))p ≤ Chead∥f∥pX(Zd)
,

where

Chead := m0c
p <∞.
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Combining (3.18) and (3.19), we arrive at

∥f∥ℓp(Zd) =

( ∞∑
m=1

(f∗(m))p

)1/p

≤ (Chead + Ctail)
1/p∥f∥X(Zd),

which completes the proof. □

Since S0(Zd) is dense in ℓp(Zd) whenever 1 < p <∞, the above lemma and
the inequality αY ≤ pY (see Lemma 3.6) immediately imply the following.

Corollary 3.8. If Y (Zd) is a rearrangement-invariant Banach sequence
space with the lower Boyd index satisfying αY > 0, then Y (Zd) is a subset
of the closure of S0(Zd) in the space ℓp(Zd) for 1/αY < p <∞.

4. Proof of the main result

The idea of the proof is borrowed from the proofs of [23, Theorems 1.1–
1.2]. In view of (1.1), it is sufficient to prove that

(4.1) ∥A∥B(X,Y ),χ ≥ ∥A∥B(X,Y ).

Fix ε > 0. Then there exists g ∈ X such that ∥g∥X = 1 and

(4.2) ∥Ag∥Y > ∥A∥B(X,Y ) − ε.

It follows from Lemma 2.1 that there exists s ∈ S0(Zd) \ {0} such that
∥s∥Y ′ ≤ 1 and

(4.3)

∣∣∣∣∣∣
∑
x∈Zd

(Ag)(x)s(x)

∣∣∣∣∣∣ ≥ ∥Ag∥Y − ε.

Take any sequence {hn}n∈N in Zd such that |hn| → +∞ as n→ ∞, and set
Vn := Vhn , sn := Vns. Since Y is translation-invariant, in view of Lemma 2.2,
so is Y ′. Therefore,

(4.4) ∥sn∥Y ′ = ∥s∥Y ′ ≤ 1, n ∈ N.
Making a change of variables in the left-hand side of (4.3), we see that for
all n ∈ N,

(4.5)

∣∣∣∣∣∣
∑
x∈Zd

(VnAg)(x)sn(x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
x∈Zd

(Ag)(x)s(x)

∣∣∣∣∣∣ ≥ ∥Ag∥Y − ε.

Take any finite set {φ1, . . . , φm} ⊂ Y . Since Y is a subset of the closure of
S0(Zd) in Z and s ∈ S0(Zd) ⊂ Z ′, there exists a set {ψ1, . . . , ψm} ⊂ S0(Zd)
such that

(4.6) ∥φj − ψj∥Z <
ε

∥s∥Z′
, j ∈ {1, . . . ,m}.

Taking into account that ψj and s are finitely supported and |hn| → +∞ as
n→ ∞, we see that there exists N ∈ N such that

(4.7) ψjsN = 0, j ∈ {1, . . . ,m}.
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Since Z ′ is translation-invariant (see Lemma 2.2), we get ∥sN∥Z′ = ∥s∥Z′ .
Then, in view of equalities (4.7), Hölder’s inequality for the space Z (see
[11, Ch. 1, Theorem 2.4]), and inequalities (4.6), we get for j ∈ {1, . . . ,m},∣∣∣∣∣∣

∑
x∈Zd

φj(x)sN (x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
x∈Zd

(φj(x)− ψj(x)) sN (x)

∣∣∣∣∣∣(4.8)

≤ ∥φj − ψj∥Z∥sN∥Z′ <
ε

∥s∥Z′
∥s∥Z′ = ε.

Combining (4.5) and (4.8), we see that for j ∈ {1, . . . ,m},∣∣∣∣∣∣
∑
x∈Zd

(
(VNAg)(x)− φj(x)

)
sN (x)

∣∣∣∣∣∣(4.9)

≥

∣∣∣∣∣∣
∑
x∈Zd

(VNAg)(x)sN (x)

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑
x∈Zd

φj(x)sN (x)

∣∣∣∣∣∣
> ∥Ag∥Y − 2ε.

On the other hand, applying Hölder’s inequality to the space Y (see [11,
Ch. 1, Theorem 2.4]) and taking into account inequality (4.4), we get for
j ∈ {1, . . . ,m},∣∣∣∣∣∣

∑
x∈Zd

(
(VNAg)(x)− φj(x)

)
sN (x)

∣∣∣∣∣∣ ≤ ∥VNAg − φj∥Y ∥sN∥Y ′(4.10)

≤ ∥VNAg − φj∥Y .
Since A is a translation-invariant operator, we get VNA = AVN . Hence we
deduce from (4.9), (4.10) and (4.2) that for j ∈ {1, . . . ,m},

∥AVNg − φj∥Y = ∥VNAg − φj∥Y > ∥Ag∥Y − 2ε > ∥A∥B(X,Y ) − 3ε.

Since X is a translation-invariant space, we have ∥VNg∥X = ∥g∥X = 1.
So, for every finite set {φ1, . . . , φm} ⊂ Y , there exist an element AVNg
of the image of the unit ball A (BX) that lies at a distance greater than
∥A∥B(X,Y )−3ε from every element of {φ1, . . . , φm}. This means that A(BX)
cannot be covered by a finite family of open balls of radius ∥A∥B(X,Y ) − 3ε.
Hence, for all ε > 0,

∥A∥B(X,Y ),χ ≥ ∥A∥B(X,Y ) − 3ε.

Passing to the limit as ε → 0+, we arrive at (4.1), which completes the
proof. □

5. Continuous case

In this section, we briefly describe analogues of the above results in the
continuous case. For h ∈ Rd, let Vh denote the shift (translation) operator
(Vhf)(x) := f(x − h), x ∈ Rd. Let X = X(Rd), Y = Y (Rd) be Banach



DISCRETE RIESZ TRANSFORMS 13

function spaces (see [11, Ch. 1, Definition 1.1]) over Rd equipped with the
Lebesgue measure. As in the discrete case, one says that the space X(Rd)
is translation-invariant if ∥Vhf∥X = ∥f∥X for all f ∈ X(Rd) and h ∈ Rd. If
both X(Rd), Y (Rd) are translation-invariant, then an operator A ∈ B(X,Y )
is said to be translation-invariant if AVh = VhA for all h ∈ Rd. Let S0(Rd)
denote the set of all simple compactly supported functions. The following
result is proved in the same way as Theorem 1.1.

Theorem 5.1. Let X = X(Rd), Y = Y (Rd), and Z = Z(Rd) be translation-
invariant Banach function spaces such that Y is a subset of the closure of
S0(Rd) in Z. If A ∈ B(X,Y ) is a translation-invariant operator, then

∥A∥B(X,Y ),χ = ∥A∥B(X,Y ),e = ∥A∥B(X,Y ).

We apply this result to the Hilbert and the Riesz transforms. Iwaniec
and Martin [20, Theorem 1.1] (see also [21, Theorem 12.1.1]) calculated the
Lp-norms of the Riesz transforms Rj with j = 1, . . . , d defined by

(Rjf)(x) := cd

∫
Rd

(xj − yj)f(y)

|x− y|d+1
dy,

where

cd := π−(d+1)/2Γ

(
d+ 1

2

)
and the intergal is understood in the principal value sense. They extended
(1.3) to the multidimensional case and proved that

(5.1) ∥Rj∥B(Lp(Rd)) = cot(π/(2p∗)) j = 1, . . . , d, 1 < p <∞.

In the case d = 1 and H := R1, more is known. First of all, for every
a, b ∈ C, one has

∥aI + bH∥B(Lp(R)) = ∥aI + bH∥B(Lp(R)),e

(see [25, Example 4.2]). Hollenbeck and Verbitsky [19] proved that

(5.2) ∥(I ± iH)/2∥B(Lp(R)) = 1/ sin(π/p).

Further, Hollenbeck, Kalton, and Verbitsky [18, Corollary 4.4] showed that
if 1 < p <∞ and a, b ∈ R, then

(5.3) ∥aI + bH∥B(Lp(R)) = (Bp(a, b))
1/p ,

where

Bp(a, b) := max
x∈R

|ax− b+ (bx+ a) tan γ|p + |ax− b− (bx+ a) tan γ|p

|x+ tan γ|p + |x− tan γ|p

and γ = π/(2p) (see also [15] for an alternative proof of this result).
Let X(Rd) be a rearrangement-invariant Banach function space (see [11,

Ch. 2, Section 4] or [13]) and let αX , βX be its Boyd indices [13] and pX , qX
be its Zippin indices [31]. We refer to [29, Section 4] for their properties in
the case of rearrangement-invariant Banach function spaces over nonatomic
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measure spaces. It follows from the Boyd interpolation theorem [13, Theo-
rem 1] and (5.1) that the Riesz transforms Rj with j = 1, . . . , d are bounded

on X(Rd) whenever its Boyd indices satisfy 0 < αX , βX < 1. The fact that
the converse is also true was noticed by Boyd in [12, p. 219] without proof.
It follows from a more general result for non-degenerate classical Calderón-
Zygmund singular integral operators of convolution type [24, Corollary 1.2].

Let 1 < p < ∞. Following [11, Ch. 3, Definition 1.2], let L1(Rd) +
Lp(Rd) be the collection of all measurable functions f : Rd → C that are
representable as f = g + h for some g ∈ L1(Rd) and h ∈ Lp(Rd). For each
function f ∈ L1(Rd) + Lp(Rd) its norm is defined as

∥f∥L1(Rd)+Lp(Rd) = inf{∥g∥L1(Rd) + ∥h∥Lp(Rd) : f = g + h},

where the infimum is taken over all representations f = g+h with g ∈ L1(Rd)
and h ∈ Lp(Rd).

Arguing similarly to the proof of [28, Lemma 4.2] (see also [4, Remark 4],
[5, Remark 4], and Lemma 3.7), one can get the following.

Lemma 5.2. Let 1 < p < ∞. If X(Rd) is a rearrangement-invariant
Banach function space with the lower Zippin index satisfying pX > 1/p,
then

X(Rd) ↪→ L1(Rd) + Lp(Rd).

Remark 5.3. In fact, using techniques of the proof of [28, Lemma 4.2], one
can prove a stronger result, substituting the Lebesgue space Lp(Rd) by the
strictly smaller Lorentz space Lp,1(Rd).

Similarly to the discrete case, we obtain the following as a consequence
of Theorem 5.1 and Lemma 5.2.

Corollary 5.4. Let X = X(Rd) be a rearrangement-invariant Banach func-
tion space with the Boyd indices satisfying 0 < αX , βX < 1. For all a, b ∈ C
and j = 1, . . . , d, one has

∥aI + bRj∥B(X),χ = ∥aI + bRj∥B(X),e = ∥aI + bRj∥B(X).

Proof. It follows from Lemma 5.2 and the inequality αX ≤ pX (see [29,
inequalities (4.14)]) that X(Rd) ↪→ Z(Rd) = L1(Rd) + Lp(Rd) for p ∈
(1/αX ,∞). It is clear that Z(Rd) is translation-invariant because both
L1(Rd) and Lp(Rd) are translation-invariant. If f ∈ Z(Rd), then there exist
g ∈ L1(Rd) and h ∈ Lp(Rd) such that f = g+ h. Fix ε > 0. Since S0(Rd) is
dense in L1(Rd) and in Lp(Rd), there exist φ,ψ ∈ S0(Rd) such that

∥g − φ∥L1(Rd) < ε/2, ∥h− ψ∥Lp(Rd) < ε/2.

Therefore,

∥f − (φ+ ψ)∥Z(Rd) ≤ ∥g − φ∥L1(Rd) + ∥h− ψ∥Lp(Rd) < ε.

Since φ+ψ ∈ S0(Rd), we conclude that S0(Rd) is dense in Z(Rd). It remains
to apply Theorem 5.1 to the translation-invariant operators Tj = aI + bRj

with j = 1, . . . , d. □
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Combining Corollary 5.4 with (5.1)–(5.3), we see that for 1 < p <∞,

(5.4) ∥(I ± iH)/2∥B(Lp(R)),χ = ∥(I ± iH)/2∥B(Lp(R)),e = 1/ sin(π/p),

(5.5) ∥aI+ bH∥B(Lp(R)),χ = ∥aI+ bH∥B(Lp(R)),e = (Bp(a, b))
1/p , a, b ∈ R,

and

(5.6) ∥Rj∥B(Lp(Rd)),χ = ∥Rj∥B(Lp(Rd)),e = cot(π/(2p∗)), j = 1, . . . , d.

It seems that none of the equalities in (5.4)–(5.6) was noticed before.
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[7] R. Bañuelos, D. Kim, and M. Kwaśnicki. Sharp ℓp inequalities for discrete singular
integrals. arXiv:2209.09737 [math.PR], 2022.
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