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Abstract

The Late Jurassic Lourinhã Formation is known for its abundant remains of dinosaurs, cro-

codylomorphs and other vertebrates. Among this record are nine localities that have pro-

duced either dinosaur embryos, eggs or eggshell fragments. Herein, we describe and

identify the first crocodiloid morphotype eggs and eggshells from the Lourinhã Formation,

from five occurrences. One clutch from Cambelas, composed of 13 eggs, eggshell frag-

ments from Casal da Rola and Peralta, one crushed egg and eggshells from Paimogo

North, and four crushed eggs as well as eggshell fragments from Paimogo South. We

observed and confirmed diagnostic morphological characters for crocodiloid eggshells and

which are consistent with a crocodylomorph affinity, such as the ellipsoidal shape, wedge-

shaped shell units, triangular extinction under cross-polarized light, and tabular ultrastruc-

ture. This material is distinctive enough to propose two new ootaxa within the oofamily

Krokolithidae, Suchoolithus portucalensis, oogen. and oosp. nov., for the material from

Cambelas, the most complete clutch known for crocodiloid eggs, and Krokolithes dinophilus,

oosp. nov., for the remaining material. These are the oldest crocodylomorph eggs known,

extending the fossil record for this group to the Late Jurassic. Furthermore, except for the

clutch from Cambelas, the material was found with theropod eggs and nests, in the other

four occurrences, which seem to suggest some form of biological relationship, still unclear

at this point.

Introduction

Today Crocodylomorpha are represented by 24 species of Crocodylia, a group that originated

within Eusuchia during the Late Cretaceous [1,2]. Although the extant diversity is low, the fos-

sil record of crocodylomorphs is extensive, dating to the Late Triassic, with numerous different

forms and a much more diverse ecological distribution [1,3–6]. Fossil eggs of Crocodylomor-

pha are still scarce and poorly understood, even though occurrences of eggshells attributed to

the group have been identified worldwide ([7–12], see also Fig 1 and S1 Table). The rarity of
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eggshells attributed to the clade stands out when compared to the number of occurrences of

fossilized eggs of other groups, namely dinosaurs. Eggshells of the crocodiloid basic type,

which includes only one morphotype, defined by [13,14], and exclusively identified in fossil

and extant Crocodylomorpha, show remarkably low morphological variation in their structure

[8,15]. The set of distinctive structural characters consistently observable throughout the fossil

record and in the extant representatives of the group allow for a conclusive taxonomical

assignment.

The first descriptions of crocodilian eggshells date back to the 30’s and 40’s of the twentieth

century [16,17]. However, it was the studies by Erben and colleagues [18,19] decades later, that

first used scanning electron microscope (SEM) data and applied the concept of biomineraliza-

tion to eggshell structure description. These works described and identified the biomineralogi-

cal organization and diagnostic characters of eggshells, and established relationships between

the major amniote groups, including Crocodylomorpha, and specific morphological eggshell

arrangements, providing a more solid framework for later paleontologists [13,14,20–27].

Systematics of crocodiloid eggshells

The great diversity of fossil eggshells prompted Mikhailov [28] to advocate and propose a

strictly parataxonomical system to classify fossil eggs, following the work initiated by Zhao

[29]. The nomenclature should use the general rules of the International Commission on Zoo-

logical Nomenclature (ICZN) as applied to ichnotaxa. Such a classification had already been

used though by Hirsch [26] to erect the crocodiloid (sensu [13]) oogenus Krokolithes and the

oospecies, Krokolithes wilsoni, based on the micro- and ultrastructure observed in eggshells

from the DeBeque Formation (Eocene) of Colorado and of extant crocodiles. The oofamily

Krokolithidae was named by Kohring and Hirsch [23] who at the same time included a second

oospecies within Krokolithes, K. helleri. A second oogenus, Bauruoolithus fragilis, within Kro-

kolithidae was erected by Oliveira and colleagues [7], from the Late Cretaceous Adamantina

Formation of Brazil, although it was recently recognized as a nomen nudum by Jackson and

Fig 1. Geographic distribution of fossil eggs and eggshells ascribed to Crocodylomorpha.

doi:10.1371/journal.pone.0171919.g001
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Varrichio [30]. Recently, Moreno-Azanza and colleagues [31] described and identified mate-

rial from the Early Cretaceous of Spain, and reassigned previously reported eggshells from the

Purbeck of England [32,33], proposing a new oogenus and oospecies,Mycomorphoolithus koh-
ringi, just outside the oofamily Krokolithidae, as incertae sedis, as the eggshells present a com-

bination of features that suggest a crocodylomorph affinity, but not enough to conclusively

ascribe them to Krokolithidae. Two unnamed oospecies in Krokolithes are known from the

Early Cretaceous of Spain [8,31]. Finally, Krokolithdae indet. eggshells have been reported in

the Maastrichtian of Northern Spain. Recently, Jackson and Varrichio [30] revised and

emended the diagnosis of the oofamily Krokolithidae.

Fossil record of crocodiloid eggshells

Fossil crocodiloid eggshells have been found all over the world, except in Antarctica and Aus-

tralia (Fig 1). In Europe, eggshells are reported from the Lower Miocene of Ulm and the Mid-

dle Eocene of Geiseltal, Germany [10,16,23,34], from the Upper and Lower Cretaceous of

France and Spain [31,32,35–43], and from the top of the Lulworth Formation (Berriasian) of

the Purbeck Limestone Group (Wealden) of England [32,33]. In North America, eggshells

were found in the Middle Eocene DeBeque and Bridger Formations, from Colorado and Wyo-

ming respectively [23,26], in the Upper Cretaceous Two Medicine, Hell Creek and Fruitland

Formations, from Montana and New Mexico respectively [44–46], and in the Lower Creta-

ceous (Albian) Glen Rose Formation from Texas [47]. It is worth mentioning that Erickson

[48] described a probable crocodilian egg from the Upper Cretaceous of Wyoming, but Hirsch

and Kohring [49] consider that identification highly doubtful based on the inner filling of the

specimen that rather suggests a calculus. Hirsch [50] mentions very badly preserved, highly

uncertain crocodilian-like eggshells from the Upper Jurassic Morrison Formation that “[. . .]

show large shell units with indications of wedge-like structures similar to those in crocodilian

eggs [. . .] the extinction pattern is also similar to that seen in crocodilian eggs. However, before

a final identification is made, the specimens must be studied in more detail”, which have never

been studied in detail since. In South America, crocodylomorph eggshells are reported from

the Upper Cretaceous Araçatuba and Adamantina Formations of Brazil [7,51,52] and Cajones

Formation of Bolivia [53]. In Asia, Patnaik and Schleich [54] report crocodiloid eggshells from

the Pliocene in the Upper Siwaliks of India. In the Upper Miocene of the Chinji Formation

from Pakistan, a complete crocodylomorph egg was described by Panadés I Blas and Patnaik

[55]. Crocodilian eggshells were found also in the Upper Cretaceous Intertrappean Beds, India

[11,12,56].

Here we add to this record by providing a detailed re-description and interpretation of Late

Jurassic crocodylomorph eggs and eggshells from five localities (Fig 2), reported by [57], four

of which previously known for dinosaur eggshells and nests, Paimogo (North and South),

Peralta, and Casal da Rola [57–64], making these the oldest occurrences of crocodyloid eggs

known We thoroughly review and improve on previous works [57,58], adding new data that

allows us to erect two new ootaxa while at the same time providing new insights into the evolu-

tion of crocodylomorph-ascribed eggshells.

Material and methods

Geological and paleontological setting

The Lourinhã Formation (Fig 2) is a massive continental depositional sequence, punctuated

by some shallow marine intercalations, informally defined by Hill [66]. It is a thick syn-rift sili-

ciclastic succession, ranging from 200 to 1100 meters in thickness, late Kimmeridgian-earliest

Berriasian in age [67,68], that was deposited during the third rifting episode of an extensional

Late Jurassic crocodylomorph eggs from the Lourinhã Formation, Portugal
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event related to the opening of the North Atlantic that climaxed during the Late Oxfordian-

Early Kimmeridgian [66,69,70]. The exact lithostratigraphy of the Lourinhã Formation is com-

plex, and there is no consensus regarding its formal lithostratigraphical units. Here we use

the most recent stratigraphy, defined by Mateus et al. [67]. Thus, the Lourinhã Formation is

comprised of three members, from bottom to top: i) the Praia da Amoreira-Porto Novo Mem-

ber (Fig 3A), ii) the Praia Azul Member, and iii) the Assenta Member (Fig 3B). The Praia da

Amoreira-Porto Novo Member shows characteristics of tide-influenced upper delta, flood-

plain, and alluvial facies, and is interpreted as being of latest Kimmeridgian [67]. The Praia

Azul Member is a mainly marl-mudstone unit with few sandstone levels, and contains three

marly-carbonate shallow marine layers, indicative of brief yet relevant transgressive episodes

that allow for a more precise biostratigraphical dating than in other units in the Lourinhã For-

mation, being latest Kimmeridgian-earliest Tithonian [67,71]. The topmost Assenta Member

is dominated by mudstones, often with levels of pedogenic carbonate concretions, or caliche,

evidence of paleosoils (either forming high resistance levels or the reworked nodules forming

conglomerates at the base of channels), intercalated with channelized cross-bedded sand-

stones, including large scale point-bars, and thin flat lenses or tabular crevasse and levee bod-

ies, and representing the late Early Tithonian to earliest Berriasian [67,68,71].

The fluvio-deltaic paleoenvironment of the Lourinhã formation created the conditions for

the existence of a highly diversified ecosystem, with remarkable faunal similarities with the

coeval Morrison Formation, seemingly indicating a close yet complex paleobiogeographical

relationship [65]. A case in point is the dinosaur fauna [65,72–77]. Therefore, both areas

Fig 2. Map of the Lourinhã region, Western Portugal. Schematic geological map showing the fossil sites within the Lourinhã Formation. Late Jurassic

rocks in gray. Sites and specimens: Paimogo N: ML760; Paimogo S: ML1795; Casal da Rola: ML1194; Peralta: ML159; Cambelas: FCT-UNL706. Based after

[57,65].

doi:10.1371/journal.pone.0171919.g002
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would be a favorable breeding ground for a variety of organisms, such as turtles, dinosaurs,

and crocodylomorphs. Despite this, the fossil egg record is comparatively scarcer in Morrison

than in the Lourinhã formation. In the Late Jurassic of Portugal there are now nine known

localities with reported eggs and eggshells, eight of which are located in the Lourinhã Forma-

tion, where the dinosaur fossil egg and embryo record is well documented [59–64,78–84].

There are also testudinoid eggshells reported from the Guimarota coal mine, in Leiria (70 km

N of Lourinhã), from the Alcobaça Formation [85,86]. The eggs and eggshells reported in this

study add to the fossil egg record from the Late Jurassic, and from the Lourinhã Formation,

and more importantly, to the crocodylomorph fossil oodiversity.

Material studied

The studied material has been found and collected between 1987 and 2012 from five localities

in the Lourinhã Formation (Fig 2). The specimen from Cambelas was recovered by Octávio

Mateus on July 13th of 2008, and is catalogued at Faculdade de Ciências e Tecnologia da Uni-

versidade Nova de Lisboa (FCT-UNL; Caparica, Portugal), catalogue number FCT-UNL706,

and currently stored at Museu da Lourinhã (ML; Lourinhã, Portugal). FCT-UNL706 (Figs 4

and 5) is the only preserved clutch, on a fine gray sandstone block, with 13 eggs. Currently,

and after the present study was carried, the clutch has been dismantled, but a cast is housed at

ML, specimen catalogue number ML1582.

From the other sites, the specimens are catalogued and stored at ML. ML760 (Paimogo

North, Figs 6 and 7B) and ML1795 (Paimogo South, Figs 7C and 8) were found by Isabel

Mateus and collected between 1993 and 1997 (see [58,59] for further details) by a team led by

Isabel Mateus and Horácio Mateus. ML1194 (Casal da Rola, Figs 7D and 9) was found by

Vasco Ribeiro and collected in 2012 by Vasco Ribeiro, Femke Holwerda, João Russo, and Ema-

nuel Tschopp. ML195 (Peralta, Fig 7A) was found by Horácio Mateus in 1987 and collected

during various excavations through the years, the last one dating from 2011. Five partial

Fig 3. Outcrops of Lourinhã Formation. A, location of Paimogo, Northern Lourinhã Formation, Praia da

Amoreira-Porto Novo and Praia Azul Members. B. location of Cambelas, Southern Lourinhã Formation, Assenta

Member.

doi:10.1371/journal.pone.0171919.g003
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crushed eggs were recovered, all of them from the Paimogo localities. ML760 (Fig 6) is a single

egg in a reddish-gray mudstone while ML1795 (Fig 8) is a dark brown mudstone block with

four crushed eggs. It should be noted that in this case, due to its fragility, the specimen was left

in the plaster jacket to protect its integrity. The rest of the material is the most abundant and

consists of more than 200 mostly weathered, very small fragments (less than 25 mm2). The

fragments were found loose and were either collected at the surface or by sieving sediment

from the sites. From each locality, well preserved samples were selected and cleaned using an

ultrasound bath, were embebed using EpoThin resin and hardener, mixed in a proportion of

5:2. and were thin sectioned in radial sections and observed with a petrographical microscope

(Labomed CXL POL). Macro photographs under a Leica MZ6 stereomicroscope were also

taken of the outer and inner surface of the eggshells, to observe the pores and the distribution

of the shell units. A stereomicroscope with transmitted light has been used with tangential egg-

shell sections in order to identify, when possible, the distribution of shell units, mammillae

and nucleation centers, and detect the presence and shape of pores, as previously done with

extant crocodilian eggshells [9]. The observations under the petrographic and stereomicro-

scopes were done at ML and FCT-UNL. SEM imaging was done at FCT-UNL using a JEOL

JSM T330A scanning electron microscope and at Universidade de Évora (UE; Évora, Portugal)

using a Hitachi SN-3700 scanning electron microscope. When referring to the eggshell total

Fig 4. Holotype of Suchoolithus portucalensis, oogen. and oosp. nov. Specimen FCT-UNL706 from

Cambelas, Assenta Member, Lourinhã Formation, Upper Jurassic. The shape and preservation of the

specimen suggests an unhatched clutch.

doi:10.1371/journal.pone.0171919.g004
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thickness and ratios between layers, we do not include the diagenetic layer. No permits were

required for the described study, which complied with all relevant regulations.

Nomenclatural acts

The electronic edition of this article conforms to the requirements of the amended Interna-

tional Code of Zoological Nomenclature, and hence the new names contained herein are avail-

able under that Code from the electronic edition of this article. This published work and the

nomenclatural acts it contains have been registered in ZooBank, the online registration system

for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated

information viewed through any standard web browser by appending the LSID to the prefix

Fig 5. Macro photographs (A, B) and micro photographs of S. portucalensis (C, D). A, external surface

of the eggshell; B, internal surface of the eggshell; C, radial section under petrographic microscope, with

cross-polarized light; D, tangential section of the eggshell under stereomicroscope, with transmitted light,

where the tips of the individual shell units (dark dots) are observable.

doi:10.1371/journal.pone.0171919.g005
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“http://zoobank.org/”. The LSID for this publication is: urn:lsid:zoobank.org:pub:C8E78057-

9BEA-4B55-85A5-44D14778294C. The electronic edition of this work was published in a jour-

nal with an ISSN, and has been archived and is available from the following digital repositories:

PubMed Central, LOCKSS [author to insert any additional repositories].

Results

Parasystematic paleontology

KROKOLITHIDAE Kohring and Hirsch, 1996 [24]

Suchoolithus portucalensis oogen. et oosp. nov.

ZooBank Life Science Identifier (LSID) for the oogenus: urn:lsid:zoobank.org:act:C5B99229-

C8C5-4322-B7B7-9E827DBF8F3B

Type oospecies. Suchoolithus portucalensis oosp. nov

Etymology. Suchoolithus derives from suchus, the latinized Greek word for “crocodile”,

and Greek oolithus means “egg stone”.

Diagnosis. The same as for the oospecies.

Suchoolithus portucalensis sp. Nov

Fig 6. Holotype of Krokolithes dinophilus, oosp. nov. Specimen ML760 from Paimogo N, Praia da

Amoreira-Porto Novo Member, Lourinhã Formation, Upper Jurassic.

doi:10.1371/journal.pone.0171919.g006
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ZooBank LSID for the oospecies: urn:lsid:zoobank.org:act:3C59EF39-CBA2-4C91-A91A-

DDFDA65F6A95

Etymology. The specific epithet”portucalensis” refers to Portugal, the country of origin.

Holotype. FCT-UNL706, a clutch with 13 eggs (replica ML1582 stored at Museu da

Lourinhã).

Diagnosis. As combined characters: ellipsoid eggs, size approximately 42 x 26 mm; orna-

mented outer surface with very small bumps; average shell thickness of 160 μm; trapezoidal

shell units tightly packed together and wider than taller, with almost no interstices at the bases

of the shell units.

Locality and horizon. 39˚ 04’ 58,84” N; 9˚ 25’ 01,58” W, Cambelas, Torres Vedras, Portu-

gal. Assenta Member, Lourinhã Formation, upper Tithonian, Upper Jurassic.

Description. Macroscopically, the holotype FCT-UNL706 is a clutch with 13 eggs (Fig 4),

seven of which are well preserved and mostly intact. The remaining are incomplete, composed

of aggregates of eggshell fragments in situ. Some of the eggs are truncated, either by erosion or

excavation of the clutch or by hatching, although the undisturbed aspect of the clutch allows us

to consider the first scenario as the most likely. It was found in a fallen block of fine sandstone,

and no sedimentological features of the block allow polarity orientation, other than the trunca-

tion of eggs, where the truncation of upper halves of the egg is more probable. Considering

this orientation, most of the eggs are shown in the bottom part of the specimen, with three of

the eggs only visible on the upper of the clutch. Except for two eggs, which are oriented verti-

cally, all the others are oriented horizontally. The eggs are dark brown, standing out from the

very fine, light gray sandstone matrix, and show a fractured and cracked surface. Nonetheless,

the clutch is well preserved and, even though there is truncation in some of the eggs which is a

form of fossil diagenetic alteration, the eggs do not show any signs of any other severe post-

Fig 7. Radial sections of K. dinophilus. Right: parallel polarized light; Left: cross-polarized light. A, ML195;

B, ML760; C, ML1795; D, ML1194. Scale bars: 200 μm.

doi:10.1371/journal.pone.0171919.g007
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Fig 8. Eggs, SEM and tangential section of K. dinophilus ML1795. A, block with specimen ML1795,

dashed white lines outlining the crushed eggs; B, tangential eggshell section under stereomicroscope, with

transmitted light, showing the darkened mammillae tips (nucleation centers); C, SEM image of the external

opening of a filled pore; D, SEM image of a transversal section of the eggshell. In D, the nucleation centers or

basal knobs (NC) are evident.

doi:10.1371/journal.pone.0171919.g008
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burial disarrangement. Furthermore, there is no evidence of recrystallization or replacement

of the original composition of the eggs.

The eggs are ellipsoid in shape, with blunt ends, measuring approximately 42 mm long and

26 mm wide, with an elongation index (EI) of 1.62. The external surface is lightly sculptured

by slightly uneven, tiny bumps (Fig 5A). No evidence of extrinsic degradation can be appreci-

ated. The internal surface shows a tight packing of the basal knobs (Fig 5B). No pore openings

have been observed.

The shell thickness is 160 μm (n = 80, sd = 17 μm). Microscopically, in radial section, the

wedges of the shell units are clearly visible, interlocked and closely packed together with little

space between them, with a wider top and gradually narrowing until the darker basal knobs

(Fig 5C). A very thin, discontinuous diagenetic layer covers the outer surface. No growth lines

are visible. The basal plate groups are present (Fig 5C), although not observable through the

whole radial section. There is a very thin, darker line at two thirds of the eggshell thickness.

The shell units are sometimes domed in the upper part, resulting in the bumpy outer surface

ornamentation, and a blocky extinction pattern is present when observed under cross-polar-

ized light (Fig 5C). In Fig 5D, with transmitted light, on a tangential section, darker areas, cor-

responding to the basal plate groups, are clearly visible and show a distribution identical to

what is observed in extant crocodyloid eggs [9].

Fig 9. SEM photograph of K. dinophilus (ML1194). External surface of an eggshell fragment with the

detailed inset of a pore opening.

doi:10.1371/journal.pone.0171919.g009
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Krokolithes Hirsch 1985 [26]

Type oospecies. Krokolithes wilsoniHirsch 1985 [26].

Holotype. UCM 47523A/HEC 93, one of four eggs from a clutch [26].

Type locality. UCM Locality 81079, near Parachute, Garfield County, Colorado, USA.

DeBeque Formation, Eocene [26].

Referred oospecies. Krokolithes wilsoniHirsch 1985 [26]; Krokolithes helleri Kohring and

Hirsch 1996 [23]; Krokolithes dinophilus sp. nov.

Diagnosis. Diagnosis sensu [46] and amended to include the thinner eggshells described

in this study (as combined characters): eggshell with outer surface smooth to undulating;

straight pore canals ending between shell units in deep interstices; ellipsoidal eggs with two

blunt ends; egg size 68–50 mm and 44–30 mm, shell thickness 170–760 μm.

Krokolithes dinophilus oosp. nov.

ZooBank LSID for the oospecies: urn:lsid:zoobank.org:act:6E689451-1BA1-

495C-B063-E7BD2D6DAED0

Etymology. The epithet “dinophilus” refers to the occurrence of these eggshells with dino-

saur nests and eggshells.

Holotype. ML760, one crushed egg.

Type locality and horizon. Paimogo, Lourinhã, Portugal. Top of the Praia da Amoreira-

Porto Novo Member, Lourinhã Formation, uppermost Kimmeridgian, Upper Jurassic.

Referred material. ML195, less than 20 eggshell fragments; ML1194, between 10 and 30

eggshell fragments; ML1795, four crushed eggs and between 150 and 200 eggshell fragments.

Locality and horizon. ML760, Paimogo North, Lourinhã, Portugal. Top of the Praia da

Amoreira-Porto Novo Member, Lourinhã Formation, uppermost Kimmeridgian, Upper

Jurassic; ML1795 Paimogo South, Lourinhã, Portugal. Base of the Praia Azul Member, Lour-

inhã Formation, uppermost Kimmeridgian, Upper Jurassic; ML1194, Casal da Rola. Praia

Azul Member, Lourinhã Formation, uppermost Kimmeridgian-lowermost Tithonian, Upper

Jurassic; ML195, Peralta, Lourinhã, Portugal. Praia Azul Member, Lourinhã Formation, upper-

most Kimmeridgian-lowermost Tithonian, Upper Jurassic.

Diagnosis. Large Krokolithes eggs, approximately 70 x 40 mm, with thin eggshells (170–

250 μm), strongly pronounced growth lines (horizontal lamination), narrow trapezoidal shell

unit, with small interstitial space between their bases.

Description. ML760. Macroscopically, ML760 is a crushed egg (Fig 6) found in associa-

tion with a theropod nest [58]. The egg is encased in a small block of reddish mudstone with

some caliche nodules. Even though crushed, the egg retains a characteristic ellipsoid shape

with blunt ends. It measures 70 mm in length and 40 mm in width, with an EI of 1.75. The

external surface is smooth and the dark gray shell is very fractured. No pores were identified in

a macroscopic observation.

Eggshell thickness is 248 μm (n = 80, sd = 14 μm). Microscopically, in radial section, (Fig

7B), the basal knobs and nucleation centers are evident, but the trapezoidal shell units are faint

and in most cases, hard to define due to a strong sub-horizontal fracturing that prevents a

clear observation of the tabular growth structure which is barely visible (Fig 7B). The basal

plate groups make up approximately 20% of the eggshell thickness. A diagenetic layer, with a

thickness of 71 μm, of diagenetic secondary deposits of calcite and recrystallization, covers the

external surface. The eggshell has an extremely low porosity (less than one pore per cm2). In

cross-polarized light (Fig 7B2), the irregular triangular extinction pattern is clearly visible.

ML195. ML195 are small, dark gray, eggshell fragments, less than 25 mm2 each, also found

in association with a theropod nest. The outer and inner surfaces are smooth, with no discern-

ible internal bumps of the basal knobs or pore openings on direct observation.

Late Jurassic crocodylomorph eggs from the Lourinhã Formation, Portugal
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The eggshell thickness is 250 μm (n = 80, sd = 8 μm), with a 14 μm diagenetic layer overlay-

ing the outer surface. Under the microscope, the radial section (Fig 7A) shows the darker basal

knobs align along the inner surface of the eggshell, about 30 μm thick (approximately 14% of

the total shell thickness). The trapezoidal shell units are very faint and barely distinguishable,

but still present. The horizontal lamination or tabular structure is unevenly distributed, with a

lighter colored portion and fainter growth lines just above the basal knobs (Fig 7A) making up

about 160 μm of the total shell thickness (approximately 62%). Just above it, there is a thin

darker band of more compacted horizontal growth lines (Fig 7A), approximately 60 μm thick

(about 24% of the shell thickness). In cross-polarized light, the blocky extinction is present

(Fig 7A2), although less conspicuous than in ML760, ML1795 and ML1194.

ML1194. Macroscopically, ML1194 are small fragments, also found in association with the-

ropod eggs [64], very similar to ML195, both in dimensions and morphology. The inner and

outer surfaces are smooth. In macroscopic observation, pores were not observed.

Eggshell thickness is 220 μm (n = 80, sd = 7 μm). Microscopically, in radial section, the shell

units (Fig 7D) are very faint and hard to distinguish. The basal knobs and nucleation centers

make up approximately 16% of total shell thickness, with 35 μm, and are characterized by a

darker coloration (Fig 7D). About 140 μm thick (approximately 63% of shell thickness), there

is a portion of the eggshell characterized by a horizontal tabular lamination that shows an

increase inits density from the bottom to the top (Fig 7D). A darker zone is visible (Fig 7D)

just above the previous, with the tabular growth more evident, more tightly packed together,

about 50 mm thick (approximately 21% of total shell thickness). The diagenetic layer is very

thin and sparse, not observable throughout the whole section, and at most 20 μm thick. With

cross-polarized light (Fig 7D2), the extinction triangles are visible. Pores are very few (less

than a pore per cm2), and have a subcircular opening, with a diameter of 110 μm, and straight

long canals (Fig 9).

ML1795. ML 1795 includes four crushed, very fragmented eggs (Fig 8A), and eggshell frag-

ments, found slightly south and above of ML760, and associated with a theropod nest [58].

Because the specimen is so fragile, it is still partially encased in its plaster jacket. Some of the

dark brown mudstone matrix is present (Fig 8A). As with ML760, ML195, and ML1194, pores

are undistinguishable macroscopically.

Eggshell thickness is 250 μm (n = 80, sd = 15 μm). In microscopic observation, the shell

unit wedges are clearly observable, with basal knobs and nucleation centers visible (Fig 7C),

and measuring about 60 μm (approximately 25% of shell thickness). The horizontal tabular

lamination is present in the middle portion of the eggshell (Fig 7C), about 100 μm thick

(approximately 40% of shell thickness). A darker area, just above the latter layer, showing a

more compact lamination (Fig 7C), can be differentiated (approximately 90 μm thick, about

35% of shell thickness). A diagenetic layer (Fig 7C), about 140 μm, covers the external surface

of the eggshell. Pores are very scarce (less than one per mm2) and hard to observe. Still, in Fig

8C, an obstructed pore opening can be seen. The pore diameter is 42 μm. The internal open-

ings are not visible in the samples. With cross-polarized light, the irregular triangular extinc-

tion is observable (Fig 7C2). Under the stereomicroscope and using transmitted light, the

darker areas corresponding to the basal knobs and tips of the shell units are evident in the tan-

gential section (Fig 8B). Under the SEM, the nucleation centers are noticeable (Fig 8D).

Comparison with crocodylomorph eggshells

The material presented in this study is distinct from other occurrences of fossil crocodylo-

morph eggshells, namely in size and eggshell thickness (see S1 Table), in the distribution of

horizontal accretion lines and wider, tightly packed shell units (Fig 8). Morphologically, S.
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portucalensis is clearly crocodiloid, namely the ellipsoid shape, the external ornamentation, the

trapezoidal shell units, the extinction pattern in cross-polarized light. However, the eggs are

much smaller than in Krokolithes. Also, the shell units in S. portucalensis are much more

packed together and the interstices are almost absent. The shell thickness (� 160 μm) of S. por-
tucalensis is one of the lowest in the fossil record, and only eggshells described by Oliveira et al.

[7] are slightly thinner (� 150 μm).

The eggs of K. dinophilus are slightly larger (70 x 40 mm for the holotype), and actually

larger than most complete fossil eggs found so far, only smaller than the egg described from

the upper Miocene of Pakistan [55]. Egg size is in line with egg sizes of extant forms and

for values on the egg sizes and shell thickness of extant crocodylomorphs, (see [9], Table 3

therein). The EI (1.75) is the same as for the egg reported from Early Cretaceous Glen Rose

Formation [47] and eggs from the Late Cretaceous of South America have a higher EI, but are

much smaller [7,53]. In modern crocodylomorphs, only the eggs of Crocodylus mindorensis
and Crocodylus novaeguinae have a higher average EI, respectively 1.86 and 1.77 [9]. The

smooth outer surface is characteristic as in most other fossilized crocodylomorph eggshells,

except for an egg from the upper Miocene of Pakistan that shows ornamentation [55]. The

interstices between shell units are smaller than in K. helleri and K. wilsoni, the other oospecies

in the oogenus Krokolithes [23,87], and the shell units wider than taller, contrarily to what is

observed in modern crocodylomorphs which have wide inter-basal knob spaces and narrower

and taller shell units. On the eggshell thickness, Krokolithes dinophilus (� 170–250 μm) is thin-

ner than Krokolithes wilsoni and Krokolithes helleri [87,88] with values closer to eggshells from

the Cretaceous of France, Spain, Bolivia and Brazil [7,40,41,53]. The horizontal accretion lines

are more pronounced in K. dinophilus than in other Krokolithes specimens, closer to what is

observed in A.mississipiensis eggshells [9].

Discussion

Egg taphonomy and eggshell preservation

Considering the exceptional preservation of FCT-UNL706, uncrushed, and the extreme fragil-

ity of the eggshell, the unhatched clutch (Fig 4) was most likely buried in situ, where the ovipo-

sition occurred. Contrarily, the eggshells from Paimogo (ML760, ML1795), Peralta (ML195),

and Casal da Rola (ML1194), are fragmented, in some cases showing a marked sub-horizontal

fracturing (Fig 6B), and, in the case of the eggs ML760 (Fig 4) and ML1795 (Fig 8A), showing

clear signs of post burial damage, namely vertical compression, as the eggs are flattened and

crushed.

The tabular arrangement of crocodile eggshell is evident at both microstructural (growth

lines) and ultrastructural (tabular ultrastructural) levels in most fossil and extant taxa, although

such features can be obliterated during fossilization [87]. By comparing the radial sections of

K. dinophilus (Fig 6), with the extensively studied A.mississipiensis (see Fig 11 in [9]), the tabu-

lar arrangement within the shells are remarkably similar. On the other hand, in S. portucalensis
(Fig 5C) no such organization is visible, but it is impossible to assess if this is a preservation

artifact or an original feature of the eggshells. Despite this, S. portucalensis shows enough dis-

tinct crocodyloid characters, like ellipsoid eggs (EI of 1.62), slightly ornamented external sur-

face, trapezoidal interlocking shell units widening from the basal knobs to the exterior to

confidently place them within Krokolithidae.

Clutch and egg size as proxies of female adult size

The holotype of S. portucalensis has the highest number of eggs on record for any single clutch

in the fossil record, with 13, as well as the second smallest crocodylomorph eggs, only slightly

Late Jurassic crocodylomorph eggs from the Lourinhã Formation, Portugal
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bigger than those associated to the remains of Yacarerani boliviensis, from the Late Cretaceous

of Bolivia [53]. On the other hand, and considering only complete eggs, the holotype of K.

dinophilus is one of the largest crocodiloid fossil eggs known, 70 x 40 mm, in the same size

range of the eggs of A.mississipiensis.
Reproductive allometry studies on extant crocodylomorphs and, more recently, on Diplocy-

nodon darwini from the Middle Eocene of Geiseltal, or known skeletal remains-egg associa-

tions, indicate a correlation between body size and egg mass [2,10,53,89,90]. Estimating egg

mass is difficult in fossil eggs, but a correlation between body length and egg width–the con-

straining dimension on egg size that can be related to the size of the oviduct and thus, with the

size of the female [89,91]–can be established (Fig 10). Considering that the allomeric relation,

as in previous studies [2,10,89,90], is loosely supported (R2 = 0.55), an approximate size of 70

cm for the egg layer of Suchoolithus and 170 cm for the egg layer if K. dinophilus can be esti-

mated. Thus, the important differences seen in egg size between the two ootaxa of the Lourinhã
Formation provides further evidence on the coexistence of different sized crocodylomorphs,

probably occupying different ecological niches in the Late Jurassic ecosystems of Portugal, a

hypothesis also supported by the skeletal record [92–95]. In fact, similar sympatry can be

observed in the Late Jurassic of France and Germany, extending geographically what has been

reported by Tennant and Mannion [96].

Comparison with the skeletal record

None of the eggs in this study have provided up to this point embryonic material or associated

hatchlings that might provide definitive evidence that could allow ascribing these finds to a

specific crocodylomorph taxon. Also, the morphological stability of the eggshells makes the

association of the egg material to a specific crocodylomorph taxon extremely difficult, more so

as the paleodiversity increases. However, the remains of crocodylomorphs in the Lourinhã
Formation are abundant and the diversity of forms high, with well documented ocurrences,

Fig 10. Relationships between egg width and female length in modern crocodylians and Portuguese

ootaxa. Adult female mean length values from [2]. Egg width values from ([9] and references therein).

Regression line calculated for 19 extant species of crocodylomorphs. Regression equation used to calculate

average female length of egg layer taxa for Suchoolithus portucalensis and Krokolithes dinophilus, shown in

the graphic.

doi:10.1371/journal.pone.0171919.g010
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which might at least help in narrowing the putative egg layer. The following taxa are known

from the Lourinhã Formation: Bernissartia sp., cf. Alligatorium, Goniopholis baryglyphaeus
Schwarz 2002,Machimosaurus hugii von Meyer 1837, Lisboasaurus estesi Seiffert, 1973, Lusita-
nisuchus mitrocostatus Schwarz & Fechner 2004, Theriosuchus guimarotae Schwarz & Salisbury

2005 [92–106]. Egg size can also provide help to narrow the identification of the putative egg

layers of both S. portucalensis and K. dinophilus. The eggs of FCT-UNL706 are very small

which would seem to suggest that the more likely candidate as parent taxa would be one of the

small forms of crocodylomorphs (� 1 meter) from the Lourinhã Formation, such as Bernissar-
tia, Alligatorium, Lisboasaurus, Lusitanisuchus or Theriosuchus [92–95]. On the other hand, K.

dinophilus would be relatable to a medium sized crocodylomorph (2–3 meters), such as Gonio-
pholis, a neosuchian ubiquitous throughout the Late Jurassic [92,104].

Crocodylomorph oodiversity through time

Adding these two new ootaxa, the number of valid crocodylomorph ootaxa is five oospecies

distributed among three valid oogenera, with only one of those not included in Krokolithidae,

M. kohringi [31]. This contrasts with the much more diverse eggshell morphotypes attributed

to dinosaurs. The reason for such a morphological conservatism among crocodiloid eggs is

not yet well understood, but Moreno-Azanza et al. [107] briefly addressed this issue. These

authors postulated that the contrast between the high diversity observed within the lineage of

Crocodylomorpha in the past and the reduced modern representation of the clade, the low

diversity of the eggs, and the absence or scarce record of gravid specimens or fossil embryos

may raise the issue of a possible bias in the classification and proposed evolution of this mor-

photype. Nevertheless, our data shows that the eggshell structure related to modern crocody-

loids was present and may have been ubiquitous among crocodylomorph taxa as early as the

Late Jurassic.

Implications of the occurrence of K. dinophilus with theropod eggs

The discovery of K. dinophilus associated with theropod nests and eggshells raises some still

unresolved questions. The occurrence of K. dinophilus with theropod eggshells belonging to

the same, or at least very closely related ootaxa could be indicative of some type of relationship

between the two. ML760 and ML1795 were found associated with the Paimogo nest, attributed

to Lourinhanosaurus [58–61,64]. ML1194 was found with theropod eggshells that are closely

related, if not the same ootaxon, to the Paimogo eggshells and to Preprismatoolithus coloraden-
sis [64]. The latter is attributed to Allosaurus [108]. ML195 was also recovered from an uniden-

tified theropod nest.

The absence of a modern analog of these occurrences only allows for speculative consider-

ations regarding a putative relationship between theropods and crocodylomorphs in the Late

Jurassic of Portugal. Extant crocodylomorphs are the top predators in many ecosystems, and

even smaller genera, more likely to be vulnerable to predators, are usually more reclusive and

more heavily armored than their larger counterparts, therefore effectively decreasing the risk

of predation [108]. In the Late Jurassic, this was not the case since the top tiers of the terrestrial

food chain were occupied by a range of medium- to large-size theropods [72,73]. Nowadays,

crocodilian nesting sites are located preferentially in secluded, marginal areas, frequently

watched over by a parent, and so nesting sites of potential predators nearby are highly unlikely.

These aspects of crocodilian behavior are, according to Somaweera and colleagues [109], likely

to have evolved as a response to predatorial risk. Furthermore, the highest rates of predation

on modern crocodilians occur on the earliest stages of life (i.e. eggs and hatchlings), with small

mammals and varanids as potential predators [109]. It would be plausible to assume that the
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risk was even higher in the Late Jurassic due to the higher number of potential predators, even

for a medium-sized taxon like the one that probably laid K. dinophilus eggs, as previously

discussed.

A significant drawback is the lack of a more complete record, in the sense that, besides the

Paimogo eggs, the material is fragmented and suggests that it might have been transported and

posteriorly deposited, therefore not in its original nesting context. It is premature to make any

conclusions without more unequivocal evidence. Thus, what the association of the same croco-

dylomorph ootaxon with apparently the same theropod ootaxa (and probably same theropod

taxa) means is still a mystery, but it is a fact that should not be ignored. Going forward, further

findings and studies are needed to ascertain if there was indeed some kind of reproductive

relationship between crocodylomorphs and theropods in the Late Jurassic of Portugal and

possibly develop a new perspective on unknown reproductive strategies and behavior of the

Crocodylomorpha.

Conclusions

The present study confirms the presence of eggs and eggshells of crocodylomorphs in the Late

Jurassic Lourinhã Formation of Portugal. These findings represent the oldest recovered to

date, extending back the range of crocodylomorphs eggshells by 7 Ma.

A new oogenus and two new oospecies are erected. Suchoolithus portucalensis oogen. et

oosp. nov, differs from other Krokolithidae eggs by having small egg size, thin eggshell, and

very tightly packed shell units with no interstices between neighbouring shell units. K. dinophi-
lus differs from other Krokolithes oospecies by the larger eggs, smaller shell thickness, and low

porosity.

The diversity within Krokolithidae is then increased and the number of crocodiloid ootaxa

is now five, namely 3 oogenera and 5 oospecies. Additionally, we verified and confirmed that

the basic crocodiloid eggshell structure has shown a morphological conservatism over a period

of 150 Ma.

The lack of associated skeletal remains precludes a taxonomic identification of the eggs,

although the differences in size allow to narrow down plausible egg layers by correlating with

the known Crocodylomorpha of the Lourinhã Formation. S. portucalensis was probably laid

by one of the several small crocodylomorph taxa, but K. dinophilus was probably laid by a

medium size form, such as Goniopholis.
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Langenberg near Oker, Lower Saxony (Germany), and description of related materials (with remarks

on the history of quarrying the “Langenberg Limestone” and “Obernkirchen Sandstone”). Clausthal

Geowiss. 2006; 5: 59–77.

Late Jurassic crocodylomorph eggs from the Lourinhã Formation, Portugal

PLOS ONE | DOI:10.1371/journal.pone.0171919 March 8, 2017 22 / 23

http://www.nature.com/srep/2013/130530/srep01924/full/srep01924.html%3Fmessage-global%3Dremove%26WT.ec_id%3DSREP-20130604
http://www.nature.com/srep/2013/130530/srep01924/full/srep01924.html%3Fmessage-global%3Dremove%26WT.ec_id%3DSREP-20130604
http://etd.fcla.edu/UF/UFE0010640/bryan_t.pdf
http://www.ncbi.nlm.nih.gov/pubmed/11706570
http://dx.doi.org/10.1098/rsos.140222
http://www.ncbi.nlm.nih.gov/pubmed/26064545
http://dx.doi.org/10.7717/peerj.599
http://www.ncbi.nlm.nih.gov/pubmed/25279270
http://docentes.fct.unl.pt/omateus/publications/checklist-late-jurassic-reptiles-and-amphibians-portugal?page=1
http://docentes.fct.unl.pt/omateus/publications/checklist-late-jurassic-reptiles-and-amphibians-portugal?page=1


105. Krebs B. Der Jura-Krokodilier Machimosaurus H. v. Meyer. Paläontol Z. 1967; 41: 46–59.
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