Publications

Export 74 results:
Sort by: Author Title [ Type  (Asc)] Year
Book
Mateus, O. (2010).  Colecções e museus de Geologia: missão e gestão. , 1: Ed. Universidade de Coimbra e Centro de Estudos de História e Filosofia da Ciência Abstract
n/a
Book Chapter
Gaspar, A., Avelar T., & Mateus O. (2007).  Criacionismo e Sociedade no Séc. XX. (Avelar, T., O. Mateus, Almada, F., Gaspar, A., Ed.).Evolução e Criacionismo: Uma Relação Impossível. 133-160., Lisboa: Quasi ed. gasparavelarmateus2007evoluoecriacio.pdf
Gaspar, A., Avelar T., & Mateus O. (2007).  Criacionismo e Sociedade no Séc. XX.  Evolução e Criacionismo: Uma Relação Impossível. 133-160., Lisboa Abstract
n/a
Conference Paper
Mateus, O. (2013).  Cathetosaurus as a valid sauropod genus and comparisons with Camarasaurus. Journal of Vertebrate Paleontology. 173., 1 Abstract
n/a
Mateus, O., & Antunes M. T. (2000).  Ceratosaurus sp. (Dinosauria: Theropoda) in the Late Jurassic of Portugal. Abstract volume of the 31st International Geological Congress. , Rio de Janeiro, Brazil Abstractmateus__antunes_2000_-_ceratosaurus_in_portugal.pdf

n/a

Mateus, O. (2008).  Checklist for Late Jurassic reptiles and amphibians from Portugal. Livro de Resumos do X Congresso Luso-Espanhol de Herpetologia. 55., Coimbra Abstractmateus_2008_lista_de_repteis_e_anfibios_do_jurassico_superior_de_portugal__list_congressoherpetolog.pdf

The richness of Late Jurassic vertebrates in Portugal is known since the 19th century by Paul Choffat, Henri Sauvage and other. The Kimmeridgian Guimarota fauna assemblage is the best known, followed by the fauna of Lourinhã formation. Here is presented an attempt to provide a checklist of the reptiles and amphibians of the Late Jurassic. Amphibia: Lissamphibia (Celtedens, cf. Marmorerpeton, Discoglossidae indet.). Chelonia: Eucryptodira (Pleurosternidae indet., Platychelyidae indet., Plesiochelys cf. etalloni, Plesiochelys choffati, Anosteirinae indet.). Squamata: Scincomorpha (Becklesius hoffstetteri; Paramacellodus sp., Saurillodon proraformis, S. henkeli, S. cf. obtusus). Squamata: Anguimorpha (Dorsetisaurus pollicidens, Parviraptor estesi). Crown Lepidosauromorpha (Marmoretta sp.). Choristodera: Cteniogenidae (Ctenogenys reedi). Sauropterygia: Plesiosauria: Cryptoclidoidea: Cryptoclididae indet. Crocodylomorpha (Lisboasaurus estesi, L. mitrocostatus). Crocodyliformes: Neosuchia (Machimosaurus hugii, Goniopholis cf. simus, Goniopholis baryglyphaeus, cf. Bernissartia, Atoposauridae, Theriosuchus guimarotae, cf. Alligatorium, Metriorhynchus sp.). Pterosauria (Rhamphorhynchus sp., Pterodactylus sp.). Dinosauria: Theropoda (Ceratosaurus sp. , Torvosaurus sp., Lourinhanosaurus antunesi, Allosaurus europaeus, Cf. Compsognathus sp., cf. Richardoestesia sp., Dromaeosaurinae indeter., Velociraptorinae indeter., cf. Archaeopteryx sp., aff. Paronychodon). Dinosauria: Sauropoda: Eusauropoda (Dinheirosaurus lourinhanensis, Lourinhasaurus alenquerensis, Lusotitan atalaiensis, Apatosaurus sp.). Dinosauria: Ornithischia: Thyreophora (Dacentrurus armatus, Stegosaurus sp., Dracopelta zbyszewskii). Dinosauria: Ornithischia: Ornithopoda (Phyllodon henkeli, Dryosaurus sp., Hypsilophodon sp., Alocodon kuehnei, Trimucrodon cuneatus, Draconyx loureiroi).

Mateus, O. (2008).  Checklist for Late Jurassic reptiles and amphibians from Portugal. Livro de Resumos do X Congresso Luso-Espanhol de Herpetologia. 55., Coimbra Abstract
n/a
Mateus, O. (2008).  Checklist for Late Jurassic reptiles and amphibians from Portugal. Livro de Resumos do X Congresso Luso-Espanhol de Herpetologia. 55–55., Coimbra Abstract
n/a
Mateus, O. (2009).  Colecções paleontológicas do Museu da Lourinhã (Portugal) / Paleontological collections of the Museum of Lourinhã (Portugal). (Unknown Unknown, Ed.).Journal of Paleontological Techniques. 18–19.., 1 Abstract
n/a
Marzola, M., Mateus O., Schulp A. S., Jacobs L. L., Polcyn M. J., Pervov V., Goncalves A. O., & Morais M. L. (2015).  Comparative anatomy and systematics of Cretaceous mammal tracks of Angola. 13th Annual Meeting of the European Association of Vertebrate Palaeontologists - EAVP 2015. , July 2015, Opole, Poland: European Association of Vertebrate Palaeontologistsmarzola_et_al_2015_catoca_tracks_eavp.pdf
Marzola, M., Mateus O., Schulp A. S., Jacobs L. L., Polcyn M. J., Pervov V., Goncalves A. O., & Morais M. L. (2015).  Comparative anatomy and systematics of Cretaceous mammal tracks of Angola. 13th Annual Meeting of the European Association of Vertebrate Palaeontologists - EAVP 2015. , July 2015, Opole, Poland: European Association of Vertebrate Palaeontologists Abstract
n/a
Marzola, M., Mateus O., Schulp A. S., Jacobs L. L., Polcyn M. J., Pervov V., Goncalves A. O., & Morais M. L. (2015).  Comparative anatomy and systematics of Cretaceous mammal tracks of Angola. 13th Annual Meeting of the European Association of Vertebrate Palaeontologists - EAVP 2015. , Opole, Poland Abstract
n/a
Marzola, M., Mateus O., Schulp {A. S. }, Jacobs {L. L. }, Polcyn {M. J. }, Pervov V., Goncalves {A. O. }, & Morais {M. L. } (2015).  Comparative anatomy and systematics of Cretaceous mammal tracks of Angola. 35. Abstract
n/a
Marzola, M., Mateus O., Russo J., & Milàn J. (2014).  Comparison of modern and fossil Crocodylomorpha eggs and contribution to the oophylogeny of Amniota. XII Annual Meeting of the European Association of Vertebrate Palaeontologists. , p. 192, Regione Piemonte: European Association of Vertebrate Palaeontologists. Museo Regionale di Scienze Naturalimarzola_et_al._2014_comparison_of_modern_and_fossil_crocodylomorpha_eggs_and_contribution_to_the_oophylogeny_of_amniota-_eavp_2014.pdf
Mateus, O. (2014).  Comparison of modern and fossil Crocodylomorpha eggs and contribution to the oophylogeny of Amniota. Annual Meeting of the European Association of Vertebrate Palaeontologists. , p. 192, Regione Piemonte: European Association of Vertebrate Palaeontologists. Museo Regionale di Scienze Naturali. Abstract
n/a
Mateus, O. (2014).  Comparison of modern and fossil Crocodylomorpha eggs and contribution to the oophylogeny of Amniota. Annual Meeting of the European Association of Vertebrate Palaeontologists. XII Annual Meeting of the European Association of Vertebrate Palaeontologists, 192., 1 Abstract
n/a
Mateus, O., & Jacinto J. J. (2002).  Contribuição para o estudo de Hemidactylus turcicus (Reptilia, Gekkonidae): ritmos de actividade e microhabitat em Évora, Portugal. VII Congresso Luso-Espanhol de Herpetologia. 136., Évora Abstract

n/a

Mateus, O., & Jacinto J. J. (2002).  Contribuição para o estudo de Hemidactylus turcicus (Reptilia, Gekkonidae): ritmos de actividade e microhabitat em Évora, Portugal. VII Congresso Luso-Espanhol de Herpetologia. 136., Évora Abstract
n/a
Mateus, O., & Jacinto J. J. (2002).  Contribuição para o estudo de Hemidactylus turcicus (Reptilia, Gekkonidae): ritmos de actividade e microhabitat em Évora, Portugal. VII Congresso Luso-Espanhol de Herpetologia. 136–136., Évora Abstract
n/a
Mateus, O., Morais M., Schulp A., Jacobs L., & Polcyn M. (2006).  The Cretaceous of Angola. JOURNAL OF VERTEBRATE PALEONTOLOGY. 26, 96A-97A., Jan Abstractmateus_et_al_2006_svp_abstracts_cretaceous_fo_angola.pdf

n/a

Mateus, O. (2013).  Crocodylomorphs from the Mesozoic of Portugal and a new skull of eusuchian from the Late Cretaceous. 2013 Hwaseong International Dinosaurs Expedition Symposium, pp.66-67.. , Hwaseong, South Korea Abstractmateus_2013_crocodylomorphs_portugal_new_skull.pdf

The diversity of fossil crocodylomorphs in Portugal is high, with occurrence as old as Mystriosaurus (=Steneosaurus) bollensis from the Lower Jurassic. The Late Jurassic forms are the better documented, and include the following taxa: Machimosaurus hugii, Lisboasaurus estesi Seiffert, 1973, Lusitanisuchus mitrocostatus Seiffert, 1975; Schwarz & Fechner 2004, Theriosuchus guimarotae Schwarz and Salisbury 2005, Cf. Alligatorium, Goniopholis baryglyphaeus, and a crocodylomorph-like eggs in dinosaur nests (Mateus et al., 1998; Ricqlès et al., 2001). From the Lower Cretaceous were reported a few dinosaurs but its record is strangely scarce in crocodylomorphs (Mateus et al., 2011). The Upper Cretaceous crocodiles show a large diversity, but it is mostly based in fragmentary material that require revision, such as “Crocodylus” blavieri? Grey from the Upper Campanian - Maastrichtian of Viso, near Aveiro (initially reported by Sauvage 1897-98), Goniopholis cf. crassidens Owen 1841 and Oweniasuchus pulchelus Jonet 1981. Moreover there is a fascinating, but poorly understood, crocodylomorph diversity in the Cenomanian of Portugal, documented by fragmentary specimens that have been doubtfully assigned to Thoracosaurus Leidy 1852 of the Middle Cenomanian of Cacém, to the nomen dubium Oweniasuchus lusitanicus Sauvage 1897-98 (interpreted as a mesosuchian goniopholid) based in a fragmentary mandible from the Campanian-Maastrichtian, and also from the Middle Cenomanian of Portugal, Buffetaut and Lauverjat (1978) report an fragmentary unidentified possible dyrosaurid from Nazaré. All this specimens are too incomplete to be compared with the specimen here described. In contrast, Cenozoic crocodiles of Portugal are often known after complete skulls and several individuals. The taxa list include Iberosuchus macrodon (Lower to Middle Eocene), Tomistoma calaritanus (Early Miocene) and T. lusitanica (Burdigalian-Helvetian), and Diplocynodon sp. (Antunes, 1961, 1987, 1994).
At least, two different morphotypes of crocodylomorph eggs from the Late Jurassic of Lourinhã Formation are also known.
A new specimen here reported of crocodile based in a partial skull and mandible (ML1818) from the Uppermost Middle Cenomanian platform carbonates of Baixo Mondego, west central Portugal (Tentúgal Fm., Callapez, 2004). The taxon is phylogenetically positioned as a basal Eusuchia, due to the choanae enclosed by the pterygoid, and closely related with stem Crocodylia and Borealosuchus. This specimen represents the only well documented and valid eusuchian species in the Cenomanian of Europe and is the oldest representative of an eusuchian crocodylomorph, with the exception for the Barremian Hylaeochampsa vectiana.

Conference Proceedings
Jacobs, L. L., Myers T. S., Goncalves A. O., Graf J. F., Jacobs B. F., KAPPELMAN J. W., Mateus O., Polcyn M. J., RASBURY E. T., & Vineyard D. P. (2013).  Cabinda revisited: age and environment of new Cenozoic vertebrate fossils from northern Angola. Geological Society of America Abstracts with Programs. Vol. 45, No. 7, p.0.
Ribeiro, V., & Mateus O. (2012).  Chronology of the Late Jurassic dinosaur faunas, and other reptilian faunas, from Portugal. Journal of Vertebrate Paleontology, Program and Abstracts, 2012, p. 161 ISSN 1937-2809. ribeiro__mateus_2012_chronology_dinosaurs_portugal_abstract_book_meeting_abstracts.pdf.pdf
Mateus, O., Polcyn M. J., Jacobs L. L., Araújo R., Schulp A. S., Marinheiro J., Pereira B., & Vineyard D. (2012).  Cretaceous amniotes from Angola: dinosaurs, pterosaurs, mosasaurs, plesiosaurs, and turtles. V Jornadas Internacionales sobre Paleontología de Dinosaurios y su Entorno. 71-105., Salas de los Infantes, Burgos Abstractmateus_et_al_2012_amniotes_from_angola_cretaceous_amniotes_from_angola_dinosaurs_pterosaurs_mosasaurs.pdf

Although rich in Cretaceous vertebrate fossils, prior to 2005 the amniote fossil record of Angola was poorly known. Two horizons and localities have yielded the majority of the vertebrate fossils collected thus far; the Turonian Itombe Formation of Iembe in Bengo Province and the Maastrichtian Mocuio Formation of Bentiaba in Namibe Province. Amniotes of the Mesozoic of Angola are currently restricted to the Cretaceous and include eucryptodire turtles, plesiosaurs, mosasaurs, pterosaurs, and dinosaurs. Recent collecting efforts have greatly expanded our knowledge of the amniote fauna of Angola and most of the taxa reported here were unknown prior to 2005.

Guillaume, A. R. D., Moreno-Azanza M., Puértolas-Pascual E., & Mateus O. (2018).  Crocodylomorph teeth from the Lourinhã Formation, Portugal (Late Jurassic). XVI Annual Meeting of the European Association of Vertebrate Palaeontologists. 80., Caparica, Portugal June 26th-July 1st, 2018 Abstractguillaume_et_al_2018_eavp_abstract.pdf

n/a

Guillaume, A. R. D., Moreno-Azanza M., Puértolas-Pascual E., & Mateus O. (2018).  Crocodylomorph teeth from the Lourinhã Formation, Portugal (Late Jurassic). XVI Annual Meeting of the European Association of Vertebrate Palaeontologists. 80., Caparica, Portugal June 26th-July 1st, 2018 Abstract

n/a

Azanza, M. M., Coimbra R., Puértolas-Pascual E., Russo J., Bauluz B., & Mateus O. (2019).  Crystallography of Lourinhanosaurus eggshells (Dinosauria, Theropoda, Allosauroidea). Journal of Vertebrate Paleontology, Program and Abstracts. 156-157.moreno_azanza_et_al_2019_svp_abstract.pdf
Azanza, M. M., Coimbra R., Puértolas-Pascual E., Russo J., Bauluz B., & Mateus O. (2019).  Crystallography of Lourinhanosaurus eggshells (Dinosauria, Theropoda, Allosauroidea). Journal of Vertebrate Paleontology, Program and Abstracts. 156-157. Abstract
n/a
Journal Article
Strganac, C., Salminen J., Jacobs L. L., Ferguson K. M., Polcyn M. J., Mateus O., Schulp A. S., Morais M. L., Tavares T. S., & Gonçalves A. O. (2014).  Carbon isotope stratigraphy and 40Ar/39Ar age of the Cretaceous South Atlantic coast, Namibe Basin, Angola. Journal of African Earth Sciences. onine, 1-11. Abstractstrganac_et_al_2014_carbon_isotope_stratigraphy_magnetostratigraphy_and_40ar_39ar_age_of.pdfWebsite

We present the δ13C and paleomagnetic stratigraphy for marine strata at the coast of southern Angola, anchored by an intercalated basalt with a whole rock 40Ar/39Ar radiometric age of 84.6 ± 1.5 Ma, being consistent with both invertebrate and vertebrate biostratigraphy. This is the first African stable carbon isotope record correlated to significant events in the global carbon cycle spanning the Late Cenomanian to Early Maastrichtian. A positive ∼ 3‰ excursion seen in bivalve shells below the basalt indicates the Cenomanian-Turonian Boundary Event at 93.9 Ma, during Oceanic Anoxic Event 2. Additional excursions above the basalt are correlated to patterns globally, including a negative ∼ 3‰ excursion near the top of the section interpreted as part of the Campanian-Maastrichtian Boundary Events. The age of the basalt ties the studied Bentiaba section to a pulse of Late Cretaceous magmatic activity around the South Atlantic and significant tectonic activity, including rotation, of the African continent.

Strganac, C., Salminen J., Jacobs L. L., Polcyn M. J., Ferguson K. M., Mateus O., Schulp A. S., Morais M. L., Tavares T. S., & Gon?alves A. O. (2014).  Carbon isotope stratigraphy, magnetostratigraphy, and 40Ar/39Ar age of the cretaceous South Atlantic coast, Namibe Basin, Angola. Journal of African Earth Sciences. 99, 452-462., Number PA2 Abstract
n/a
Tschopp, E., & Mateus O. (2016).  Case 3700 Diplodocus Marsh, 1878 (Dinosauria, Sauropoda): Proposed designation of D. carnegii Hatcher, 1901 as the type species. Bulletin of Zoological Nomenclature. 73, 17–24., Number 1: International Commission on Zoological Nomenclature Abstract

The purpose of this application, under Articles 78.1 and 81.1 of the Code, is to replace Diplodocus longus Marsh, 1878 as the type species of the sauropod dinosaur genus Diplodocus by the much better represented D. carnegii Hatcher, 1901, due to the undiagnosable state of the holotype of D. longus (YPM 1920, a partial tail and a chevron). The holotype of D. carnegii, CM 84, is a well-preserved and mostly articulated specimen. Casts of it are on display in various museums around the world, and the species has generally been used as the main reference for studies of comparative anatomy or phylogeny of the genus. Both species are known from the Upper Jurassic Morrison Formation of the western United States. The genus Diplodocus is the basis for the family-level taxa diplodocinae Marsh, 1884, diplodocidae Marsh, 1884, diplodocimorpha Marsh, 1884 (Calvo & Salgado, 1995) and diplodocoidea Marsh, 1884 (Upchurch, 1995). It is also a specifier of at least 10 phylogenetic clades. With the replacement of D. longus by D. carnegii as type species, Diplodocus could be preserved as a taxonomic name with generally accepted content. Taxonomic stability of the entire clade diplodocoidea, and the proposed definitions of several clades within Sauropoda, could be maintained.

Mateus, O., & Tschopp E. (2013).  Cathetosaurus as a valid sauropod genus and comparisons with Camarasaurus. Journal of Vertebrate Paleontology, Program and Abstracts, 2013. 173.mateus__tschopp_2013_cathetosaurs_camarasaurus__svp_meeting_abstracts_213.pdf
Jacobs, L., Polcyn M., Mateus O., Scott M., Graf J., Kappelman J., Jacobs B., Schulp A., Morais M., & Goncalves O. (2014).  Cenozoic vertebrates of coastal Angola. Journal of Vertebrate Paleontology, Program and Abstracts, 2014. 153.jacobs_et_al._2014_cenozoic_vertebrates_of_coastal_angola.pdf
Agnolin, F. L., Mateus O., Milàn J., Marzola M., Wings O., Adolfssen J. S., & Clemmensen L. B. (2018).  Ceratodus tunuensis, sp. nov., a new lungfish (Sarcopterygii, Dipnoi) from the Upper Triassic of central East Greenland. Journal of Vertebrate PaleontologyJournal of Vertebrate Paleontology. e1439834., 2018: Taylor & Francis Abstractagnolin_et_al_2018_ceratodus_tunuensis_greenland.pdfWebsite

ABSTRACTThe fossil record of post-Paleozoic lungfishes in Greenland is currently restricted to a few brief reports of isolated and undetermined tooth plates coming from the uppermost Fleming Fjord Formation (late Norian) in Jameson Land, central East Greenland. Here, we describe Ceratodus tunuensis, sp. nov., a new dipnoan from a thin bed of calcareous lake mudstone from the ?rsted Dal Member of the Fleming Fjord Formation. The Ceratodus fossil record indicates that during the Late Triassic, this genus was restricted to the middle latitudes of the Northern Hemisphere. This record matches previous paleobiogeographical analyses and indicates that terrestrial biota during the Late Triassic was strongly influenced by paleolatitude.Citation for this article: Agnolin, F. L., O. Mateus, J. Milàn, M. Marzola, O. Wings, J. Schulz Adolfssen, and L. B. Clemmensen. 2018. Ceratodus tunuensis, sp. nov., a new lungfish (Sarcopterygii, Dipnoi) from the Upper Triassic of central East Greenland. Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2018.1439834.

Agnolin, F. L., Mateus O., Milàn J., Marzola M., Wings O., Adolfssen J. S., & Clemmensen L. B. (2018).  Ceratodus tunuensis, sp. nov., a new lungfish (Sarcopterygii, Dipnoi) from the Upper Triassic of central East Greenland. Journal of Vertebrate Paleontology. e1439834., apr: Informa {UK} Limited AbstractWebsite
n/a
Tschopp, E., & Mateus O. (2013).  Clavicles, interclavicles, gastralia, and sternal ribs in sauropod dinosaurs: new reports from Diplodocidae and their morphological, functional and evolutionary implications. Journal of Anatomy. 222, 321-340. Abstracttschopp__mateus_2013_clavicles_interclavicles_gastralia_and_sternal_ribs_in_diplodocid.pdfWebsite

Ossified gastralia, clavicles and sternal ribs are known in a variety of reptilians, including dinosaurs. In sauropods, however, the identity of these bones is controversial. The peculiar shapes of these bones complicate their identification, which led to various differing interpretations in the past. Here we describe different elements from the chest region of diplodocids, found near Shell, Wyoming, USA. Five morphotypes are easily distinguishable: (A) elongated, relatively stout, curved elements with a spatulate and a bifurcate end resemble much the previously reported sauropod clavicles, but might actually represent interclavicles; (B) short, L-shaped elements, mostly preserved as a symmetrical pair, probably are the real clavicles, as indicated by new findings in diplodocids; (C) slender, rod-like bones with rugose ends are highly similar to elements identified as sauropod sternal ribs; (D) curved bones with wide, probably medial ends constitute the fourth morphotype, herein interpreted as gastralia; and (E) irregularly shaped elements, often with extended rugosities, are included into the fifth morphotype, tentatively identified as sternal ribs and/or intercostal elements. To our knowledge, the bones previously interpreted as sauropod clavicles were always found as single bones, which sheds doubt on the validity of their identification. Various lines of evidence presented herein suggest they might actually be interclavicles – which are single elements. This would be the first definitive evidence of interclavicles in dinosauromorphs. Previously supposed interclavicles in the early sauropodomorph Massospondylus or the theropods Oviraptor and Velociraptor were later reinterpreted as clavicles or furculae. Independent from their identification, the existence of the reported bones has both phylogenetic and functional significance. Their presence in non-neosauropod Eusauropoda and Flagellicaudata and probable absence in rebbachisaurs and Titanosauriformes shows a clear character polarity. This implicates that the ossification of these bones can be considered plesiomorphic for Sauropoda. The proposed presence of interclavicles in sauropods may give further support to a recent study, which finds a homology of the avian furcula with the interclavicle to be equally parsimonious to the traditional theory that furcula were formed by the fusion of the clavicles. Functional implications are the stabilizing of the chest region, which coincides with the development of elongated cervical and caudal vertebral columns or the use of the tail as defensive weapon. The loss of ossified chest bones coincides with more widely spaced limbs, and the evolution of a wide-gauge locomotor style.

Tschopp, E., Mateus O., & Norell M. (2018).  Complex Overlapping Joints between Facial Bones Allowing Limited Anterior Sliding Movements of the Snout in Diplodocid Sauropods. American Museum NovitatesAmerican Museum Novitates. 1 - 16., 2018: American Museum of Natural History Abstracttschopp_et_al_2018.pdfWebsite

ABSTRACT Diplodocid sauropods had a unique skull morphology, with posteriorly retracted nares, an elongated snout, and anteriorly restricted, peglike teeth. Because of the lack of extant analogs in skull structure and tooth morphology, understanding their feeding strategy and diet has been difficult. Furthermore, the general rarity of sauropod skulls and the fragility of their facial elements resulted in a restricted knowledge of cranial anatomy, in particular regarding the internal surface of the facial skull. Here, we describe in detail a well-preserved diplodocid skull visible in medial view. Diagnostic features recognized in other skulls observable in lateral view, such as the extended contribution of the jugal to the antorbital fenestra, are obliterated in medial view due to extensive overlapping joints between the maxilla, jugal, quadratojugal, and the lacrimal. These overlapping joints permitted limited anterior sliding movement of the snout, which likely served as a kind of ?shock-absorbing? mechanism during feeding. Diplodocid skulls therefore seem to have evolved to alleviate stresses inflicted on the snout during backward movements of the head, as would be expected during branch-stripping or raking.ABSTRACT Diplodocid sauropods had a unique skull morphology, with posteriorly retracted nares, an elongated snout, and anteriorly restricted, peglike teeth. Because of the lack of extant analogs in skull structure and tooth morphology, understanding their feeding strategy and diet has been difficult. Furthermore, the general rarity of sauropod skulls and the fragility of their facial elements resulted in a restricted knowledge of cranial anatomy, in particular regarding the internal surface of the facial skull. Here, we describe in detail a well-preserved diplodocid skull visible in medial view. Diagnostic features recognized in other skulls observable in lateral view, such as the extended contribution of the jugal to the antorbital fenestra, are obliterated in medial view due to extensive overlapping joints between the maxilla, jugal, quadratojugal, and the lacrimal. These overlapping joints permitted limited anterior sliding movement of the snout, which likely served as a kind of ?shock-absorbing? mechanism during feeding. Diplodocid skulls therefore seem to have evolved to alleviate stresses inflicted on the snout during backward movements of the head, as would be expected during branch-stripping or raking.

Moreno-Azanza, M., Bauluz B., Canudo J. I., & Mateus O. (2017).  The conservative structure of the ornithopod eggshell: electron backscatter diffraction characterization of Guegoolithus turolensis from the Early Cretaceous of Spain. Journal of Iberian Geology. 1-9., 2017 Abstractthe_conservative_structure_of_the_ornithopod_eggshell.pdfWebsite

The Spheroolithidae oospecies Guegoolithus turolensis, putatively attributed to non-hadrosauroid styracosterns was first described in the Barremian of the Iberian Basin, and later reported in the Valanginian–Hauterivian of the Cameros Basin, with both occurrences separated by a few hundred kilometres but by over 10 million years.

Moreno-Azanza, M., Bauluz B., Canudo J. I., & Mateus O. (2017).  The conservative structure of the ornithopod eggshell: electron backscatter diffraction characterization of Guegoolithus turolensis from the Early Cretaceous of Spain. Journal of Iberian Geology. 43, 235–243., jun, Number 2: Springer Nature AbstractWebsite
n/a
Tschopp, E., Brinkman D., Henderson J., Turner M. A., & Mateus O. (2018).  Considerations on the replacement of a type species in the case of the sauropod dinosaur Diplodocus Marsh, 1878. Geology of the Intermountain West. 5, 245-262.tschoppetal2018.pdf
Tschopp, E., Brinkman D., Henderson J., Turner M. A., & Mateus O. (2018).  Considerations on the replacement of a type species in the case of the sauropod dinosaur Diplodocus Marsh, 1878. Geology of the Intermountain West. 5, 245-262. Abstract
n/a
Hansen, B. B., Milàn J., Clemmensen L. B., Adolfssen J. S., Estrup E. J., Klein N., Mateus O., & Wings O. (2016).  Coprolites from the Late Triassic Kap Stewart Formation, Jameson Land, East Greenland: morphology, classification and prey inclusions. Geological Society, London, Special Publications. 434(1), 49-69. Abstracthansen_et_al_2015_coprolites_from_the_late_triassic_kap_stewart_formation_jameson_land_east_greenland.pdfWebsite

A large collection of vertebrate coprolites from black lacustrine shales in the Late Triassic (Rhaetian–Sinemurian) Kap Stewart Formation, East Greenland is examined with regard to internal and external morphology, prey inclusions, and possible relationships to the contemporary vertebrate fauna. A number of the coprolites were mineralogically examined by X-ray diffraction (XRD), showing the primary mineral composition to be apatite, clay minerals, carbonates and, occasionally, quartz in the form of secondary mineral grains. The coprolite assemblage shows multiple sizes and morphotypes of coprolites, and different types of prey inclusions, demonstrating that the coprolite assemblage originates from a variety of different producers.Supplementary material: A description of the size, shape, structure, texture, contents and preservation of the 328 specimens is available at https://doi.org/10.6084/m9.figshare.c.2134335

Hansen, B. B., Milàn J., Clemmensen L. B., Adolfssen J. S., Estrup E. J., Klein N., Mateus O., & Wings O. (2015).  Coprolites from the Late Triassic Kap Stewart Formation, Jameson Land, East Greenland: morphology, classification and prey inclusions. Geological Society, London, Special Publications. 434, AbstractWebsite

A large collection of vertebrate coprolites from black lacustrine shales in the Late Triassic (Rhaetian–Sinemurian) Kap Stewart Formation, East Greenland is examined with regard to internal and external morphology, prey inclusions, and possible relationships to the contemporary vertebrate fauna. A number of the coprolites were mineralogically examined by X-ray diffraction (XRD), showing the primary mineral composition to be apatite, clay minerals, carbonates and, occasionally, quartz in the form of secondary mineral grains. The coprolite assemblage shows multiple sizes and morphotypes of coprolites, and different types of prey inclusions, demonstrating that the coprolite assemblage originates from a variety of different producers.Supplementary material: A description of the size, shape, structure, texture, contents and preservation of the 328 specimens is available at https://doi.org/10.6084/m9.figshare.c.2134335

Mateus, I., Mateus H., Antunes M. T., Mateus O., Taquet P., Ribeiro V., & Manuppella G. (1997).  Couvée, oeufs et embryons d'un dinosaure théropode du Jurassique supérieur de Lourinhã (Portugal). C.R Acad. Sci. Paris, Sciences de la terre et des planetes. 325, 71-78., Jully, Number 1 Abstractmateus_et_al_1997_eggs_embryos_nest__couvee_oeufs_et_embryons_dun_dinosaure_theropode_du_jurassique_superieur_de_lourinha_portugal.pdfWebsite

Several well preserved clutches of dinosaurs have been discovered in the upper Kimmeridgian/ Tithonian of Lourinhã (Estramadur Province, Portugal). Some eggs of one clutch contained embryo elements of a theropod dinosaur. The egg-shell resembles that of eggs which have been discovered in the Upper Jurassic of Colorado