Publications

Export 678 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Estraviz López, D., & Mateus O. (2018).  The history of the Quaternary vertebrate paleontology in Portugal. XVI Annual Meeting of the European Association of Vertebrate Palaeontologists. 65., Caparica, Portugal June 26th-July 1st, 2018: Abstract book of the XVI Annual Meeting of the European Association of Vertebrate Palaeontologists, Caparica, Portugal June 26th-July 1st, 2018. Abstractestraviz__mateus_2018_eavp_abstract.pdf

n/a

de Ricqlès, A., Mateus O., Antunes M. T., & Taquet P. (2001).  Histomorphogenesis of embryos of Upper Jurassic theropods from Lourinhã (Portugal) | Histomorphogenèse du squelette d'embryons de dinosaures théropodes du Jurassique supérieur de Lourinhã (Portugal). Comptes Rendus de l'Academie de Sciences - Serie IIa: Sciences de la Terre et des Planetes. 332, 647–656., Number 10 Abstract
n/a
de Ricqlès, A., Mateus O., Antunes M. T., & Taquet P. (2001).  Histomorphogenesis of embryos of Upper Jurassic Theropods from Lourinha (Portugal). Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule a-Sciences De La Terre Et Des Planetes. 332, 647-656., Jan Abstractricqles_mateus_et_al_2011_histomorphogenesis_of_embryos_of_upper_jurassic_theropods_from_lourinha_portugal.pdfWebsite

Remains of dinosaurian embryos, hatchlings and early juveniles are currently the subject of increasing interest, as new discoveries and techniques now allow to analyse palaeobiological subjects such as growth and life history strategies of dinosaurs. So far, available ‘embryonic’ material mainly involved Ornithopods and some Theropods of Upper Cretaceous age. We describe here the histology of several bones (vertebrae, limb bones) from the tiny but exceptionally well preserved in ovo remains of Upper Jurassic Theropod dinosaurs from the Paimogo locality near Lourinhã (Portugal). This Jurassic material allows to extend in time and to considerably supplement in great details our knowledge of early phases of growth in diameter and in length of endoskeletal bones of various shape, as well as shape modelling among carnivorous dinosaurs. Endochondral ossification in both short and long bones involves extensive pads of calcified cartilages permeated by marrow buds. We discuss the likely occurrence of genuine cartilage canals in dinosaurs and of an avian-like ‘medullary cartilaginous cone’ in Theropods. Patterns of periosteal ossification suggest high initial growth rates (20 μ m·day−1 or more), at once modulated by precise and locally specific changes in rates of new bone deposition. The resulting very precise shape modelling appears to start early and to involve at once some biomechanical components.

de Ricqlès, A., Mateus O., Antunes M. T., & Taquet P. (2001).  Histomorphogenesis of embryos of Upper Jurassic Theropods from Lourinhã (Portugal). Comptes Rendus de l{\textquotesingle}Académie des Sciences - Series {IIA} - Earth and Planetary Science. 332, 647–656., may, Number 10: Elsevier {BV} AbstractWebsite
n/a
de Ricqlès, A., Mateus O., Antunes M. T., & Taquet P. (2001).  Histomorphogenesis of embryos of Upper Jurassic theropods from Lourinhã (Portugal). Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science. 332, 647–656., Number 10 Abstract
n/a
Marzola, M., Mateus O., Wings O., Klein N., Mìlan J., & L.B.Clemmensen (2016).  The herpetofauna from the Late Triassic of the Jameson Land Basin (East Greenland): review and updates. XIV EAVP Meeting. 182., Haarlem, The Netherlands: XIV EAVP Meeting, Programme and Abstract Book
Marzola, M., Mateus O., Wings O., Klein N., Milan J., & [Unknown] L. B. C. (2016).  The herpetofauna from the Late Triassic of the Jameson Land Basin (East Greenland): review and updates. : XIV EAVP Meeting, Programme and Abstract Book Abstract
n/a
Marzola, M., Mateus O., Wings O., Klein N., M{\`ılan J., & L.B.Clemmensen (2016).  The herpetofauna from the Late Triassic of the Jameson Land Basin (East Greenland): review and updates. XIV EAVP Meeting. 182., Haarlem, The Netherlands: XIV EAVP Meeting, Programme and Abstract Book Abstract
n/a
Marzola, M., Mateus O., Wings O., Klein N., M\{\`ı\}lan J., & L.B.Clemmensen (2016).  The herpetofauna from the Late Triassic of the Jameson Land Basin (East Greenland): review and updates. XIV EAVP Meeting. 182., Haarlem, The Netherlands Abstract
n/a
Mateus, O., & Jacinto J. (2008).  Hemidactylus turcicus. Atlas dos Anfíbios e Répteis de Portugal. 130-131., Lisboa: A. Loureiro, N. Ferrand de Almeida, M.A. Carretero, O.S. Paulo. Instituto da Conservação da Natureza e da Biodiversidademateus__jacinto_2008_hemidactylus_turcicus_in_atlas_dos_anfibios_e_repteis_de_portugal.pdf
Mateus, O., & Jacinto J. J. (2008).  Hemidactylus turcicus. (A Loureiro, N F de Almeida, M.A Carretero, O S Paulo, Ed.).Atlas dos Anfíbio e Répteis de Portugal. 134-135. Abstract
n/a
Moreno-Azanza, M., Mateus O., Bauluz B., Coimbra R., Ezquerro L., & Núñez-Lahuerta C. (2021).  Hatching in Portugal: a new look to old eggs. XIX Encontro de Jovens Investigadores em Paleontologia. 22. Abstractmoreno-azanza_et_al_2021_eggs_ejip.pdf

n/a

Polcyn, M., Jacobs L., Schulp A., & Mateus O. (2007).  Halisaurus (Squamata: Mosasauridae) from the Maastrichtian of Angola. Journal of Vertebrate Paleontology. 27(Suppl. to 3), 130A., Jan: Museu Lourinha, So Methodist Univ, Nat Hist Museum Maastricht Abstractpolcyn_et_al_mateus2007_halisaurus_angola_svpmeet.pdf

Recent fieldwork in the Namibe province in southern Angola yielded cranial and postcranial elements of at least two individuals of the rare and enigmatic mosasaur Halisaurus from a single small excavation. The genus Halisaurus is unique in retaining a primitive configuration of the temporal arcade, specifically a broad, vertically oriented contact between the parietal and the supratemporal. The supratemporal is broadly sutured to the opisthotic and prootic, unlike the condition in varanoids in which the simple lunate element lies between the parietal ramus and the squamosal and does not form a sutural contact with the opisthotic or prootic, but as in other halisaurines retains a plesiomorphic, vertically oriented contact with the parietal rami. The squamosal is lightly built and broadly arched as in Varanus. Comparison with known halisaurines indicates the new material is referable to the species Halisaurus arambourgi.
The locality that yielded the new specimens has also yielded a large number of isolated teeth, bones, articulated, and associated skeletons of Mosasaurus, Prognathodon, Globidens, and Plioplatecarpus, which with Halisaurus comprise a mosasaur assemblage most similar to that reported from the Maastrichtian of Morocco.

Polcyn, M., Jacobs L. L., Schulp A., & Mateus O. (2007).  Halisaurus (Squamata: Mosasauridae) from the Maastrichtian of Angola. Journal of Vertebrate Paleontology. 27(suppl. to 3), 130. Abstract
n/a
G
Hayashi, S., Redelstorff R., Mateus O., Watabe M., & Carpenter K. (2014).  Gigantism of stegosaurian osteoderms. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 145.hayashi_et_al_2014_gigantism_of_stegosaurian_osteoderms.pdf
Mateus, O. (2014).  Gigantism of stegosaurian osteoderms. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 145.: Taylor & Francis Abstract
n/a
Mateus, O. (2014).  Gigantic Jurassic predators. 52 Things You Should Know About Palaeontology. 56-57.: Agile Libremateus_2014_gigantic_jurassic_predators.pdf
Mateus, O. (2014).  Gigantic jurassic predators. (Agile Libre, Ed.).52 Things You Should Know About Palaeontology. 56–57.: Agile Libre Abstract
n/a
Pereira, B., Mateus O., Kullberg J. C., & Rocha R. (2017).  The geotouristic potential of the Oeste Region of Portugal. 14th European Geoparks Conference | Abstracts Book 167. 167., Ponta Delgadapereira_et_al_2017_geotouristic_oeste.pdf
Pereira, B., Mateus O., Kullberg J. C., & Rocha R. (2017).  The geotouristic potential of the Oeste Region of Portugal. Abstract
n/a
Polcyn, M., Jacobs L., Strganac C., Mateus O., Myers S., May S., Araujo R., Schulp A., & Morais M. (2014).  Geology and paleoecology of a marine vertebrate bonebed from the lower Maastrichtian of Angola. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 206.polcyn_et_al._2014_geology_and_paleoecology_of_a_marine_vertebrate_bonebed_from_the_lower_maastrichtian_of_angola.pdf
Strganac, C., Jacobs L., Polcyn M., Mateus O., Myers T., Araújo R., Fergunson K. M., Gonçalves A. O., Morais M. L., Schulp A. S., da Tavares T. S., & Salminen J. (2015).  Geological Setting and Paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, Angola. Netherlands Journal of Geosciences. 94(1), 121-136. Abstractstrganac_et_al_2014_geological_setting_bentiaba_angola.pdfWebsite

The Bench 19 Bonebed at Bentiaba, Angola, is a unique concentration of marine vertebrates preserving six species of mosasaurs in sediments best correlated by magnetostratigraphy to chron C32n.1n between 71.4 and 71.64 Ma. The bonebed formed at a paleolatitude near 24°S, with an Atlantic width at that latitude approximating 2700 km, roughly half that of the current width. The locality lies on an uncharacteristically narrow continental shelf near transform faults that controlled the coastal outline of Africa in the formation of the South Atlantic Ocean. Biostratigraphic change through the Bentiaba section indicates that the accumulation occurred in an ecological time dimension within the 240 ky bin delimited by chron 32n.1n. The fauna occurs in a 10 m sand unit in the Mocuio Formation with bones and partial skeletons concentrated in, but not limited to, the basal 1–2 m. The sediment entombing the fossils is an immature feldspathic sand shown by detrital zircon ages to be derived from nearby granitic shield rocks. Specimens do not appear to have a strong preferred orientation and they are not concentrated in a strand line. Stable oxygen isotope analysis of associated bivalve shells indicates a water temperature of 18.5°C. The bonebed is clearly mixed with scattered dinosaur and pterosaur elements in a marine assemblage. Gut contents, scavenging marks and associated shed shark teeth in the Bench 19 Fauna indicate biological association and attrition due to feeding activities. The ecological diversity of mosasaur species is shown by tooth and body-size disparity and by δ13C analysis of tooth enamel, which indicate a variety of foraging areas and dietary niches. The Bench 19 Fauna was formed in arid latitudes along a coastal desert similar to that of modern Namibia on a narrow, tectonically controlled continental shelf, in shallow waters below wave base. The area was used as a foraging ground for diverse species, including molluscivorus Globidens phosphaticus, small species expected near the coast, abundant Prognathodon kianda, which fed on other mosasaurs at Bench 19, and species that may have been transient and opportunistic feeders in the area.

Strganac, C., Jacobs L. L., Polcyn M. J., Mateus O., Myers T. S., Salminen J., May S. R., Araújo R., Ferguson K. M., Gon?alves A. O., Morais M. L., Schulp A. S., & da Silva Tavares T. (2014).  Geological setting and paleoecology of the Upper Cretaceous Bench 19 Marine Vertebrate Bonebed at Bentiaba, Angola. Geologie en Mijnbouw/Netherlands Journal of Geosciences. 94, 121-136., Number 1 Abstract
n/a
Polcyn, M. J., Jacobs L. L., Strganac C., Mateus O., Myers T. S., May S., Araújo R., Schulp A. S., & Morais M. L. (2014).  Geological and paleoecological setting of a marine vertebrate bonebed from the Lower Maastrichtian at Bentiaba, Angola. Secondary Adaptation of Tetrapods to Aquatic Life. , 2-4 Jun 2014, Washington DC, USA
Mateus, O. (2014).  Geological and paleoecological setting of a marine vertebrate bonebed from the Lower Maastrichtian at Bentiaba, Angola. Proceedings of the Secondary Adaptation of Tetrapods to Aquatic Life. NA., 1 Abstract

A single, geographically and temporally restricted horizon at Bentiaba, Angola (14.3° S), preserves a concentration of skeletons and isolated elements representing sharks, rays, bony fish, at least three species of turtles, two species of plesiosaurs, at least five species of mosasaurs, and rare volant and terrestrial forms. The concentration, referred to as the Bench 19 Fauna, formed on a narrow continental shelf at paleolatitude 24°S as predicted by paleomagnetic data and confirmed by plate motion models. The shelf evolved as a transform passive margin along faults associated with the opening of the South Atlantic. Latitude 24°S falls today along the coast of northern Namibia, an area of intense upwelling and hyperarid coastal desert. The Namibe Basin in southern Angola is separated from the Walvis Basin of Namibia by the Walvis Ridge, and the continental shelf in northern Namibia is eight times the width of that at Bentiaba. However, the sediment entombing the fossils at Bentiaba is an immature feldspathic sand, shown by detrital zircon ages to be derived from nearby exposed granitic shield rocks, suggesting similar climatic and drainage conditions between the two regions. Temporal control of the Bentiaba section is provided by magnetostratigraphy and stable carbon isotope chemostratigraphy anchored by an Ar40/Ar39radiometric date on basalt. The age of Bench 19 is constrained to chron C32n.1n and thus falls between 71.4 and 71.64 Ma. Massive bedding without hummocky cross-bedding or other sedimentary structures indicates deposition in shallow water below wave base. δ18O analysis of bivalve shells indicates a water temperature of 18° C immediately below Bench 19. Nearest neighbor distance peaks at 5 m (n=19

Reboleira, A., & Mateus O. (2022).  Geologia, Grutas e Fauna Subterrânea do Planalto das Cesaredas, Portugal. Captar. 11, 1-19.: DOI: https://doi.org/10.34624/captar.v11i0.27451 Abstractreboleira_e_mateus_2022.pdf

n/a

F
Milàn, J., & Mateus O. (2003).  Fra strandbred til museum p{\aa} syv dage: historien om et gigantisk dinosaur fodspor. Varv. 8–14., Number 2003/3 Abstract
n/a
Ribeiro, C., Callapez P. M., & Mateus O. (2018).  Fossil vertebrates in the paleontological collections of the Science Museum (University of Coimbra, Portugal). XVI Annual Meeting of the European Association of Vertebrate Palaeontologists. 163., Caparica, Portugal June 26th-July 1st, 2018: Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Abstractribeiro_et_al_2018_eavp_abstract.pdf

n/a

Mateus, O., Jacobs L. L., Polcyn M. J., Myers T. S., & Schulp A. S. (2015).  The fossil record of testudines from angola from the turonian to oligocene. Society of Vertebrate Paleontology Annual Meeting. 177., Dallasmateus_et_al_2015_testudines_angola_svp_abstract.pdf
Mateus, O., Jacobs L. L., Polcyn {M. J. }, Myers T. S., & Schulp A. S. (2015).  The fossil record of testudines from Angola from the Turonian to Oligocene. : Journal of Vertebrate Paleontology Abstract
n/a
Mateus, O., Callapez P. M., Polcyn M. J., Schulp A. S., Gonçalves A. O., & Jacobs L. L. (2019).  The Fossil Record of Biodiversity in Angola Through Time: A Paleontological Perspective. (Huntley, Brian J., Russo, Vladimir, Lages, Fernanda, Ferrand, Nuno, Ed.).Biodiversity of Angola: Science & Conservation: A Modern Synthesis. 53–76.: Springer International Publishing Abstractmateus2019_chapter_thefossilrecordofbiodiversityi.pdf

This chapter provides an overview of the alpha paleobiodiversity of Angola based on the available fossil record that is limited to the sedimentary rocks, ranging in age from Precambrian to the present. The geological period with the highest paleobiodiversity in the Angolan fossil record is the Cretaceous, with more than 80{%} of the total known fossil taxa, especially marine molluscs, including ammonites as a majority among them. The vertebrates represent about 15{%} of the known fauna and about one tenth of them are species firstly described based on specimens from Angola.

Mateus, O., Callapez P. M., Polcyn M. J., Schulp A. S., Gonçalves A. O., & Jacobs L. L. (2019).  The Fossil Record of Biodiversity in Angola Through Time: A Paleontological Perspective. (Huntley, Brian J., Russo, Vladimir, Lages, Fernanda, Ferrand, Nuno, Ed.).Biodiversity of Angola: Science {&} Conservation: A Modern Synthesis. 53–76., Cham: Springer International Publishing Abstract

This chapter provides an overview of the alpha paleobiodiversity of Angola based on the available fossil record that is limited to the sedimentary rocks, ranging in age from Precambrian to the present. The geological period with the highest paleobiodiversity in the Angolan fossil record is the Cretaceous, with more than 80{%} of the total known fossil taxa, especially marine molluscs, including ammonites as a majority among them. The vertebrates represent about 15{%} of the known fauna and about one tenth of them are species firstly described based on specimens from Angola.

Mallison, H., Schwarz-Wings D., Tsai H., Holliday C., & Mateus O. (2014).  Fossil longbone cartilage preserved in stegosaurs?. Journal of Vertebrate Paleontology. Program and Abstracts, 2014, 176.mallison_et_al._2014_fossil_longbone_cartilage_preserved_in_stegosaurs.pdf
Pereira, T., Mateus O., & Moreno-Azanza M. (2018).  Fossil amphibians from Portugal. 1st Palaeontological Virtual Congress. online. Abstractpereira_et_al_2018_amphibians_portugal.pdf

n/a

Pereira, T., Mateus O., & Moreno-Azanza M. (2018).  Fossil amphibians from Portugal. 1st Palaeontological Virtual Congress. online. Abstract

n/a

Mateus, O. (2008).  Fósseis de transição, elos perdidos, fósseis vivos e espécies estáveis. (Levy, et al, Ed.).Evolução: História e Argumentos. 77-96., Lisboa: Esfera do Caosmateus_2008_evolucao_fosseis_de_transicao.pdf
Ríos, M., Estraviz-López D., Martino R., Lohmann P., Mateus O., & Solounias N. (2022).  The first Sivatheriine (Artiodactyla, Giraffidae) from the Middle Miocene of Portugal. XIX Annual conference of the European Association of Vertebrate Palaeontologists (19th EAVP)At: Benevento, Italy. 167. Abstracteavp_2022_abstractvolume-176.pdf

n/a

Mateus, O., & Milan J. (2010).  First records of crocodyle and pterosaur tracks in the Upper Jurassic of Portugal.. New Mexico Museum of Natural History and Science Bulletin. 51, 83-87., Jan Abstractmateus_and_milan_2010_portugal_first_records_of_crocodyle_and_pterosaur_tracks_in_the_upper_jurassic_of_portugal.pdfWebsite

The Upper Jurassic of Portugal has a rich vertebrate fauna well documented from both body and trace fossils. Although the occurrence of crocodyles and pterosaurs is well documented from body fossils, trace fossils from both groups were unknown until now. Here we describe an isolated crocodyle-like track from Praia da Peralta and pterosaur tracks from the Kimmeridgian of Pedreira do Avelino, Sesimbra (Azóia Fm.) and Porto das Barcas, Lourinhã (Lourinhã Fm.). An enigmatic track suggests the possible presence of a small, tail-dragging tetrapod.
Possible track-makers are suggested based on the known Late Jurassic vertebrate fauna of Portugal.

Mateus, O. (2010).  First records of crocodyle and pterosaur tracks in the Upper Jurassic of Portugal.. New Mexico Museum of Natural History and Science Bulletin. 51, 83–87., 1, Number NA Abstract

The Upper Jurassic of Portugal has a rich vertebrate fauna well documented from both body and trace fossils. Although the occurrence of crocodyles and pterosaurs is well documented from body fossils, trace fossils from both groups were unknown until now. Here we describe an isolated crocodyle-like track from Praia da Peralta and pterosaur tracks from the Kimmeridgian of Pedreira do Avelino, Sesimbra (Azóia Fm.) and Porto das Barcas, Lourinhã (Lourinhã Fm.). An enigmatic track suggests the possible presence of a small, tail-dragging tetrapod. Possible track-makers are suggested based on the known Late Jurassic vertebrate fauna of Portugal.

Campos, H., & Mateus O. (2018).  The first record of placodonts in Portugal and its chronological and paleoecological implications. XVI Annual Meeting of the European Association of Vertebrate Palaeontologists. 38.: Abstract book of the XVI Annual Meeting of the European Association of Vertebrate Palaeontologists, Caparica, Portugal June 26th-July 1st, 2018. Abstractcampos__mateus_2018_eavp_abstract.pdf

n/a

Campos, H., & Mateus O. (2018).  The first record of placodonts in Portugal and its chronological and paleoecological implications. XVI Annual Meeting of the European Association of Vertebrate Palaeontologists. 38.: Abstract book of the XVI Annual Meeting of the European Association of Vertebrate Palaeontologists, Caparica, Portugal June 26th-July 1st, 2018. Abstract

n/a

Pereira, A. M., Silva M. M., & Mateus O. (2022).  First record of Phymactis papillosa (Lesson, 1830), a Pacific south sea anemone in European shores. Journal of the Marine Biological Association of the United Kingdom. 1–4.: Cambridge University Press Abstractfirst-record-of-phymactis-papillosa-lesson-1830-a-pacific-south-sea-anemone-in-european-shores.pdfWebsite

n/a

Mateus, O., Dyke G., Motchurova-Dekova N., Ivanov P., & Kamenov G. D. (2010).  The first record of a dinosaur from Bulgaria. Lethaia. 43, 88-94., Jan Abstractmateus_et_al__2010_the_first_record_of_a_dinosaur_in_bulgaria._lethaia.pdfWebsite

A portion of a left humerus from the Upper Maastrichtian of Vratsa district (NW Bulgaria)
is shown to be from a non-avian theropod dinosaur: this is the first record of a
dinosaur from Bulgaria. We describe this bone, suggest that it most likely pertains to an
ornithomimosaur, and discuss the fossil record of other similar taxa of Late Cretaceous
age that have been reported from Europe. To investigate the taphonomy of this fossil,
rare earth element (REE) analysis is combined with strontium (Sr) isotope data to confirm
that this Bulgarian dinosaur bone was initially fossilized in a terrestrial environment,
then later re-worked into late Maastrichtian marine sediments.

Mateus, O., Dyke G. A. J., Motchurova-Dekova N., Kamenov G. D., & Ivanov P. (2010).  The first record of a dinosaur from Bulgaria. Lethaia. 43, 88-94., Number 1 Abstract
n/a
Mateus, O., Butler R. J., Brusatte S. L., Whiteside J. H., & Steyer S. J. (2014).  The first phytosaur (Diapsida, Archosauriformes) from the Late Triassic of the Iberian Peninsula. Journal of Vertebrate Paleontology. 34(4), 970-975.mateus_et_al_2014_first_phytosaur_algarve_portugal_jvp.pdfWebsite
Mateus, O., Butler R. J., Brusatte S. L., Whiteside J. H., & Steyer J. S. (2014).  The first phytosaur (Diapsida, Archosauriformes) from the Late Triassic of the Iberian Peninsula. Journal of Vertebrate Paleontology. 34, 970-975., Number 4 Abstract
n/a