Publications

Export 41 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
E
Lapa, N., R. Barbosa, J. Morais, B. Mendes, J. Méhu, and J. Santos Oliveira. "Ecotoxicological assessment of leachates from MSWI bottom ashes." Waste Management. 22.6 (2002): 583-593. AbstractWebsite

In this paper, chemical and ecotoxicological data of leachates from bottom ashes collected in different Municipal Solid Waste Incinerators (MSWI) are shown. The bottom ashes were collected in Belgium (three incinerators—samples B1 to B3), France, Germany, Italy and United Kingdom (one incinerator in each country—samples F1, D1, I1 and UK1, respectively). Both chemical and ecotoxicological characterizations of leachates were done on the framework of the European Directive 91/689/EEC and the European Council Decision 94/904/EC. This work was carried out under the European project called Valomat, which was supported by the European Commission through Brite-Euram III program. Twenty-one inorganic parameters were analyzed. The ecotoxicological assays were done under standard laboratory conditions, using the bacterium Photobacterium phosphoreum, the freshwater alga Pseudokirchneriella subcapitata, the crustacean Daphnia magna and the vegetable Lactuca sativa. Chemical data varied from sample to sample. Similar results were obtained in biological assays. The samples can be classified as ecotoxic/hazardous according to the French proposal for a Criterion and Evaluation Methods of Waste Ecotoxicity (CEMWE) and the German regulation on Hazardous Waste Classification (HWC). However, samples B1, B2, B3 and D1 comply the maximum limits for direct valorization category defined in the French Classification of Bottom Ashes based on their Polluting Potential (CBAPP). Sample B1 presented the lowest level of ecotoxicity, being considered as the most interesting to be used in the development of new materials for civil engineering works.

Lapa, N., J. F. Santos Oliveira, S. L. Camacho, and L. J. Circeo. "An ecotoxic risk assessment of residue materials produced by the plasma pyrolysis/vitrification (PP/V) process." Waste Management. 22.3 (2002): 335-342. AbstractWebsite

Plasma is the fourth state of matter, following the three states of solid, liquid and gas. Experience has amply demonstrated that solids exposed to the oxygen-deficient plasma flame are converted to liquid, and liquid exposed to the same flame is converted to gas. A low amount of vitrified solid residue material usually remains at the end of this process. Plasma pyrolysis/vitrification (PP/V) has been demonstrated as a safe, efficient, cost-effective technology for the treatment of wastes, including hazardous wastes. Besides the low amounts of gaseous byproducts that PP/V produces, the solid vitrified residue presents a low leachability of pollutants. Studies have been performed in many countries in order to assess the leachability of chemical substances. But from the results of identified studies, none has reported results on the ecotoxicological properties of the leachates. The aim of this study was to contribute to the assessment of ecotoxic risk of four different vitrified materials. Vitrified samples of contaminated soils, municipal solid wastes, and incinerator bottom ashes were submitted to the European leaching pre-standard test number prEN 12457-2. The leachates were analyzed for 22 chemical parameters. The biological characterization comprised the assessment of bioluminescence inhibition of Photobacterium phosphoreum bacterium, growth inhibition of Pseudokirchneriella subcapitata algae and the germination inhibition of Lactuca sativa vegetable. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Toxicity (CEMWT) and a Toxicity Classification System (TCS). The chemical and ecotoxicological results indicated a low leachability of pollutants and a low toxicity level of leachates. All samples studied were as below the TCS class 1 level (no significant toxicity observed) and as non-ecotoxic for CEMWT. Therefore, the environmental ecotoxic risk of the analyzed vitrified samples was determined to be very low.

Mendes, B. S., M. J. Nascimento, M. I. Pereira, G. Bailey, N. Lapa, J. Morais, and J. F. Santos Oliveira. "Ecoclimatic influence on waste stabilization ponds (WSP) efficiencies: the case study of the Sesimbra system." Water Science and Technology. 30.8 (1994): 269-279. AbstractWebsite

Portugal has a great diversity of ecoclimatic areas and Sesimbra was chosen to carry out a study on WSP efficiencies over five years (1989 to 1993). According to Pina Manique & Albuquerque (1954), the climate is classified as Atlantic Mediterranean (AM). Some environmental and climatic parameters have been studied in order to define the area. The treatment system at Sesimbra has three ponds: anaerobic, facultative and maturation. The physical and chemical parameters studied in the WSP system were: Temperature, pH, Dissolved Oxygen, Conductivity, BOD5, COD, nitrates, nitrites, ammonia and total nitrogen, total and volatile suspended solids, total phosphorus and orthophosphates. Algal populations and the following microbiological parameters were studied: total and fecal coliforms, fecal Streptococci, Clostridium perfringens, Pseudomonas aeruginosa and some Enterobacteriaceae. The K and K20 kinetic parameters were studied and derived for the three ponds utilizing the seasonal regional characteristics from the surrounding area. These values were then correlated with temperature and the subsequent removal efficiencies for each pond deduced. The data obtained indicate a necessity to determine the seasonal fluctuations of the K and K20 kinetic parameters for the WSP systems.

D
Dunea, Daniel, Adrian Dunea, Nuno Lapa, and Virgil Moise. "Developing a remote laboratory for environmental monitoring using mobile technology." Scientific Bulletin of Electrical Engineering Faculty. 2 (2008): 69-75. Abstractdunea_et_al_2008_developing_a_remote_laboratory_for_environ_monitoring_using_mobile_technology.pdfWebsite

This paper presents the mobile technology utilization in improving the remote access to the data acquisition processes of several automated monitoring system for air quality, water quality, and crop canopy microclimate. The system facilitates mobile environmental management and decision making by using in-situ measurements, GSM/GPRS informational fluxes, Pocket PCs, dGPS and mobile GIS resources. Data is retrieved via GSM/GPRS data modem to remote computer using digital (GSM) phone network. The main outcomes of this study were as follows: 1. designing the hardware, communication and software infrastructure of the system using telemetry features, 2. establishing the wireless connections and remote access from PDAs to the measurement servers, 3. programming and testing specific control virtual instruments (Vis) in NI LabVIEWTM, 4. obtaining a portable solution of statistical analysis and survey with PDA Vi (Virtual Instruments) interfaces for Pocket PC to gather, store, customize and report data combined with statistical processing functions, and 5. identifying mobile GIS applications for the environmental protection. The remote-accessing of the GIS server features, provided in-situ electronically reviews, mark up, and precise measurements of the site pollution plans. One possible solution to overcome the PDA hardware and software restraints is enabling the remote access and control of the DAQ and GIS software resources of the measurement server via internet.

Bernardo, M., M. Gonçalves, N. Lapa, R. Barbosa, B. Mendes, F. Pinto, and I. Gulyurtlu. "Determination of aromatic compunds in leachates from pyrolysis solid residues using HS-GC-MS and DLLME-GC-MS." Talanta. 80.1 (2009): 104-108. AbstractWebsite

A method for the determination of 15 aromatic hydrocarbons in eluates from solid residues produced during the co-pyrolysis of plastics and pine biomass was developed. In a first step, several sampling techniques (headspace solid phase microextraction (HS-SPME), static headspace sampling (HS), and dispersive liquid–liquid microextraction (DLLME) were compared in order to evaluate their sensitivity towards these analytes. HS-SPME and HS sampling had the better performance, but DLLME was itself as a technique able to extract volatiles with a significant enrichment factor.

HS sampling coupled with GC–MS was chosen for method validation for the analytes tested. Calibration curves were constructed for each analyte with correlation coefficients higher than 0.999. The limits of detection were in the range of 0.66–37.85 ng/L. The precision of the HS method was evaluated and good repeatability was achieved with relative standard deviations of 4.8–13.2%. The recoveries of the analytes were evaluated by analysing fortified real eluate samples and were in the range of 60.6–113.9%.

The validated method was applied in real eluate samples. Benzene, toluene, ethylbenzene and xylenes (BTEX) were the compounds in higher concentrations.

The DLLME technique coupled with GC–MS was used to investigate the presence of less volatile contaminants in eluate samples. This analysis revealed the presence of significant amounts of alkyl phenols and other aromatic compounds with appreciable water solubility.

Bernardo, M., M. Gonçalves, N. Lapa, and B. Mendes. "Determination of alkylphenols in eluates from pyrolysis solid residues using dispersive liquid-liquid microextraction." Chemosphere. 79.11 (2010): 1026-1032. AbstractWebsite

Dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–mass spectrometry (GC–MS) was applied for the determination of 11 alkylphenols in eluates of chars produced in the co-pyrolysis of different wastes.

The optimized DLLME procedure, 4 mL of sample solution, 15 μL of trichloroethylene as extraction solvent, 1 mL of acetone as dispersion solvent and addition of 15% (w/v) of NaCl, was validated. Under the optimum conditions, the enrichment factors were in the range of 82–180. Calibration curves were constructed for each analyte in pure water in the concentration range of 0.5–8 μg/L with correlation coefficients higher than 0.999. The limits of detection were between 0.07 and 0.17 μg/L. The repeatability of the method was evaluated using water samples fortified with the analyte mixture at two concentration levels: the relative standard deviation (RSD) values were between 3.7% and 8.0% for a concentration of 0.5 μg/L, and between 4.2% and 6.4% for a concentration of 3 μg/L. The recoveries of the analytes evaluated by fortification of real eluate samples were in the range of 67.9–97.9% for eluate 1 (obtained from a decontaminated char) and in the range of 61.9–101.4% for eluate 2 (obtained from the untreated char). o-Methylphenol presented low recoveries for both eluates showing a possible matrix effect. The results obtained show that this method is adequate for the determination of alkylphenols in environmental aqueous samples and presents itself as a fast and inexpensive technique, using minor amounts of organic solvents.

C
Barbosa, R., N. Lapa, D. Boavida, H. Lopes, I. Gulyurtlu, and B. Mendes. "Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes." Journal of Hazardous Materials. 170.2-3 (2009): 902-909. AbstractWebsite

The co-combustion of sewage sludge (SS) and coal is widely used for the treatment and thermal valorization of SS produced in wastewater treatment plants. The chemical and ecotoxicological properties of the ashes produced in this thermal treatment have not been fully studied. Two combustion tests were performed in a fluidized bed combustor. Colombian coal was used as fuel in test A. A blend (1 + 1) of this coal and a stabilized SS (Biogran®) was used in a second test B. Samples of the bottom and fly ashes trapped in two sequential cyclones were collected. The characterization of the ashes was focused on two main aspects: (1) the bulk content of a set of metals and (2) the characterization of eluates produced according to the European Standard leaching test EN 12457-2. The eluates were submitted to an ecotoxicological characterization for two bio-indicators. In what concerns the bulk content of ashes, both combustion tests have produced ashes with different compositions. The ashes formed during the co-combustion test have shown higher concentrations of metals, namely Cr, Cu, Ni, Pb, Zn and Fe for all ashes. The leaching test has shown low mobility of these elements from the by-products produced during the combustion and co-combustion tests. Cr and Cr(VI) were mainly detected in the eluates of the 1st cyclone ashes produced in both combustion tests and in the 2nd cyclone ashes produced in the co-combustion test.

Considering the ecotoxicity assays, the eluates of bottom and fly ashes for both combustion and co-combustion tests have shown low ecotoxic levels. The micro-crustacean Daphnia magna was generally more sensitive than the bacterium Vibrio fischeri. CEMWE criterion has allowed to classify the bottom ashes for both combustion and co-combustion tests as non-toxic residues and the fly ashes collected in both cyclones as toxic.

Barbosa, Rui, Diogo Dias, Nuno Lapa, Helena Lopes, and Benilde Mendes. "Chemical and ecotoxicological properties of size fractionated biomass ashes." Fuel Processing Technology. 109 (2013): 124-132. AbstractWebsite

The main aim of this work was to study the chemical and ecotoxicological properties of ashes produced in a biomass boiler of a pulp and paper industry and evaluate possible differences depending on the particle size of bottom and fly ashes. This industry produces electricity by burning eucalyptus and pine bark in a bubbling fluidized bed combustor. Bottom and fly ashes and their size fractions, obtained by sieving, were analysed for a set of metals and leaching behaviour. The eluates were also submitted to ecotoxicological characterization, using five indicators. The highest concentrations of metals and metalloids were found in the lower particle size fractions of bottom and fly ashes. However, generally, it could not be observed any specific releasing pattern of metals depending on the particle size, except for fly ashes in which the releasing rate of some earth and alkali-earth metals seemed to increase for lower particle size fractions. No specific pattern of the ecotoxicity levels could be associated to the different particle size fractions of ashes. The fractions of bottom ashes with 4,000–10,000 μm and > 10,000 μm have presented the lowest ecotoxicity levels. All the samples were classified as ecotoxic, except the fraction of bottom ashes > 10,000 μm.

Barbosa, Rui, Nuno Lapa, Helena Lopes, and Benilde Mendes. "Chemical and ecotoxicological properties of ashes produced in the co-combustion of coal and meat and bone meal in a fluidized bed reactor." Fuel Processing Technology. 96 (2012): 48-55. AbstractWebsite

The co-combustion of coal and meat and bone meal (MBM) is a possible energetic valorization route for this residue. Nevertheless, the properties of ashes produced need to be studied. To evaluate these properties, three combustion tests were performed in a fluidized bed reactor: 1) coal combustion; 2) coal + MBM (85% + 15%) co-combustion; 3) MBM combustion. The characterization of ashes was focused on the following aspects: (1) Determination of bulk content of Cr, Zn, Ni, Cu, Pb, Cd, Hg, As, Ba, Mo, Sb, Se, Ca, Na, Mg, Fe, Al and K; (2) Leaching properties of ashes based on the European Standard EN12457-2. The eluates were characterized for some of the metals referred above and for Cr VI, CN−, pH, Cl−, F−, SO42−, dissolved organic carbon and total dissolved solids. The eluates were also characterized for ecotoxicological levels by using the following bio-indicators: bacterium V. fischeri, microalgae S. capricornutum and microcrustacean D. magna. The ashes produced in the combustion of coal and co-combustion of coal + MBM have not shown evidences of ecotoxicity, while the ashes produced in the combustion of MBM were classified as ecotoxic. An assessment of the relationship between the chemical and the ecotoxicological properties of the ashes was performed. pH seemed to be the chemical parameter that most influences the ecotoxicological level of ashes.

Lapa, N., R. Barbosa, B. Mendes, and J. F. Santos Oliveira. "Chemical and ecotoxicological long-term behaviour of new materials for quarry back-filling and underground constructions." International RILEM Conference on the Use of Recycled Materials in Building and Structures. Eds. E. Vázquez, Ch. F. Hendriks, and G. M. T. Janssen. Barcelona: RILEM, 2004. 373-382. Abstractpaper_186_final_version.pdf

The main aim of the Valomat project was the development of new materials for quarry back-filling and underground constructions, based on the reuse of bottom ashes from MSWI. Bottom ashes were collected in six incineration plants of Europe. Some of them were selected for the development of new materials.
One task of this project comprised the study of the long-term behavior of new materials, under simulated conditions of environmental exposure. Three different scenarios were studied. For each scenario, a pilot plant was constructed and the new materials were studied under laboratory conditions or natural weather. The long-term behavior of these materials was assessed through the characterization of chemical and ecotoxicological properties of the leachates.
The chemical contamination and the ecotoxicological levels of the leachates were relatively low, although different levels had been determined for the three different scenarios. The immersion in dechlorinated tap water (scenario S1) had shown the highest emission levels of chlorides, sulphates, DOC, and Al, especially for the materials B2/1 and B2/2. The lowest ecotoxicological and chemical levels were determined in the scenario in which the materials were buried in a sieved soil.

Bernardo, M., N. Lapa, R. Barbosa, M. Gonçalves, B. Mendes, F. Pinto, and I. Gulyurtlu. "Chemical and ecotoxicological characterization of solid residues produced during the co-pyrolysis of plastics and pine biomass." Journal of Hazardous Materials. 166.1 (2009): 309-317. AbstractWebsite

A mixture of 70% (w/w) pine biomass and 30% (w/w) plastics (mixture of polypropylene, polyethylene, and polystyrene) was subjected to pyrolysis at 400 °C, for 15 min, with an initial pressure of 40 MPa. Part of the solid residue produced was subjected to extraction with dichloromethane (DCM). The extracted residue (residue A) and raw residue (residue B) were analyzed by weight loss combustion and submitted to the leaching test ISO/TS 21268-2 using two different leachants: DCM (0.2%, v/v) and calcium chloride (0.001 mol/L). The concentrations of the heavy metals Cd, Cr, Ni, Zn, Pb and Cu were determined in the eluates and in the two residues. The eluates were further characterized by determining their pH and the concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX). The presence of other organic contaminants in the eluates was qualitatively evaluated by gas chromatography, coupled with mass spectrometry. An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Ecotoxicity (CEMWE). Residue A was not considered to be ecotoxic by the ecotoxicological criterion (EC50 (30 min) ≥10%), but it was considered to be ecotoxic by the chemical criterion (Ni ≥ 0.5 mg/L). Residue B was considered to be ecotoxic by the ecotoxicological criterion: EC50 (30 min) ≤ 10%. Besides that, residue B was considered to be hazardous according the European legislation (BTEX concentrations higher than 100 ppb). The results indicate that volatile organic contaminants can be present in sufficient amounts in these residues and their eluates to induce ecotoxicity levels. The extraction of the pyrolysis residue with DCM was an efficient method for removing lighter organic contaminants.

Lapa, N., R. Barbosa, M. H. Lopes, B. Mendes, P. Abelha, I. I. Gulyurtlu, and J. Santos Oliveira. "Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor." Journal of Hazardous Materials. 147.1-2 (2007): 175-183. AbstractWebsite

In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran®), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran® are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub-products of such type of thermal processes.

Bernardo, M., M. Gonçalves, N. Lapa, R. Barbosa, B. Mendes, and F. Pinto. "Characterization of chars produced in the co-pyrolysis of different wastes: decontamination study." Journal of Hazardous Materials. 207-208 (2012): 28-35. AbstractWebsite

The present work is devoted to the study of the decontamination of chars obtained in the co-pyrolysis of plastics, biomass and tyre wastes. The chars were extracted with several organic solvents of different polarities either individually or in sequence. The ability of each selected extractant to remove toxic pollutants was evaluated by comparing the extraction yields and by characterizing the crude extracts with a combination of chemical analysis and toxicity bioassays. Also, the mineral composition of the treated and non-treated chars was assessed. The results obtained in this study indicate that hexane is the more efficient extraction solvent to be used in the organic decontamination of chars obtained in the co-pyrolysis of plastics, tyres and biomass. A sequential extraction with solvents of increasing polarity can provide a better decontamination of the raw pyrolysis char than any individual extraction. The compounds removed from the char during the decontamination process are mainly aliphatic hydrocarbons and aromatic hydrocarbons, therefore a material that may be upgraded to be used as a fuel and/or as raw material for the organic chemical industry.

B
Lopes, M. H., P. Abelha, N. Lapa, J. S. Oliveira, I. Cabrita, and I. Gulyurtlu. "The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed." Waste Management. 23.9 (2003): 859-870. AbstractWebsite

Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials.

A
Santos, Susana, Nuno Lapa, Andreia Alves, João Morais, and Benilde Mendes. "Analytical methods and validation for determining trace elements in red wines." Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes. 48.5 (2013): 364-375. AbstractWebsite

The objective of this work is to quantify As, Hg, Cd, Ni and Pb in Portuguese red wines. First, the methods for the quantification of trace elements in red wines were validated. Several pre-treatments were compared, namely a pre-digestion process with HNO3, a pre-oxidation step with H2O2, and a spiking step of wine samples with a known concentration of the trace elements analyzed. Except for As, it was determined that the quantification of the trace elements does not require a pre-digestion process with HNO3. For all of the trace elements analyzed, a pre-oxidation step with H2O2 may enable an accurate quantification. The techniques chosen for the quantification of trace elements were hydride generation atomic absorption spectrometry (HGAAS) for As and Hg, electrothermal atomic absorption spectrometry (ETAAS) for Cd, and flame atomic absorption spectrometry (FAAS) for Ni and Pb. In the second stage of this work, 25 Portuguese red wines spanning all of the red wine-producing regions were analyzed for all of the five trace elements referred to above. Only Cd and Pb have shown concentrations above the limit values defined by the “Organization Internationale de la Vigne et du Vin.” The Target Hazard Quotient (THQ) equation was used to determine in which wine-producing regions that wine consumption can be a problem for public health in terms of the concentrations of the five trace elements analyzed. THQ values have indicated that for the universe of the 25 red wines analyzed no region produces wines that can pose problems for public health, when the Portuguese red wine standard consumption is considered.