Publications

Export 686 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
C
Jacobs, L. L., Mateus O., Polcyn M. J., Schulp A. S., Scotese C. R., Goswami A., Ferguson K. M., Robbins J. A., Vineyard D. P., & Neto A. B. (2009).  Cretaceous paleogeography, paleoclimatology, and amniote biogeography of the low and mid-latitude South Atlantic Ocean. Bulletin de la Societe Geologique de France. 180, 333-341., Number 4 Abstract
n/a
Jacobs, L., Polcyn M., Mateus O., Schulp A. S., & Neto A. B. (2009).  The Cretaceous Skeleton Coast of Angola. Journal of Vertebrate Paleontology. 29, 121A., Jan Abstractjacobs_et_al_2009cretaceousskeletoncoas.pdfWebsite

n/a

Mateus, O. (2009).  The Cretaceous Skeleton Coast of Angola. Journal of Vertebrate Paleontology. 29, 121A., 1, Number 3: Taylor & Francis Abstract

THE CRETACEOUS SKELETON COAST OF ANGOLA JACOBS, Louis, SMU, Dallas, TX, USA; POLCYN, Michael, SMU, Dallas, TX, USA; MATEUS, Octávio, Museu da Lourinhã, Lourinhã, Portugal; SCHULP, Anne, Natuurhistorisch Museum Maastricht, Maastricht, Netherlands; NETO, André , Universidade Agostinho Neto, Luanda, Angola Cretaceous coastal sediments of Angola present a rich and diverse fauna of marine amniotes, including turtles, mosasaurs, and plesiosaurs. The abundance of mosasaurs in particular suggests a highly productive coastal area. Angola today lies at the northern limit of the Namibian Desert, the so-called Skeleton Coast, which results from prevailing southeasterly winds of the descending limb of the southern Hadley Cell sweeping across the African coast. The Benguela upwelling and a highly productive sea are found today off the Namibian Desert coast. However, the Benguela upwelling system, based on results of DSDP studies, is said to have originated in the late Neogene and therefore cannot explain the productivity found along the length of the West African coast. The explanation is found in the northward drift of Africa through the arid climate zone, and is demonstrated by the tracing of the paleogeographic position of fossil localities through time.

Mateus, O. (2009).  The Cretaceous Skeleton Coast of Angola. 29, , 1 Abstract
n/a
Jacobs, L., Polcyn M., Mateus O., Schulp, & Neto A. (2009).  The Cretaceous Skeleton Coast of Angola. Journal of Vertebrate Paleontology. 29, 121., Number 3 Abstract
n/a
Jacobs, L. L., Polcyn M. J., Mateus O., Schulp A. S., & Neto A. (2009).  The Cretaceous Skeleton Coast of Angola. Journal of Vertebrate Paleontology. 29, 121–121., Number 3 Abstract
n/a
Gaspar, A., Avelar T., & Mateus O. (2007).  Criacionismo e Sociedade no Séc. XX. (Avelar, T., O. Mateus, Almada, F., Gaspar, A., Ed.).Evolução e Criacionismo: Uma Relação Impossível. 133-160., Lisboa: Quasi ed. gasparavelarmateus2007evoluoecriacio.pdf
Gaspar, A., Avelar T., & Mateus O. (2007).  Criacionismo e Sociedade no Séc. XX.  Evolução e Criacionismo: Uma Relação Impossível. 133-160., Lisboa Abstract
n/a
Russo, J., Mateus O., Balbino A., & Marzola M. (2014).  Crocodylomorph eggs and eggshells from the Lourinhã Fm. (Upper Jurassic), Portugal. Comunicações Geológicas. 101, Especial I, 563-566. Abstractrusso_et_al_2014_crocodylomorph_eggs_and_eggshells_from_the_lourinha_fm_upper_jurassic_portugal.pdf

We here present fossil Crocodylomorpha eggshells from the Upper Jurassic Lourinhã Formation of Portugal, recovered from five sites: one nest from Cambelas with 13 eggs, and three partial eggs and various fragments from, Paimogo N (I), Paimogo S (II), Casal da Rola, and Peralta. All specimens but the nest were found in association with dinosaur egg material. Our research reveals that on a micro- and ultrastructural analysis, all samples present the typical characters consistent with crocodiloid eggshell morphotype, such as the shell unit shape, the organization of the eggshell layers, and the triangular blocky extinction observed with crossed nicols. We assign the material from the Lourinhã Formation to the oofamily Krokolithidae, making it the oldest crocodylomorph eggs known so far, as well as the best record for eggs of non- crocodylian crocodylomorphs. Furthermore, our study indicates that the basic structure of crocodiloid eggshells has remained stable since at least the Upper Jurassic.

Russo, J., Mateus O., Balbino A., & Marzola M. (2014).  Crocodylomorph eggs and eggshells from the Lourinhã Fm. (Upper Jurassic), Portugal. Comunica\\c cões Geológicas. 101, Especial I, 563-566. Abstract
n/a
Russo, J., Mateus O., Balbino A., & Marzola M. (2014).  Crocodylomorph eggs and eggshells from the Lourinhã Fm. (Upper Jurassic), Portugal. Comunica\\c cões Geológicas. 101, Especial I, 563-566. Abstract
n/a
Russo, J., Mateus O., Balbino A., & Marzola M. (2014).  Crocodylomorph eggs and eggshells from the Lourinhã Fm. (Upper Jurassic), Portugal. Comunica\\c cões Geológicas. 101, Especial I, 563-566. Abstract

We here present fossil Crocodylomorpha eggshells from the Upper Jurassic Lourinhã Formation of Portugal, recovered from five sites: one nest from Cambelas with 13 eggs, and three partial eggs and various fragments from, Paimogo N (I), Paimogo S (II), Casal da Rola, and Peralta. All specimens but the nest were found in association with dinosaur egg material. Our research reveals that on a micro- and ultrastructural analysis, all samples present the typical characters consistent with crocodiloid eggshell morphotype, such as the shell unit shape, the organization of the eggshell layers, and the triangular blocky extinction observed with crossed nicols. We assign the material from the Lourinhã Formation to the oofamily Krokolithidae, making it the oldest crocodylomorph eggs known so far, as well as the best record for eggs of non- crocodylian crocodylomorphs. Furthermore, our study indicates that the basic structure of crocodiloid eggshells has remained stable since at least the Upper Jurassic.

Guillaume, A. R. D., Moreno-Azanza M., Puértolas-Pascual E., & Mateus O. (2018).  Crocodylomorph teeth from the Lourinhã Formation, Portugal (Late Jurassic). XVI Annual Meeting of the European Association of Vertebrate Palaeontologists. 80., Caparica, Portugal June 26th-July 1st, 2018 Abstractguillaume_et_al_2018_eavp_abstract.pdf

n/a

Guillaume, A. R. D., Moreno-Azanza M., Puértolas-Pascual E., & Mateus O. (2018).  Crocodylomorph teeth from the Lourinhã Formation, Portugal (Late Jurassic). XVI Annual Meeting of the European Association of Vertebrate Palaeontologists. 80., Caparica, Portugal June 26th-July 1st, 2018 Abstract

n/a

Mateus, O. (2013).  Crocodylomorphs from the Mesozoic of Portugal and a new skull of eusuchian from the Late Cretaceous. 2013 Hwaseong International Dinosaurs Expedition Symposium, pp.66-67.. , Hwaseong, South Korea Abstractmateus_2013_crocodylomorphs_portugal_new_skull.pdf

The diversity of fossil crocodylomorphs in Portugal is high, with occurrence as old as Mystriosaurus (=Steneosaurus) bollensis from the Lower Jurassic. The Late Jurassic forms are the better documented, and include the following taxa: Machimosaurus hugii, Lisboasaurus estesi Seiffert, 1973, Lusitanisuchus mitrocostatus Seiffert, 1975; Schwarz & Fechner 2004, Theriosuchus guimarotae Schwarz and Salisbury 2005, Cf. Alligatorium, Goniopholis baryglyphaeus, and a crocodylomorph-like eggs in dinosaur nests (Mateus et al., 1998; Ricqlès et al., 2001). From the Lower Cretaceous were reported a few dinosaurs but its record is strangely scarce in crocodylomorphs (Mateus et al., 2011). The Upper Cretaceous crocodiles show a large diversity, but it is mostly based in fragmentary material that require revision, such as “Crocodylus” blavieri? Grey from the Upper Campanian - Maastrichtian of Viso, near Aveiro (initially reported by Sauvage 1897-98), Goniopholis cf. crassidens Owen 1841 and Oweniasuchus pulchelus Jonet 1981. Moreover there is a fascinating, but poorly understood, crocodylomorph diversity in the Cenomanian of Portugal, documented by fragmentary specimens that have been doubtfully assigned to Thoracosaurus Leidy 1852 of the Middle Cenomanian of Cacém, to the nomen dubium Oweniasuchus lusitanicus Sauvage 1897-98 (interpreted as a mesosuchian goniopholid) based in a fragmentary mandible from the Campanian-Maastrichtian, and also from the Middle Cenomanian of Portugal, Buffetaut and Lauverjat (1978) report an fragmentary unidentified possible dyrosaurid from Nazaré. All this specimens are too incomplete to be compared with the specimen here described. In contrast, Cenozoic crocodiles of Portugal are often known after complete skulls and several individuals. The taxa list include Iberosuchus macrodon (Lower to Middle Eocene), Tomistoma calaritanus (Early Miocene) and T. lusitanica (Burdigalian-Helvetian), and Diplocynodon sp. (Antunes, 1961, 1987, 1994).
At least, two different morphotypes of crocodylomorph eggs from the Late Jurassic of Lourinhã Formation are also known.
A new specimen here reported of crocodile based in a partial skull and mandible (ML1818) from the Uppermost Middle Cenomanian platform carbonates of Baixo Mondego, west central Portugal (Tentúgal Fm., Callapez, 2004). The taxon is phylogenetically positioned as a basal Eusuchia, due to the choanae enclosed by the pterygoid, and closely related with stem Crocodylia and Borealosuchus. This specimen represents the only well documented and valid eusuchian species in the Cenomanian of Europe and is the oldest representative of an eusuchian crocodylomorph, with the exception for the Barremian Hylaeochampsa vectiana.

Azanza, M. M., Coimbra R., Puértolas-Pascual E., Russo J., Bauluz B., & Mateus O. (2019).  Crystallography of Lourinhanosaurus eggshells (Dinosauria, Theropoda, Allosauroidea). Journal of Vertebrate Paleontology, Program and Abstracts. 156-157.moreno_azanza_et_al_2019_svp_abstract.pdf
Azanza, M. M., Coimbra R., Puértolas-Pascual E., Russo J., Bauluz B., & Mateus O. (2019).  Crystallography of Lourinhanosaurus eggshells (Dinosauria, Theropoda, Allosauroidea). Journal of Vertebrate Paleontology, Program and Abstracts. 156-157. Abstract
n/a
Marzola, M., Mateus O., Shubin N. H., & Clemmensen L. B. (2017).  Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland). Journal of Vertebrate Paleontology. e1303501., 2017: Taylor & Francis Abstractmarzola_et_al_2017_cyclotosaurus_greenland.pdfWebsite

ABSTRACTCyclotosaurus naraserluki, sp. nov., is a new Late Triassic capitosaurid amphibian from lacustrine deposits in the Fleming Fjord Formation of the Jameson Land Basin in Greenland. It is based on a fairly complete and well-preserved skull associated with two vertebral intercentra. Previously reported as Cyclotosaurus cf. posthumus, C. naraserluki is unique among cyclotosaurs for having the postorbitals embaying the supratemporals posteromedially. The anterior palatal vacuity presents an autapomorphic complete subdivision by a wide medial premaxillary-vomerine bony connection. The parasphenoid projects between the pterygoids and the exoccipitals, preventing a suture between the two, a primitive condition shared with Rhinesuchidae, Eryosuchus, and Kupferzellia. Within Cyclotosaurus, the Greenlandic skull has a distinctive combination of circular choanae (shared with C. ebrachensis, C. posthumus, and C. robustus) and a convex posteromedial margin of the tabulars (also present in C. ebrachensis and C. intermedius). A phylogenetic analysis indicates that C. naraserluki is the sister taxon of the middle Norian C. mordax from southern Germany, with which it shares a pair of premaxillary foramina. Cyclotosaurus is one of the most successful and diverse genera of Late Triassic temnospondyls, with at least eight species reported from middle Carnian to late Norian. Cyclotosaurus naraserluki is the largest amphibian ever reported from Greenland and one of the Late Triassic vertebrates with the highest northern paleolatitude currently known.http://zoobank.org/urn:lsid:zoobank.org:pub:43AAA541-031C-4EE1-B819-4846EBBD1BBBSUPPLEMENTAL DATA?Supplemental materials are available for this article for free at www.tandfonline.com/UJVPCitation for this article: Marzola, M., O. Mateus, N. H. Shubin, and L. B. Clemmensen. 2017. Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland). Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2017.1303501.ABSTRACTCyclotosaurus naraserluki, sp. nov., is a new Late Triassic capitosaurid amphibian from lacustrine deposits in the Fleming Fjord Formation of the Jameson Land Basin in Greenland. It is based on a fairly complete and well-preserved skull associated with two vertebral intercentra. Previously reported as Cyclotosaurus cf. posthumus, C. naraserluki is unique among cyclotosaurs for having the postorbitals embaying the supratemporals posteromedially. The anterior palatal vacuity presents an autapomorphic complete subdivision by a wide medial premaxillary-vomerine bony connection. The parasphenoid projects between the pterygoids and the exoccipitals, preventing a suture between the two, a primitive condition shared with Rhinesuchidae, Eryosuchus, and Kupferzellia. Within Cyclotosaurus, the Greenlandic skull has a distinctive combination of circular choanae (shared with C. ebrachensis, C. posthumus, and C. robustus) and a convex posteromedial margin of the tabulars (also present in C. ebrachensis and C. intermedius). A phylogenetic analysis indicates that C. naraserluki is the sister taxon of the middle Norian C. mordax from southern Germany, with which it shares a pair of premaxillary foramina. Cyclotosaurus is one of the most successful and diverse genera of Late Triassic temnospondyls, with at least eight species reported from middle Carnian to late Norian. Cyclotosaurus naraserluki is the largest amphibian ever reported from Greenland and one of the Late Triassic vertebrates with the highest northern paleolatitude currently known.http://zoobank.org/urn:lsid:zoobank.org:pub:43AAA541-031C-4EE1-B819-4846EBBD1BBBSUPPLEMENTAL DATA?Supplemental materials are available for this article for free at www.tandfonline.com/UJVPCitation for this article: Marzola, M., O. Mateus, N. H. Shubin, and L. B. Clemmensen. 2017. Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland). Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2017.1303501.

Marzola, M., Mateus O., Shubin N. H., & Clemmensen L. B. (2017).  Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland). Journal of Vertebrate Paleontology. e1303501., may: Informa {UK} Limited AbstractWebsite
n/a
D
Mateus, O., Neto de Carvalho C., & Klompmaker A. A. (2013).  Decapod crustacean body and ichnofossils from the Mesozoic of Portugal. 5th Symposium on Mesozoic and Cenozoic Decapod Crustaceans. , 25–27 June 2013, Warszawa: Polish Geological Institute − National Research Institute & AGH University of Science and Technologymateus_et_al_2013_crustacea_mesozoic_portugal_5th_decapod_crustaceans_meeting_2013.pdf
Mateus, O. (2013).  Decapod crustacean body and ichnofossils from the Mesozoic of Portugal. NA, , 1 Abstract

Book of abstracts of the 5th Symposium on Mesozoic and Decapod Crustaceans

Leal, A. S., Mateus O., Tomás C., & Dionísio A. (2014).  Decay and conservation trial of Late Jurassic sandstone with dinosaur tracks in a museum environment (Museum of Lourinhã, Portugal). Buletini i Shkencave Gjeologjike. 1(2014), 410. Abstractleal_et_al_2014_cbgassav1-_abstract_dinosaur_footprints__page_410.pdf

Abstract
Late Jurassic dinosaur footprints were found on a coastline cliff in Lourinhã, Porto das Barcas, Lagido do Forno (coordinate 39°14.178’N, 9°20.397’W, Portugal) in June 2001. The locality is characterized by steep cliffs with high slopes that are composed of gray and red sandstones/ siltstones. The location belongs to the successions of Lusitanian Basin representing the Porto Novo Member of the Lourinhã Formation. Three natural infills of tridactyl tracks, possibly ascribed to ornithopod, a bipedal herbivore were found, representing a left foot movement, a right and a left one, respectively. Footprints are 300- 400mm wide and have a height of 330-360mm. The footprints are characterized by round fingers, which are elongated due to some degradation/ erosion. The footprints were collected from the field in 2001 and subsequently cleaned, consolidated and glued in the laboratory of the Museum of Lourinhã before being exhibited in a museum display. Stone matrix was removed and a consolidation product was applied, probably a polyvinyl acetate. The footprint with broken central digit was glued with an epoxy resin, Araldite. Both applied products were confirmed by analysis of μ- FTIR and both presented colour change and detachment surface problems. The footprints have been exposed in the palaeontology hall of the Museum of Lourinhã, Portugal from 2004 without climate controlling. These trace fossils form an important part of the palaeontological collection of Late Jurassic vertebrate fossils from Lourinhã Formation. Presently, it is considered a unique heritage in danger of disappearing due to high decay level of disaggregation of its geological structure. The footprints display several pathologies, such as “Blistering”, “Powdering”, “Exfoliation”’ as well as “Dirt”, “Fracture”’, “Inscriptions”, “Consolidants” and “Adhesives” and are now in very poor conditions. Laboratorial analysed were made to evaluate the presence of salts. Moreover a microclimatic study was conducted inside the museum to evaluate the influence of thermo-hygrometric parameters on the decay processes. The future interventions will depend on the results of consolidation trials that are currently under progress by using stone samples taken from the same layer and location from Porto das Barcas applying different commercial consolidation products.

Jacobs, L. L., Polcyn M. J., Mateus O., & Schulp A. S. (2023).  Deep time conservation paleobiology of the Atlantic jigsaw puzzle and the future of the southwestern Angolan coast. Bulletin of the Florida Museum of Natural History. 60(2), 90.: In: Abstracts of the 2nd Conservation Paleobiology Symposium. https://doi … Abstractjacobs_et_al_2023_jigsaw.pdf

n/a

Hayashi, S., Carpenter K., Watabe M., Mateus O., & Barsbold R. (2008).  Defensive weapons of thyreophoran dinosaurs: histological comparisons and structural differences in spikes and clubs of ankylosaurs and stegosaurs. Journal of Vertebrate Paleontology. 28(3, Supplement), 89A-90A., Number Suppl. to 3 Abstracthayashi_et_al_2008_histology_stegosaurs_defensive_weapons_of_thyreophoran_dinosaurs-_histological_comparisons_and_structural_differences_in_spikes_and_clubs_of_ankylosaurs_and_stegosaurs.pdfWebsite

Thyreophoran dinosaurs have spike- and club-shaped osteoderms probably used for defensive weapons. The structural and histological variations have been little known. Here, we provide the comparisons of the internal structures in defensive weapons of ankylosaurs and stegosaurs, using spikes of a polacanthid (Gastonia) and a nodosaurid (Edmontonia), clubs of ankylosaurids (Saichania and Ankylosauridae indet. from Canada), and spikes of stegosaurids (Stegosaurus and Dacentrurus), which sheds light on understandings of evolutionary history and functional implications of defensive weapons in thyreophorans. In ankylosaurs, the structural and histological features of spikes and clubs are similar with those of small osteoderms in having thin compact bones, thick cancellous bones with large vascular canals, and abundant collagen fibers. A previous study demonstrated that each of three groups of ankylosaurs (polacanthid, nodosaurid, and ankylosaurid) has distinct characteristic arrangements of collagen fibers in small osteoderms. This study shows that spikes and clubs of ankylosaurs maintain the same characteristic features for each group despite of the differences in shapes and sizes. Conversely, the spike-shaped osteoderms in primitive (Dacentrurus) and derived (Stegosaurus) stegosaurids have similar structure to each other and are significantly different from the other types of stegosaur osteoderms (throat bony ossicles and plates) in having thick compact bones with a medullary cavity. These lack abundant collagen fibers unlike ankylosaur osteoderms. The spikes of ankylosaurs and stegosaurs are similar in shape, but their structural and histological features are different in having unique structures of collagen fibers for ankylosaurs and thick compact bones for stegosaurs, providing enough strength to have large spikes and to use them as defensive weapons. Although the shapes of ankylosaur clubs are different from spikes, the internal structures are similar, suggesting that ankylosaurs maintain similar structures despite of different shapes in osteoderms. These results indicate that ankylosaurs and stegosaurs used different strategies independently to evolve defensive weapons.

Hayashi, S., Carpenter K., Watabe M., Mateus O., & Barsbold R. (2008).  Defensive weapons of thyreophoran dinosaurs: histological comparisons and structural differences in spikes and clubs of ankylosaurs and stegosaurs. 28 (3, Supplement), 89A-90A. Journal of Vertebrate Paleontology. 28, 89-90., Number Suppl. to 3 Abstract
n/a
Hayashi, S., Carpenter K., Watabe M., Mateus O., & Barsbold R. (2008).  Defensive weapons of thyreophoran dinosaurs: histological comparisons and structural differences in spikes and clubs of ankylosaurs and stegosaurs. 28 (3, Supplement), 89A-90A. Journal of Vertebrate Paleontology. 28, 89–90., Number Suppl. to Abstract
n/a
Leal, S., Mateus O., Tomás C., & Dionisio A. (2014).  Degradation processes and consolidation of Late Jurassic sandstone dinosaur tracks in museum environment (Museum of Lourinhã, Portugal). EGU General Assembly 2014 - Geophysical Research Abstracts. Vol. 16, EGU2014-9026-1, 2014.leal_et_al_2014_tracks_lab_egu2014-9026-1.pdf
Mateus, O. (2014).  Degradation processes and consolidation of Late Jurassic sandstone dinosaur tracks in museum environment (Museum of Lourinhã, Portugal). Geophysical Research Abstracts. Geophysical Research Abstracts, EGU2014–9026–1, 2014., 1 Abstract
n/a
Hendrickx, C., Mateus O., & Araújo R. (2015).  The dentition of megalosaurid theropods. Acta Palaeontologica Polonica. 60(3), 627–642. Abstracthendrickx_et_al_2015_theropod_teeth_app.pdfWebsite

Theropod teeth are particularly abundant in the fossil record and frequently reported in the literature. Yet, the dentition of many theropods has not been described comprehensively, omitting details on the denticle shape, crown ornamentation and enamel texture. This paucity of information has been particularly striking in basal clades, thus making identification of isolated teeth difficult, and taxonomic assignments uncertain. We here provide a detailed description of the dentition of Megalosauridae, and a comparison to and distinction from superficially similar teeth of all major theropod clades. Megalosaurid dinosaurs are characterized by a mesial carina facing mesiolabially in most mesial teeth, centrally positioned carinae on both most mesial and lateral crowns, a mesial carina terminating above the cervix, and short to well-developed interdenticular sulci between distal denticles. A discriminant analysis performed on a dataset of numerical data collected on the teeth of 62 theropod taxa reveals that megalosaurid teeth are hardly distinguishable from other theropod clades with ziphodont dentition. This study highlights the importance of detailing anatomical descriptions and providing additional morphometric data on teeth with the purpose of helping to identify isolated theropod teeth in the future.

Hendrickx, C., Mateus O., & Araújo R. (2014).  The dentition of megalosaurid theropods, with a proposed terminology on theropod teeth. XII EAVP Meeting XII Annual Meeting of the European Association of Vertebrate Palaeontologists – Abstract Book. p. 75., Torino 24-28 June 2014hendrickx_et_al_2014_megalosaurid_teeth_eavp.pdf
Hendrickx, C., Mateus O., & Araújo R. (2014).  The dentition of Megalosauridae (Theropoda: Dinosauria). {APP}. : Polska Akademia Nauk Instytut Paleobiologii (Institute of Paleobiology, Polish Academy of Sciences) AbstractWebsite
n/a
Mateus, O. (2009).  Dinolourinhã – a integração dos jovens na paleontologia: o caso-estudo do Museu da Lourinhã.. Journal of Paleontological Techniques. 28–29., 1 Abstract
n/a
Tomas, C., Mateus O., & Abreu C. (2009).  Dinolourinhã – a integração dos jovens na paleontologia: o caso-estudo do Museu da Lourinhã.. Journal of Paleontological Techniques 5: 28-29.. Abstract
n/a
Tomas, C., Mateus O., & Abreu C. (2009).  Dinolourinhã; a integração dos jovens na paleontologia: o caso-estudo do Museu da Lourinhã. Journal of Paleontological Techniques 5: 28-29.. 28-29., Jan Abstracttomas_et_al_2009_dinolourinha_abstracts_jpt.pdf

n/a

Martins, R. M. S., Beckmann F., Castanhinha R., Mateus O., & Pranzas P. K. (2011).  Dinosaur and crocodile fossils from the mesozoic of Portugal: Neutron tomography and synchrotron-radiation based micro-computed tomography. Materials Research Society Symposium Proceedings. 1319, 319-332. Abstract
n/a
Mateus, O., Jacobs L. L., Polcyn M. J., Schulp A. S., Neto A. B., & Antunes M. T. (2008).  Dinosaur and turtles from the Turonian of Iembe, Angola. Livro de Resumos de Tercer Congreso Latinoamericano de Paleontologia de Vertebrados. 156., Neuquén, Argentina Abstractmateus_et_al_2008_dinosaur_and_turtles_from_the_turonian_of_iembe_angola.pdf

n/a

Mateus, O., Jacobs L. L., Polcyn M. J., Schulp A. S., Neto A. B., & Antunes M. T. (2008).  Dinosaur and turtles from the Turonian of Iembe, Angola. Livro de Resumos de Tercer Congreso Latinoamericano de Paleontología de Vertebrados. 156., Neuquén, Argentina Abstract
n/a
Mateus, O., Jacobs L. L., Polcyn M. J., Schulp A. S., Neto A. B., & Antunes M. T. (2008).  Dinosaur and turtles from the Turonian of Iembe, Angola. Livro de Resumos de Tercer Congreso Latinoamericano de Paleontología de Vertebrados. 156–156., Neuquén, Argentina Abstract
n/a
Castanhinha, R., Araújo R., & Mateus O. (2009).  Dinosaur eggshell and embryo localities in Lourinhã Formation, Late Jurassic, Portugal. Journal of Vertebrate Paleontology, 29(3): . 76A. Abstractcastanhinhaetal2009dinosaureggshellp.pdf

Four different localities from the Late Jurassic of Lourinhã formation with eggshells and embryos were studied: Paimogo (lower Amoreira-Porto Novo member), Peralta (Praia Azul member), Porto das barcas (Bombarral member) and Casal da Rôla (Amoreira-Porto Novo member). All but Casal da Rôla have embryonic material. Preliminary results show that eggshells from Paimogo correspond to obliquiprismatic morphotype (0.92mm thick), similar to those from Morrison Formation. Within Paimogo site a different type of eggshell was discovered, having a radial section of 153 μm with a mammilary layer measuring 65 μm. Porto das Barcas eggshells represent a discretispherulitic morphotype (1,23 mm thick).
This locality presents a nest 60-cm diameter containing many eggshells but an indeterminate number of eggs. Some embryonic bones were discovered between the eggshells including teeth and skull bones showing that the eggs belong to a saurischian, tentatively a sauropod dinosaur. Peralta nest eggshells are preliminary ascribed to obliquiprismatic morphotype (column: 0,56mm and mammilla: 0,21mm) probably related to Paimogo’s nest taxon (Lourinhanosaurus). Peralta site bears embryonic bones namely small theropod teeth associated with bone fragments, and unidentifiable dinosaur vertebra. Only eggshells have been collected at Casal da Rôla (ML1194). The eggshells (0,78mm thick) are prismatic morphotype and it was impossible to determine the pore system, the outer surface is smooth with no ornamentation.
Lourinhã formation has the oldest sauropod and theropod nest with embryos known so far.

Mateus, O. (2009).  DINOSAUR EGGSHELL AND EMBRYO LOCALITIES IN LOURINHA FORMATION, LATE JURASSIC, PORTUGAL. Journal of Vertebrate Paleontology. 29, 76A–76A., 1 Abstract
n/a
Castanhinha, R., Araujo R., & Mateus O. (2009).  Dinosaur eggshell and embryo localities in Lourinhã Formation, Late Jurassic, Portugal. Journal of Vertebrate Paleontology. 29, 76., Number 3 Abstract
n/a
Castanhinha, R., Araujo R., & Mateus O. (2009).  Dinosaur eggshell and embryo localities in Lourinhã Formation, Late Jurassic, Portugal. Journal of Vertebrate Paleontology. 29, 76–76., Number 3 Abstract
n/a
Mateus, O., Overbeeke M., & Rita F. (2008).  Dinosaur Frauds, Hoaxes and "Frankensteins": How to distinguish fake and genuine vertebrate fossils. Journal of Paleontological Techniques. 2, 1-5.. Abstractmateus_et_al_2008_dinosaur_frauds_hoaxes_and_frankensteins-_how_to_distinguish_fake_and_genuine_vertebrate_fossils._journal_of_paleontological_techniques.pdfWebsite

Dinosaurs and other fossils have been artificially enhanced, or totally forged, to increase their commercial value. The most problematic forgeries to detect are based on original fossils that are artificially assembled. Several techniques are suggested for detecting hoaxes: detailed visual examination, chemical analysis, Xray or CT-scan, and ultraviolet light. It is recommended that museums and paleontological researchers do not purchase and/or trade fossils lacking clear provenience information. Exceptions to that general rule should be closely examined using techniques described herein.

Mateus, O., Overbeeke M., & Rita F. (2008).  Dinosaur Frauds, Hoaxes and "Frankensteins": How to distinguish fake and genuine vertebrate fossils. Journal of Paleontological Techniques. 2, 1-5. Abstract
n/a
Mateus, O., Antunes M. T., & Taquet P. (2001).  Dinosaur ontogeny : the case of Lourinhanosaurus (Late Jurassic, Portugal). J. Vertebr. Paleontol. 21, Abstract
n/a