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Abstract. Let Γ be a contour in the complex plane consisting of a fi-
nite number of circular arcs joining the endpoints −1 and 1, possibly
including the segment [−1, 1]. We consider the singular integral opera-
tor A = aI + bSΓ with constant coefficients a, b ∈ C, where SΓ is the
Cauchy singular integral operator over Γ. We provide a detailed proof
of the maximal noncompactness of the operator A on L2 spaces with
the Khvedelidze weights ϱ(t) = |t− 1|β |t+ 1|−β satisfying −1 < β < 1.
This result was announced by Naum Krupnik in 2010, but its proof has
never been published.
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1. Introduction and the main result

Let X be a Banach space, B(X) be the Banach algebra of all bounded linear
operators on X, and K(X) be the two-sided ideal of all compact operators on
X. The norm of an operator A ∈ B(X) is denoted by ∥A∥B(X). The essential
norm of A ∈ B(X) is defined by

|A|B(X) := inf
{
∥A+K∥B(X) : K ∈ K(X)

}
.
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It is clear that |A|B(X) ≤ ∥A∥B(X). An operator A ∈ B(X) is said to be
maximally noncompact on X if

|A|B(X) = ∥A∥B(X).

Maximal noncompactness of one-dimensional singular integral operators
with the Cauchy kernel on weighted Lebesgue spaces was studied in a series
of papers by Naum Krupnik and his coauthors. We refer to [4, Section 13.5],
[8, Section 6], [9] and to the references therein. The first author and Shar-
gorodsky extended further the results on the maximal noncompactness of
the operators aI + bSΓ with a, b ∈ C and Γ ∈ {T,R}, where T is the unit
circle, to the setting of rearrangement-invariant Banach function spaces with
nontrivial Boyd indices [6, Theorem 1.1], [7, Corollary 5.4 and formula (5.5)].

The aim of this paper is to discuss one of Krupnik’s results (see [9,
Theorem 5.9]) on the maximal noncompactness of one-dimensional singu-
lar integral operators aI + bSΓ with a, b ∈ C on spaces L2(Γ, ϱ) with some
Khvedelidze weights ϱ over some piecewise Lyapunov curves Γ.

Let us define precisely the setting. Let Γ be a contour in the complex
plane consisting of a finite number of circular arcs joining the endpoints −1
and 1, possibly including the segment [−1, 1] as in Figure 1.

Figure 1. Examples of a possible contour Γ.

Consider the Khvedelidze weight of the form

w(t) := |t− 1|α1 |t+ 1|α2 , t ∈ Γ, α1, α2 ∈ R.
The space L2(Γ, w) consists of all measurable functions f : Γ → C such that

∥f∥L2(Γ,w) :=

(∫
Γ

|f(t)|2w(t)|dt|
)1/2

< ∞.

It follows from Khvedelidze’s theorem (see, e.g., [3, Ch. 1, Theorem 4.1, Corol-
lary 4.1]) that the Cauchy singular integral operator SΓ, defined by

(SΓf)(t) := lim
ε→0+

1

πi

∫
Γ\Γ(t,ε)

f(τ)

τ − t
dτ, t ∈ Γ,
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where Γ(t, ε) := {τ ∈ Γ : |τ − t| < ε}, is bounded on L2(Γ, w) if and only if

−1 < α1, α2 < 1.

The following result was announced in [9, Theorem 5.9].

Theorem 1.1 (Main result, Krupnik, 2010). Let Γ be a contour in the complex
plane consisting of a finite number of circular arcs joining the endpoints −1
and 1, possibly including the segment [−1, 1]. Suppose the Khvedelidze weight
ϱ is given by

ϱ(t) :=

∣∣∣∣ t− 1

t+ 1

∣∣∣∣β , t ∈ Γ, −1 < β < 1.

Then the singular integral operator A := aI + bSΓ with constant coefficients
a, b ∈ C is maximally noncompact on the space L2(Γ, ϱ), that is,

|A|B(L2(Γ,ϱ)) = ∥A∥B(L2(Γ,ϱ)).

Unfortunately, a detailed proof of this theorem has never been pub-
lished. The aim of this paper is to fill in this gap in the literature, correcting
also a misleading inaccuracy in the hint given in [9, p. 382].

Krupnik wrote on [9, p. 382] the following: “... This theorem follows
from Lemma 1.2 (see below) with

(Rnf)(z) :=
2nβ+1/2

n+ 1 + z(n− 1)
f

(
(n+ 1)z + n− 1

n+ 1 + z(n− 1)

)
. (1.1)

A particular case of this statement was obtained in [1]...”. Notice also that
the proof of the particular case of Theorem 1.1 in the non-weighted case given
in [1, Theorem 2] is not much more detailed than the above quotation. It only
says that the sequence given by (1.1) with β = 0 satisfies the conditions of
Lemma 1.2 below.

Lemma 1.2 ([8, Theorem 4.3]). Let X be a Banach space and A ∈ B(X).
Suppose that there exists a sequence Rn ∈ B(X) such that

(a) ∥Rnf∥X = ∥f∥X for all f ∈ X and all n ∈ N;
(b) ARn = RnA for all n ∈ N;
(c) the sequence {Rn} converges weakly to the zero operator.

Then the operator A is maximally noncompact on the space X, that is,

|A|B(X) = ∥A∥B(X).

The factor 2nβ+1/2 is, unfortunately, chosen incorrectly in (1.1) (see
Corollary 2.3 below). In the next section we suggest the correction for the
sequence {Rn} given by (1.1) that satisfies all the conditions of Lemma 1.2.
We feel that for the convenience of the reader it is important to provide the
calculations that were missed in [1, 9].
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2. Proof of the main result

To make further calculations easier, let us rewrite the elements of sequence
(1.1), when n ≥ 2, in the form

(Rnf)(z) =
2nβ+1/2

n− 1
· 1

z + n+1
n−1

f

(
n+1
n−1z + 1

z + n+1
n−1

)
(2.1)

and then, defining

λ := λ(n) =
n+ 1

n− 1
,

introduce the operator

(Rf)(z) :=
µ

z + λ
f

(
λz + 1

z + λ

)
, (2.2)

which structurally “generalizes” all operators Rn for n ≥ 2.
Here, we put an unknown coefficient µ ∈ R in place of the numerical

factor from the rewritten expression for Rn. Exactly this factor is responsible
for {Rn} being a sequence of isometries. With the unknown µ in definition
(2.2), we will further assume that the operator R is isometric and derive a
condition on µ, necessary and sufficient for this assumption to hold. It will
allow us to show that the choice of

µ =
2nβ+1/2

n− 1

taken in (2.1) leads to the situation that the sequence {Rn} is not a sequence
of isometries, whence Lemma 1.2 cannot be applied with this choice of {Rn}.
Then we will suggest a correction for the factor µ.

To realize this idea technically, we will need to make a fractional-linear
change of variables in the integral over the contour Γ; and the following
auxiliary statement concerning this change is a very useful result to have in
advance.

2.1. Möbius transformation mapping each arc of Γ onto itself

Definition (2.2) of the operator R features the Möbius (or fractional-linear)
transformation

t(z) =
λz + 1

z + λ
, λ > 1, (2.3)

as the argument of f . According to the next lemma, t = t(z) turns out
to possess a property particularly important for our purposes: it maps the
contour Γ onto itself.

Lemma 2.1. Transformation (2.3) maps each circular arc with the endpoints
−1 and 1 onto itself and the segment [−1, 1] onto itself.

Proof. (i) Consider first a circular arc γ joining the endpoints −1 and 1,
assuming it to be part of a full circle γC . Note that t(1) = 1 and t(−1) = −1
for any λ > 1, so ±1 are the fixed points of the transformation t = t(z).

Next, it is a well-known property of the Möbious transformation that
it maps circles and lines into circles and lines. In our case, since the point
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z = −λ, which t = t(z) maps into z = ∞, does not belong to γC (because
−λ < −1), the image of γC is a circle passing through the points ±1. Together
with the fact that t = t(z) is continuous, this leads us to the conclusion that
the arc γ is being mapped onto either of the two arcs of the “image-circle”
t(γC), which are enclosed between the points −1 and 1.

Since a circular arc is uniquely determined by three points (two end-
points and one more arbitrary point lying on the arc), and we already know
that t = t(z) preserves the endpoints ±1, it suffices to show that any other
point z̃ ∈ γ different from ±1 has its image t(z̃) belonging the same arc γ:
then we will be able to conclude that t(γ) = γ.

Suppose first that

γ \ {−1, 1} ⊂ C+ := {z ∈ C : Im z > 0}.

Let z̃ = i(c+
√
c2 + 1) be the point at which γ intersects the imaginary axis,

with ic being the center of the full circle γC (see Fig. 2).

Figure 2. Choice of the point z̃.

The distance between the image t(z̃) and the center of γC is

|t(z̃)− ic| =

∣∣∣∣∣ iλ(c+
√
c2 + 1) + 1

i(c+
√
c2 + 1) + λ

− ic

∣∣∣∣∣
=

∣∣∣∣∣ iλc+ iλ
√
c2 + 1 + 1 + c2 + c

√
c2 + 1− iλc

i(c+
√
c2 + 1) + λ

∣∣∣∣∣
=

√
c2 + 1

|i|
· |c+

√
c2 + 1 + iλ|

|c+
√
c2 + 1− iλ|

=
√
c2 + 1,

hence t(z̃) ∈ γC . Moreover, for any y ∈ R \ {0},

Im(t(iy)) = Im

(
iλy + 1

iy + λ

)
= Im

(
(iλy + 1)(λ− iy)

λ2 + y2

)
=

y(λ2 − 1)

λ2 + y2
=

{
> 0 if y > 0,
< 0 if y < 0
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(because λ > 1), which guarantees, together with the previous assertion, that
t(z̃) ∈ γ.

If

γ \ {−1, 1} ⊂ C− := {z ∈ C : Im z < 0},
then we choose z̃ = i(c −

√
c2 + 1) and show as before that t(z̃) ∈ γC and

t(z̃) ∈ C−, whence t(z̃) ∈ γ. This finishes the proof that the transforma-
tion (2.3) maps any circular arc with the endpoints −1 and 1 onto itself.

(ii) Now consider the case when the circular arc degenerates into the
segment [−1, 1] contained in the real line. The transformation t = t(z), having
all its coefficients real-valued, maps the real line to the real line, preserving
the points ±1. Therefore, there are two possibilities for the image t([−1, 1]):
it either coincides with the segment [−1, 1] or with the remaining part of the

“generalized circle” Ṙ = R ∪ {∞}, that is, with Ṙ \ (−1, 1). Checking that
t(0) = 1/λ < 1, we conclude that t([−1, 1]) = [−1, 1]. □

2.2. Isometric operator R generated by the Möbius transformation

Now that the handy Lemma 2.1 is proved, we can proceed with the verifica-
tion of Condition (a) of Lemma 1.2.

Lemma 2.2. Let Γ and ϱ be as in Theorem 1.1. Suppose that λ > 1 and µ ∈ R.
Then the operator R given by (2.2) is an isometry on L2(Γ, ϱ) if and only if

µ2 = (λ− 1)1+β(λ+ 1)1−β . (2.4)

Proof. Making the change of variables

t =
λz + 1

z + λ

and taking into account that this transformation maps Γ onto itself in view
of Lemma 2.1, we see that

z =
λt− 1

λ− t
, |dz| = λ2 − 1

|λ− t|2
|dt| (2.5)

and

∥Rf∥2L2(Γ,ϱ) =

∫
Γ

∣∣∣∣ µ

z + λ
f

(
λz + 1

z + λ

)∣∣∣∣2 · ∣∣∣∣z − 1

z + 1

∣∣∣∣β |dz|
=

∫
Γ

µ2∣∣∣λt−1
λ−t + λ

∣∣∣2 |f(t)|2 ·
∣∣∣∣∣ λt−1

λ−t − 1
λt−1
λ−t + 1

∣∣∣∣∣
β

· λ2 − 1

|λ− t|2
|dt|

=

∫
Γ

µ2(λ2 − 1)

|λt− 1 + λ2 − λt|2
|f(t)|2 ·

∣∣∣∣λt− 1− λ+ t

λt− 1 + λ− t

∣∣∣∣β |dt|
=

µ2

λ2 − 1

∫
Γ

|f(t)|2
∣∣∣∣ (λ+ 1)(t− 1)

(λ− 1)(t+ 1)

∣∣∣∣β |dt|
= µ2 (λ+ 1)β−1

(λ− 1)β+1
·
∫
Γ

|f(t)|2
∣∣∣∣ t− 1

t+ 1

∣∣∣∣β |dt|
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= µ2 (λ+ 1)β−1

(λ− 1)β+1
· ∥f∥2L2(Γ,ϱ).

It shows that R is isometric if and only if (2.4) holds. □

2.3. Mistake in the choice of sequence (1.1)

This lemma immediately implies that the sequence {Rn} given by (1.1) does
not satisfy Condition (a) of Lemma 1.2.

Corollary 2.3. Let Γ and ϱ be as in Theorem 1.1. If n ≥ 2, then the operator
Rn defined by (1.1) is not an isometry on the space L2(Γ, ϱ).

Proof. It follows from (2.1) that Rn is of the form of R given by (2.2) with

λ =
n+ 1

n− 1
, µ =

2nβ+1/2

n− 1
.

It is clear that

(λ−1)1+β(λ+1)1−β =

(
n+ 1

n− 1
− 1

)1+β (
n+ 1

n− 1
+ 1

)1−β

=
22n1−β

(n− 1)2
(2.6)

and

µ2 =
22n2β+1

(n− 1)2
,

which implies that (2.4) does not hold in general. Hence the result immedi-
ately follows from Lemma 2.2. □

2.4. Correcting the mistake in the choice of sequence (1.1)

Taking into account Lemma 2.2 and identity (2.6), we can choose µ to be

µ =
√
(λ− 1)1+β(λ+ 1)1−β =

2n(1−β)/2

n− 1
,

making it positive for convenience.
This factor µ and the one suggested by Krupnik differ by their numer-

ators 2n(1−β)/2 and 2nβ+1/2, respectively. But while sequence (1.1) does not
consists of all isometries (as we have seen in Corollary 2.3), each element of
the sequence defined by (2.2) with the chosen value of µ, that is

(Rnf)(z) :=
2n(1−β)/2

n+ 1 + z(n− 1)
f

(
(n+ 1)z + n− 1

n+ 1 + z(n− 1)

)
(2.7)

for all n ≥ 2, is an isometry as we proved in Lemma 2.2. When n = 1,
formula (2.7) gives R1 as coinciding with the identity operator I, which is
also isometric.

Overall, (2.7) redefines the sequence {Rn}n∈N as a sequence of isome-
tries. We suggest this new sequence with the altered factor to be the an-
nounced correction for the initial version of {Rn} given by (1.1). Referring
further to Rn, we will understand them in the sense of definition (2.7); Con-
ditions (b) and (c) of Lemma 1.2, which are to be checked ahead, will be
verified for this renewed sequence.
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2.5. The proof of ARn = RnA

We continue by proving that {Rn} meets Condition (b) of Lemma 1.2.
For n = 1, the equality AR1 = R1A obviously holds since R1 = I. All

the other operators Rn, starting from n = 2, are representable in the form
of the operator R defined by (2.2) with the corresponding λ = λ(n) > 1.
Therefore, to prove that ARn = RnA when n ≥ 2, it is sufficient to check
the equality AR = RA for an arbitrary λ > 1 and a positive constant µ.

The following lemma is analogous to [2, Lemma 3.1].

Lemma 2.4. Let Γ and ϱ be as in Theorem 1.1. The Cauchy singular integral
operator SΓ commutes with the operator R defined by (2.2) for any λ > 1
and µ > 0, i.e., SΓRf = RSΓf for all f ∈ L2(Γ, ϱ).

Proof. Resorting again to the change of variables

t =
λτ + 1

τ + λ
,

which preserves the contour Γ and implies the identities

τ =
λt− 1

λ− t
, dτ =

λ2 − 1

(λ− t)2
dt,

we establish that for f ∈ L2(Γ, ϱ) and z ∈ Γ,

(SΓRf)(z) =
1

πi

∫
Γ

µ

τ + λ
f

(
λτ + 1

τ + λ

)
dτ

τ − z

=
1

πi

∫
Γ

µ
λt−1
λ−t + λ

f(t) · λ2 − 1

(λ− t)2
· dt

λt−1
λ−t − z

=
1

πi

∫
Γ

µf(t)dt

λt− 1− λz + tz
=

1

πi

∫
Γ

µf(t)dt

t(z + λ)− (λz + 1)

=
µ

z + λ
· 1

πi

∫
Γ

f(t)

t− λz+1
z+λ

dt = (RSΓf)(z),

where all the integrals should be understood in the sense of the Cauchy
principal value. □

Now, employing this lemma, we obtain the equality

AR = (aI + bSΓ)R = aIR+ bSΓR = aRI + bRSΓ

= R(aI) +R(bSΓ) = R(aI + bSΓ) = RA

for an arbitrary singular integral operator A = aI + bSΓ with a, b ∈ C. The
verification of the fact that all Rn commute with A is thus complete.

2.6. Preparing the proof of the weak convergence of Rn to the zero operator

From this moment on, we are working toward confirmation of the last and
most complicated Condition (c) of Lemma 1.2 for the sequence {Rn}.

We start this subsection, which comprises two crucial technical results,
with the following simple lemma.
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Lemma 2.5. Let β > −1. Then

lim
n→∞

n(1−β)/2

n− 1

∫ 1

−1

dt∣∣∣t− n+1
n−1

∣∣∣ = 0.

Proof. Using the fundamental theorem of calculus, we first compute the in-
tegral ∫ 1

−1

dt∣∣∣t− n+1
n−1

∣∣∣ =
∫ 1

−1

dt
n+1
n−1 − t

= − ln

∣∣∣∣n+ 1

n− 1
− t

∣∣∣∣ ∣∣∣∣1
−1

= − ln
2

n− 1
+ ln

2n

n− 1
= lnn

for all n ≥ 2. Consequently, the limit given in the statement of this lemma is
equal to the following two limits

lim
n→∞

n(1−β)/2

n− 1

∫ 1

−1

dt∣∣∣t− n+1
n−1

∣∣∣ = lim
n→∞

n(1−β)/2 lnn

n− 1
= lim

n→∞

lnn

n(β+1)/2
,

with the second equality being true by the equivalence (n−1) ∼ n as n → ∞.
Finally, the equality

lim
n→∞

lnn

n(β+1)/2
= 0 (2.8)

follows from the equivalence of Cauchy’s and Heine’s definitions of the limit
and the L’Hôpital rule. □

The next theorem is a version of the above lemma: it addresses the
limit value of the analogous expression, this time containing the integral over
a circle passing through the points ±1 instead of simply the segment [−1, 1].

Theorem 2.6. Let β > −1 and γC be a circle in the complex plane passing
through the points −1 and 1. Then

lim
n→∞

n(1−β)/2

n− 1

∫
γC

|dt|∣∣∣t− n+1
n−1

∣∣∣ = 0.

Proof. We investigate the limiting behavior of the expression

In :=
n(1−β)/2

n− 1

∫
γC

|dt|∣∣∣t− n+1
n−1

∣∣∣ ,
assuming as before that n ≥ 2.

(i) Let r denote the radius of γC . Suppose that the center ic of the circle
γC belongs to the upper half-plane (c > 0). Looking at the modulus

dist(t) :=

∣∣∣∣t− n+ 1

n− 1

∣∣∣∣
as the distance from an arbitrary point t ∈ γC to the “floating” point n+1

n−1

on the real axis, we open up a way to build our investigation on illustrative
geometric reasoning.
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Let us draw the line segment joining ic to n+1
n−1 and extend it to the

point of its other intersection with the circle γC (see Fig. 3). This extended
segment notionally dissects γC into the “upper” and “lower” semicircles γu
and γl, respectively. Next, choose an arbitrary point t on the circle.

Figure 3. Dissection of γC and an example of a point t
chosen on the “upper” semicircle γu.

Consider the yellow triangle depicted in Fig. 3. Its hypotenuse is

h = h(n) =

√
c2 +

(
n+ 1

n− 1

)2

=

√
r2 − 1 +

(
n+ 1

n− 1

)2

, (2.9)

where we used that c =
√
r2 − 1. Note that h = h(n) > r for any n, and

h = h(n) → r as n → ∞.
Then, applying the law of cosines in the blue triangle above, for any

φ ∈ [0, π] we obtain

dist(t) =
√
h2 + r2 − 2hr cosφ =

√
h2 + r2 − 2hr

(
1− 2 sin2

φ

2

)
=

√
(h− r)2 + 4hr sin2

φ

2
= (h− r)

√
1 +

4hr

(h− r)2
sin2

φ

2
.

Here we assume that t ∈ γu, and in fact, from now on it will be enough
to restrict our attention to the “upper” semicircle only. Since γu and γl are
congruent curves, and the function dist(t) takes the same values when t travels
along either the “upper” semicircle or the “lower” one (perhaps only in reverse
order if a common orientation is chosen on the whole circle; see Fig. 4), then∫

γu

|dt|
dist(t)

=

∫
γl

|dt|
dist(t)

.

Hence, the integral over γC contained in the expression for In is twice the
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Figure 4. Equal distances to the points on γu and γl sym-
metric about the dissecting segment.

integral over the “upper” semicircle, and this gives the simpler formula

In =
2n(1−β)/2

n− 1

∫
γu

|dt|
dist(t)

. (2.10)

Let us now parametrize γu by the angle φ, since the integrand has been
already expressed as a function of this angle. Denote the lower acute angle
of the yellow triangle by αn, as shown in Fig. 5.

Figure 5. Choice of the angle αn.

Then

t(φ) = ic+ r(cos(φ− αn) + i sin(φ− αn)), where φ ∈ [0, π],
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is a parametrization of the semicircle γu with |dt| = rdφ. Its application to
(2.10) yields

In =
2n(1−β)/2

n− 1

∫ π

0

rdφ

(h− r)
√

1 + 4hr
(h−r)2 sin

2 φ
2

.

Since

sin
φ

2
≥ φ

π
for all φ ∈ [0, π]

and n− 1 ≥ n/2 for all n ≥ 2, we get

0 < In ≤ 4

n(β+1)/2

r

h− r

∫ π

0

dφ√
1 + 4hr

π2(h−r)2φ
2

=
4

n(β+1)/2
· r

h− r
· π(h− r)

2
√
hr

∫ 2
√

hr
h−r

0

dx√
1 + x2

=
2π

n(β+1)/2

√
r

h

∫ 2
√

hr
h−r

0

dx√
1 + x2

=: Ĩn. (2.11)

Applying the formula∫
dx√
1 + x2

= ln
(
x+

√
1 + x2

)
+ C

(see, e.g., [5, formula 2.01.18, page 64]), we get

Ĩn =
2π

n(β+1)/2

√
r

h
ln

(
2
√
hr

h− r
+

√
1 +

4hr

(h− r)2

)

=
2π

n(β+1)/2

√
r

h
ln

(
2
√
hr

h− r
+

h+ r

h− r

)

=
2π

n(β+1)/2

√
r

h
ln

(
(2
√
hr + h+ r)(h+ r)

h2 − r2

)
.

It follows from (2.9) that h = h(n) ∼ r and

1

h2 − r2
=

1(
n+1
n−1

)2
− 1

=
(n− 1)2

4n
∼ n

4

as n → ∞. Hence

Ĩn ∼ 2π

n(β+1)/2
ln(2r2n) as n → ∞. (2.12)

Since β > −1, combining (2.11), (2.12), and (2.8), we arrive at lim
n→∞

In = 0,

as was to be proved.
(ii) The case when c ≤ 0, that is when the center of γC lies in the closed

lower half-plane, is treated analogously. Expressions for h and dist(t), when
dissecting the circle and choosing the angle φ as shown in Fig. 6, remain the
same. We will only need to make a slight adjustment to the parametrization
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of the “upper” semicircle. When the angles αn are chosen as in Fig. 6, the
contour γu is parametrized by

t(φ) = ic+ r(cos(φ+ αn) + i sin(φ+ αn)), φ ∈ [0, π].

Figure 6. Natural adjustments for the case c ≤ 0.

This alteration, however, does not affect the differential |dt| = rdφ.
Thus, when c ≤ 0,

In =
2n(1−β)/2

n− 1

∫
γu

|dt|
dist(t)

=
2n(1−β)/2

n− 1

∫ π

0

rdφ

(h− r)
√
1 + 4hr

(h−r)2 sin
2 φ

2

,

which coincides precisely with the quantity In for the case c > 0. Regarding
the latter, we have already proved that In → 0 as n → ∞, and this finishes
the proof for the case c ≤ 0 as well. □

2.7. Weak convergence of the sequence Rn to the zero operator

Having made all the necessary preparations, we are finally ready to prove
that sequence (2.7) satisfies the last condition of Lemma 1.2, i.e., converges
weakly to zero.

According to the definition of weak convergence, we need to show that
for any function f ∈ L2(Γ, ϱ), the sequence {Rnf} converges weakly to the
zero function. This, in turn, can be reformulated as follows: for every pair
f ∈ L2(Γ, ϱ) and g ∈ (L2(Γ, ϱ))∗ = L2(Γ, ϱ−1), there must hold

⟨Rnf, g⟩ =
∫
Γ

2n(1−β)/2

n+ 1 + z(n− 1)
f

(
(n+ 1)z + n− 1

n+ 1 + z(n− 1)

)
·g(z) · |dz| → 0 (2.13)

as n → 0. Fortunately, it suffices to verify (2.13) for all f and g belonging
only to dense subsets of L2(Γ, ϱ) and L2(Γ, ϱ−1), respectively, in order to
have this result for the entire L2(Γ, ϱ) [10, Lemma 1.4.1(i)].
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The theorem below, which is a particular case of [3, Ch. 1, Theorem 1.2],
implies that one can choose the set of all continuous functions on Γ as such
a dense subset for both L2(Γ, ϱ) and L2(Γ, ϱ−1) whenever −1 < β < 1.

Theorem 2.7. Let Γ be a contour in the complex plane consisting of a finite
number of circular arcs joining the endpoints −1 and 1, possibly including
the segment [−1, 1]. Suppose that w(t) = |t− 1|α1 |t+1|α2 with α1, α2 ∈ R. If
α1, α2 > −1, then the set C(Γ) of all continuous functions on Γ is dense in
the space L2(Γ, w).

Given all of this, it remains to prove the following concluding theorem.

Theorem 2.8. Let β > −1 and the contour Γ be as in Theorem 1.1. Then for
any f, g ∈ C(Γ), convergence (2.13) is valid.

Proof. Since the contour Γ is a compact set, arbitrary continuous functions
f and g are bounded on Γ, that is, there exist nonnegative constants L and
M such that |f(z)| ≤ L and |g(z)| ≤ M for all z ∈ Γ.

Applying these estimates together with the usual for this work change
of variables

t =
λz + 1

z + λ
, where λ =

n+ 1

n− 1
,

and its implications (2.5), we obtain for n ≥ 2 that

|⟨Rnf, g⟩| ≤ M

∫
Γ

2n(1−β)/2

|n+ 1 + z(n− 1)|
·
∣∣∣∣f ( (n+ 1)z + n− 1

n+ 1 + z(n− 1)

)∣∣∣∣ · |dz|
= M

∫
Γ

2n(1−β)/2

(n− 1)|z + λ|
·
∣∣∣∣f (λz + 1

z + λ

)∣∣∣∣ · |dz|
= 2M · n

(1−β)/2

n− 1

∫
Γ

|f(t)|
|t− λ|

|dt| ≤ 2LM · n
(1−β)/2

n− 1

∫
Γ

|dt|∣∣∣t− n+1
n−1

∣∣∣
=

k∑
i=1

2LM · n
(1−β)/2

n− 1

∫
γi

|dt|∣∣∣t− n+1
n−1

∣∣∣ , (2.14)

where Γ = γ1 ∪ . . . ∪ γk with γi (1 ≤ i ≤ k) being either a circular arc with
the endpoints ±1 or the segment [−1, 1].

If γi = [−1, 1], then the corresponding term of sum (2.14) containing
the integral over [−1, 1] goes to zero by Lemma 2.5. If, alternatively, γi is a
circular arc, we can obviously guarantee that

2LM · n
(1−β)/2

n− 1

∫
γi

|dt|∣∣∣t− n+1
n−1

∣∣∣ ≤ 2LM · n
(1−β)/2

n− 1

∫
γC

|dt|∣∣∣t− n+1
n−1

∣∣∣ ,
where the last expression with the integral over the whole circle γC ⊃ γi
tends to zero according to Theorem 2.6. This ensures that the left-hand side
with the integral over the arc goes to zero as well.

Thus, all terms of the finite sum (2.14) approach zero as n → ∞, and
hence the same is true for the entire sum. This immediately implies the
convergence |⟨Rnf, g⟩| → 0, and therefore (2.13). □
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