Publications

Export 66 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Jacobs, L., Polcyn M., Mateus O., Scott M., Graf J., Kappelman J., Jacobs B., Schulp A., Morais M., & Goncalves O. (2014).  Cenozoic vertebrates of coastal Angola. Journal of Vertebrate Paleontology, Program and Abstracts, 2014. 153.jacobs_et_al._2014_cenozoic_vertebrates_of_coastal_angola.pdf
Jacobs, L. L., Myers T. S., Goncalves A. O., Graf J. F., Jacobs B. F., KAPPELMAN J. W., Mateus O., Polcyn M. J., RASBURY E. T., & Vineyard D. P. (2013).  Cabinda revisited: age and environment of new Cenozoic vertebrate fossils from northern Angola. Geological Society of America Abstracts with Programs. Vol. 45, No. 7, p.0.
B
Mateus, O., Dyke G., Motchurova-Dekova N., Ivanov P., & Kamenov G. D. (2008).  The Bulgarian dinosaur: did it exist? European late Cretaceous ornithomimosaurs. 56th Symposium of Vertebrate Palaeontology and Comparative Anatomy. 47., Dublin Abstract
n/a
Mateus, O., Dyke G., Motchurova-Dekova N., Ivanov P., & Kamenov G. D. (2008).  The Bulgarian dinosaur: did it exist? European late Cretaceous ornithomimosaurs. 56th Symposium of Vertebrate Palaeontology and Comparative Anatomy. 47–47., Dublin Abstract
n/a
Sander, P. M., Mateus O., Laven T., & Knotschke N. (2006).  Bone histology indicates insular dwarfism in a new Late Jurassic sauropod dinosaur. Nature. 441, 739-741., Jan Abstractsander_mateus_et_al_2006_europasaurus_sauropod_histology_drwarfism_nature.pdf

Sauropod dinosaurs were the largest animals ever to inhabit the land, with truly gigantic forms in at least three lineages1, 2, 3. Small species with an adult body mass less than five tonnes are very rare4, 5, and small sauropod bones generally represent juveniles. Here we describe a new diminutive species of basal macronarian sauropod, Europasaurus holgeri gen. et sp. nov., and on the basis of bone histology we show it to have been a dwarf species. The fossils, including excellent skull material, come from Kimmeridgian marine beds of northern Germany6, 7, and record more than 11 individuals of sauropods 1.7 to 6.2 m in total body length. Morphological overlap between partial skeletons and isolated bones links all material to the same new taxon. Cortical histology of femora and tibiae indicates that size differences within the specimens are due to different ontogenetic stages, from juveniles to fully grown individuals. The little dinosaurs must have lived on one of the large islands around the Lower Saxony basin8. Comparison with the long-bone histology of large-bodied sauropods suggests that the island dwarf species evolved through a decrease in growth rate from its larger ancestor.

Sander, P. M., Mateus O., Laven T., & Knötschke N. (2006).  Bone histology indicates insular dwarfism in a new Late Jurassic sauropod dinosaur. Nature. 441, 739-741. Abstract
n/a
Martin Sander, P., Mateus O., Laven T., & Knötschke N. (2006).  Bone histology indicates insular dwarfism in a new Late Jurassic sauropod dinosaur. Nature. 441, 739-741., Number 7094 Abstract
n/a
Kullberg, J. C., Rocha R. B., Soares A. F., Rey J., Terrinha P., Azerêdo A. C., Callapez P., Duarte, L.V., Kullberg M. C., Martins L., Miranda J. R., Alves C., Mata J., Madeira J., Mateus O., Moreira M., & Nogueira C. R. (2013).  A Bacia Lusitaniana: Estratigrafia, Paleogeografia e Tectónica. (Dias, R. Araújo, A, Terrinha, P. and Kullberg, J. C., Ed.).Geologia de Portugal no contexto da Ibéria. Volume II. 195-350., Lisboa: Escolar Editorakullberg_et_al_2013_a_bacia_lusitaniana.pdf
da} Rocha, {R. E. B., Kullberg {J. C. R. }, & Mateus O. (2013).  A Bacia Lusitaniana: Estratigrafia, Paleogeografia e Tectónica. (Dias, Araújo, R., A, Terrinha, P., Kullberg, {J. C.}, Ed.).Geologia de Portugal no contexto da Ibéria. 195–347., 1: Escolar Editora Abstract
n/a
A
Eberth, D. A., Kobayashi Y., Lee Y. N., Mateus O., Therrien F., Zelenitsky D. K., & Norell M. A. (2009).  Assignment of Yamaceratops dorngobiensis and Associated Redbeds at Shine Us Khudag (Eastern Gobi, Dorngobi Province, Mongolia) to the Redescribed Javkhlant Formation (Upper Cretaceous). Journal of Vertebrate Paleontology. 29, 295-302., Jan: Univ Nova Lisboa, Hokkaido Univ, Museu Lourinha, Amer Museum Nat Hist, Korean Inst Geosci & Mineral Resources, Royal Tyrell Museum, Royal Tyrell Museum, Univ Calgary Abstracteberth_et_al-2009-__assignment_of_yamaceratops_dorngobiensis_and_associated_redbeds_at_shine_us_khudag_eastern_gobi_dorngobi_province_mongolia_to_the_redescribed_javkhlant_formation_upper_cretaceous_javkhlant_fm.pdf

n/a

Eberth, D. A., Kobayashi Y., Lee Y. - N., Mateus O., Therrien F., Zelenitsky D. K., & Norell M. A. (2009).  Assignment of Yamaceratops dorngobiensis and associated redbeds at Shine Us Khudag (eastern Gobi, Dorngobi Province, Mongolia) to the redescribed Javkhlant Formation (Upper Cretaceous). Journal of Vertebrate Paleontology. 29, 295–302., mar, Number 1: Informa {UK} Limited AbstractWebsite
n/a
Mateus, O., Pereira B., Rocha R., & Kullberg J. C. (2018).  Aspiring Geopark Oeste in Portugal: scientific highlights and importance. 8th International Conference on UNESCO Global Geoparks. , 8-14 Sept., Adamello Brenta Geopark, Trentinomateus_et_al_2018_geopark_oeste.pdf
Pais, {J. J. C. }, Kullberg {J. C. R. }, de} Melo {J. M. D. J., Mateus O., & de} Almeida {J. A. (2013).  Arrábida - al-rábita. , 1: Associação de Municípos da Região de Lisboa Abstract

The publication of the present work - rightly designated as the book of Arrabida's nomination file for inscription on the World Heritage list - has for all of us a special significance as it represents, in a sense, the culmination of a complex, challenging and rewarding process. As is widely known, the Arrábida is included since 2004 in UNESCO's Portuguese tentative list, with AMRS being one of this process' promoters. It wouldn't be appropriate to describe here all the details, but it is fair to say that since 2004 to the present day, we've come a long way in recovering and valuing the Arrábida. It is with sincere satisfaction that we can say: our knowledge of the Property is now deeper, up to date and much more accurate, doing justice to the exceptional values contained within the Arrábida - which is well expressed in the work now published, based on researches and works of the highest scientific value. This is also a regional development project, to value our lands, people and the natural and cultural heritage. The Setúbal's Peninsula is a region that contains within its territory a vast natural and cultural heritage, being the Arrábida one of the most beautiful and significant natural areas in the Mediterranean. The Arrábida Mountain is a place with its own identity, being the result of a long history of Man's adaptation to Nature. It is a place of unmistakable aesthetic beauty, a unique place where nature and culture intertwine; it is a place of contrasts, of land and sea, sky and mountains, a place of combined actions by Man and Nature. Place of vibrant social practices, of rituals and festivals, of knowledge, of representations and expressions, of instruments, objects and artifacts. Place with a history that must be preserved and bequeathed to future generations. Place with monuments of vanished civilizations, but also of living traditions. These are some of the values supporting the Arrábida's nomination for the World's Heritage list. It is a complex and demanding nomination file, which this work is an illustrative sample of. A mixed application - as it includes both the natural and cultural heritage - which, given the richness and uniqueness of the Property in question, is fully justified. It is our profound conviction that this Nomination streamlines the potential of our region, bringing benefits not only to the local population, but also to the whole country. To that extent, it is also a sign of hope and confidence showing that it is possible to build a different future; that by investing in our people, in their abilities, knowledge and traditions, it is possible to create a sustainable development; that is possible to leave for future generations a legacy of which we are proud of having worked on. To be able enjoy this magnificent edition is a step in that direction.

Klein, H., Milàn J., Clemmensen L. B., Frobøse N., Mateus O., Klein N., Adolfssen J. S., Estrup E. J., & Wings O. (2016).  Archosaur footprints (cf. Brachychirotherium) with unusual morphology from the Upper Triassic Fleming Fjord Formation (Norian–Rhaetian) of East Greenland. Geological Society, London, Special Publications. 434(1), 71-85. Abstractklein_et_al_2015_archosaur_footprints_cf._brachychirotherium_with_unusual.pdfWebsite

The Ørsted Dal Member of the Upper Triassic Fleming Fjord Formation in East Greenland is well known for its rich vertebrate fauna, represented by numerous specimens of both body and ichnofossils. In particular, the footprints of theropod dinosaurs have been described. Recently, an international expedition discovered several slabs with 100 small chirotheriid pes and manus imprints (pes length 4–4.5 cm) in siliciclastic deposits of this unit. They show strong similarities with Brachychirotherium, a characteristic Upper Triassic ichnogenus with a global distribution. A peculiar feature in the Fleming Fjord specimens is the lack of a fifth digit, even in more deeply impressed imprints. Therefore, the specimens are assigned here tentatively to cf. Brachychirotherium. Possibly, this characteristic is related to the extremely small size and early ontogenetic stage of the trackmaker. The record from Greenland is the first evidence of this morphotype from the Fleming Fjord Formation. Candidate trackmakers are crocodylian stem group archosaurs; however, a distinct correlation with known osteological taxa from this unit is not currently possible. While the occurrence of sauropodomorph plateosaurs in the bone record links the Greenland assemblage more closer to that from the Germanic Basin of central Europe, here the described footprints suggest a Pangaea-wide exchange.Supplementary material: Three-dimensional model of cf. Brachychirotherium pes–manus set (from MGUH 31233b) from the Upper Triassic Fleming Fjord Formation (Norian–Rhaetian) of East Greenland as pdf, ply and jpg files (3D model created by Oliver Wings; photographs taken by Jesper Milàn) is available at https://doi.org/10.6084/m9.figshare.c.2133546

Klein, H., Milàn J., Clemmensen L. B., Frobøse N., Mateus O., Klein N., Adolfssen J. S., Estrup E. J., & Wings O. (2015).  Archosaur footprints (cf. Brachychirotherium) with unusual morphology from the Upper Triassic Fleming Fjord Formation (Norian–Rhaetian) of East Greenland. Geological Society, London, Special Publications. 434, AbstractWebsite

The Ørsted Dal Member of the Upper Triassic Fleming Fjord Formation in East Greenland is well known for its rich vertebrate fauna, represented by numerous specimens of both body and ichnofossils. In particular, the footprints of theropod dinosaurs have been described. Recently, an international expedition discovered several slabs with 100 small chirotheriid pes and manus imprints (pes length 4–4.5 cm) in siliciclastic deposits of this unit. They show strong similarities with Brachychirotherium, a characteristic Upper Triassic ichnogenus with a global distribution. A peculiar feature in the Fleming Fjord specimens is the lack of a fifth digit, even in more deeply impressed imprints. Therefore, the specimens are assigned here tentatively to cf. Brachychirotherium. Possibly, this characteristic is related to the extremely small size and early ontogenetic stage of the trackmaker. The record from Greenland is the first evidence of this morphotype from the Fleming Fjord Formation. Candidate trackmakers are crocodylian stem group archosaurs; however, a distinct correlation with known osteological taxa from this unit is not currently possible. While the occurrence of sauropodomorph plateosaurs in the bone record links the Greenland assemblage more closer to that from the Germanic Basin of central Europe, here the described footprints suggest a Pangaea-wide exchange.Supplementary material: Three-dimensional model of cf. Brachychirotherium pes–manus set (from MGUH 31233b) from the Upper Triassic Fleming Fjord Formation (Norian–Rhaetian) of East Greenland as pdf, ply and jpg files (3D model created by Oliver Wings; photographs taken by Jesper Milàn) is available at https://doi.org/10.6084/m9.figshare.c.2133546

Park, J. - Y., Lee Y. - N., Currie P. J., Kobayashi Y., Koppelhus E., Barsbold R., Mateus O., Lee S., & Kim S. - H. (2020).  Additional skulls of Talarurus plicatospineus (Dinosauria: Ankylosauridae) and implications for paleobiogeography and paleoecology of armored dinosaurs. Cretaceous Research. 108, 104340. Abstractpark_et_al_2020_additional_skulls_of_talarurus_plicatospineus_dinosauria_final.pdfWebsite

Three new additional skull specimens of Talarurus plicatospineus have been recovered from the Upper Cretaceous (Cenomanian–Santonian) Bayanshiree Formation, of Bayan Shiree cliffs, eastern Gobi Desert, Mongolia. The skulls feature unique characters such as an anteriorly protruded single internarial caputegulum, around 20 flat or concave nasal-area caputegulae surrounded by a wide sulcus, a vertically oriented elongate loreal caputegulum with a pitted surface, an elongate lacrimal caputegulum positioned above the posterodorsal border of the maxilla, two longitudinally arranged large frontoparietal caputegulae surrounded by smaller rhomboid caputegulae, small but elongate medial supraorbital caputegulae, a posterior supraorbital caputegulum that is four times larger than the anterior one, up to three transverse parallel grooves on the dorsal surface of the posterior supraorbital caputegulum, postocular caputegulae along the ventral to posterior rim of the orbit that extend almost to the anteroventral margin of the squamosal horn, a longitudinal furrow tapering towards the apex of the squamosal horn, a lateral nuchal caputegulum four to five times larger than other nuchal caputegulae, and a pterygovomerine keel with a ventral margin that is dorsally positioned to the alveolar ridge. The phylogenetic analysis result showed that Talarurus is sister to the clade that includes the derived Asian ankylosaurines (Saichania chulsanensis, Tarchia kielanae, and Zaraapelta nomadis). It also shows that there was dispersal of ankylosaurines from Asia into western North America before the Cenomanian. Moreover, the rostral differences between Talarurus and Tsagantegia, another ankylosaur from the same formation, suggest possible niche partitioning between these taxa.