Publications

Export 32 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
R
Santos Oliveira, J. F., B. Mendes, and N. Lapa Resíduos: Gestão, Tratamento e sua Problemática em Portugal. Lisboa: Lidel, 2009.Website
S
Barbosa, R., N. Lapa, H. Lopes, I. Gulyurtlu, and B. Mendes. "Stabilization/solidification of fly ashes and concrete production from bottom and circulating ashes produced in a power plant working under mono and co-combustion conditions." Waste Management. 31.9-10 (2011): 2009-2019. AbstractWebsite

Two combustion tests were performed in a fluidized bed combustor of a thermo-electric power plant: (1) combustion of coal; (2) co-combustion of coal (68.7% w/w), sewage sludge (9.2% w/w) and meat and bone meal (MBM) (22.1% w/w).

Three samples of ashes (bottom, circulating and fly ashes) were collected in each combustion test. The ashes were submitted to the following assays: (a) evaluation of the leaching behaviour; (b) stabilization/solidification of fly ashes and evaluation of the leaching behaviour of the stabilized/solidified (s/s) materials; (c) production of concrete from bottom and circulating ashes. The eluates of all materials were submitted to chemical and ecotoxicological characterizations. The crude ashes have shown similar chemical and ecotoxicological properties. The s/s materials have presented compressive strengths between 25 and 40 MPa, low emission levels of metals through leaching and were classified as non-hazardous materials. The formulations of concrete have presented compressive strengths between 12 and 24 MPa. According to the Dutch Building Materials Decree, some concrete formulations can be used in both scenarios of limited moistening and without insulation, and with permanent moistening and with insulation.

Bernardo, M., N. Lapa, M. Gonçalves, B. Mendes, and F. Pinto. "Study of the organic extraction and acid leaching of chars obtained in the pyrolysis of plastics, tire rubber and forestry biomass wastes." Procedia Engineering. 42 (2012): 1909-1916. AbstractWebsite

The present work aims to perform a characterization of chars obtained in the co-pyrolysis of waste mixtures composed by plastics, tires and pine biomass, to provide knowledge about the composition, leaching behavior and risk assessment of these materials in order to define strategies for their possible valorization or safe disposal. The chars were submitted to sequential solvent extractions with organic solvents of increasing polarity that allow the recovery of significant amounts of the pyrolysis oils trapped in the crude chars improving the yield of the pyrolysis liquids. An acidic demineralization procedure was successfully applied to the chars and high efficiency removals of the majority of the heavy metals were achieved. The demineralization study also demonstrated that hazardous heavy metals such as chromium, nickel and cadmium are significantly immobilized in the char matrix, and other heavy metals of concern such as zinc and lead will not represent a leaching problem if acidic conditions were not used. The obtained chars present sufficient quality and characteristics to be used as fuel or alternatively, to be used as adsorbents or precursors of activated carbon.

Santos, Susana, Débora Azeitona, Nuno Lapa, João Morais, Helena Lopes, and Benilde Mendes Study on the effect of thermal pre-treatments in the thermophilic anaerobic digestion of a potato peel waste. Proceedings of the International Anaerobic Digestion Symposium within the BioGasWorld 2013. Berlin, Germany: German Society for Sustainable Biogas and Bioenergy Utilisation, 2013. Abstractbiogas_world_2013_santos_et_al_2013.pdf

This work aimed to study the effect of different pre-treatments applied to a potato peel residue, in a thermophilic Anaerobic Digestion (AD) process. All samples were subjected to a mechanical pre-treatment through milling to a particle size below 2 mm. The thermal pre-treatments applied consisted of autoclaving the residue at a gauge pressure of 1.2 bar, under a temperature of 122°C, and for 20, 35 and 55 minutes: assays E122.20, E122.35 and E122.55, respectively. The control assay was performed on a ground residue, which was not submitted to any thermal pre-treatment. All pre-treated residues were subjected to an AD process in a CSTR reactor at 49±1°C. The experimental data showed that the highest methane percentages were very similar (about 92% v/v) for all samples submitted to the thermal pre-treatments. For the control assay, the highest percentage of methane was 87.9% (v/v). The highest biogas yields were recorded in the trial E122.35 (646±50 cm3.g-1 CODremoved), against only 250±20 cm3.g-1 CODremoved for the control assay. The highest biogas yields for VSremoved were attained in the assays E122.55 and E122.35, with values of 646±48 cm3.g-1 VSremoved and 634±59 cm3.g-1 VSremoved, respectively. Globally, the yields registered for the assay E122.35 were similar to those determined in the assay E122.55. Due to the lower energy consumption during the pre-treatment performed in the assay E122.35, this was considered to be the most suitable pre-treatment for this type of residue.

T
Bernardo, M., N. Lapa, M. Gonçalves, R. Barbosa, B. Mendes, F. Pinto, and I. Gulyurtlu. "Toxicity of char residues produced in the co-pyrolysis of different wastes." Waste Management. 30.4 (2010): 628-635. AbstractWebsite

Char residues produced in the co-pyrolysis of different wastes (plastics, pine biomass and used tyres) were characterized using chemical and toxicity assays. One part of the solid chars was submitted to extraction with dichloromethane (DCM) in order to reduce the toxicity of the char residues by removing organic contaminants. The different volatility fractions present in the extracted char (Char A) and in the raw char (Char B) were determined by progressive weight loss combustion. A selected group of heavy metals (Cd, Pb, Zn, Cu, Hg and As) was determined in both chars.

The chars were subjected to the leaching test ISO/TS 21268 – 2, 2007 and the resulting eluates were further characterized by determining a group of inorganic parameters (pH, conductivity, Cd, Pb, Zn, Cu, Hg and As contents) and the concentrations of several organic contaminants (volatile aromatic hydrocarbons and alkyl phenols). An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri.

The chemical and ecotoxicological results were analyzed according to the Council Decision 2003/33/CE and the criteria on the evaluation methods of waste ecotoxicity (CEMWE).

The results obtained in this work indicated that the extraction with DCM is an effective method for the removal of organic contaminants of high to medium volatility from pyrolysis solid residues, thus decreasing their toxicity potential. Zn can be leached from the chars even after the DCM extraction treatment and can contribute to the ecotoxicity of the eluates obtained from chars.

Both chars (treated and non treated with DCM) were classified as hazardous and ecotoxic wastes.

U
Barbosa, Rui, Diogo Dias, Nuno Lapa, and Benilde Mendes. "Using biomass ashes in concretes exposed to salted water and freshwater: mechanical and chemical properties." Advanced Materials Research. 587 (2012): 16-20. AbstractWebsite

The main aim of this work was to assess the possibility of using biomass ashes as substitutes for cement and natural aggregates in concretes without compromising their mechanical and chemical properties. Thirteen concrete formulations were prepared with different percentages of bottom and fly ashes produced at a forest biomass power plant. These formulations were submitted to mechanical compressive strength assays, after 28, 60 and 90 days of maturation. The reference formulation F1 that was produced without biomass ashes and one formulation incorporating fly and bottom ashes, F4, were selected for further characterization. After 90 days of maturation, the selected formulations were submitted to the leaching test described in the European Standard EN12457-2 (L/S ratio of 10 L/kg, in a batch extraction cycle of 24h) by using two different leaching agents: a synthetic marine medium (ASPM medium) and a synthetic freshwater medium (ISO 6341 medium). The eluates produced were submitted to chemical characterization which comprised a set of metals (As, Sb, Se, Cu, Zn, Ba, Hg, Cd, Mo, Pb, Ni, Cr, Cr VI, Al, Fe, Mg, Na, K and Ca), pH, SO42-, F-, dissolved organic carbon, chlorides, phenolic compounds and total dissolved solids. The substitution of 10% cement by fly ashes has not promoted the reduction of the compressive strength of concrete. The new formulation F4 has presented emission levels of chemical species similar or even lower to those observed for the reference formulation F1.

V
Lapa, N., J. Morais, and J. F. Santos Oliveira. "Valorização de lamas de ETAR’s como fertilizantes dos solos." Indústria e Ambiente. 2 (1994): 4-10.