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Abstract 

In this paper we address the problem of uncertainty in the design and planning of a 

multi-period, multi-product closed loop supply chain, where the recovered products are 

end-of-life products that are disassembled and recycled. Uncertainty is explicitly 

modelled by considering customers’ demands and returns to be stochastic. A two–stage 

model is developed where first stage decisions concern the facility location while 

second stage decisions are the production planning of the supply chain. The integer L-

shaped method was adopted as the solution tool and computational tests were performed 

on multi-period and multi-commodity networks randomly generated based on a 

reference case. A comparison between the proposed solution method and the straight 

use of the CPLEX is performed. 
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1. Introduction 

The research in closed loop supply chains (CLSC) has significantly increased in recent 

years driven by an increased concern of society towards the minimization of resources 

usage. This has imposed the creation of new legislation essentially in Europe and 

United States of America that implied a change at the companies’ level when dealing 

with their supply chains leading to the appearance if the Closed loop supply chains. 

These go beyond the classical forward supply chains challenges since typically more 

players are involved (reverse logistics or product disposition may be provided by 

contracted third-parties). Also in such structures players interests may be in conflict 

(durable components are attractive for the manufacturer due to remanufacturing but for 

the supplier this durability means a sales loss) and new relationships exist between the 

product collection rate, the product durability and the product life cycle (Guide and 

Wassenhove, 2009). However, if the manufacturing and remanufacturing systems are 

operated by the same player, as it happens in some of the electronic and automobile 

industries, important benefits may be obtained by considering simultaneously strategic 

decisions such as the facilities number and their location’s and tactical decisions such as 

production, inventory and distribution planning. 

One of the main problems existing when dealing with CLSC networks is, apart from the 

common uncertainty in the demand, the uncertainty in the availability, namely timing, 

quantity and quality of used products. Few network design models for CLSC have 

however addressed this uncertainty explicitly. Stochastic demands and returns have 

been considered in the context of a single product network design by Listes (2007) and 

Inderfurth (2005) for a single period and multi-period respectively, while models 

developed by Salema et al. (2007) and Chouinard et al. (2008) focused on static (single 
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period) multi-product networks. You et al. (2009) addressed uncertainty in simple 

forward supply chains as well as did more recently Georgiadis et al. (2011).   

In this paper we will focus on the design and planning of a multi-period, multi-product 

closed loop supply chain where end-of-life products are collected, disassembled and 

recycled. Uncertainty is explicitly considered in the model by assuming customers’ 

demands and returns to be stochastic. The model here proposed is a two-stage stochastic 

model that extends the general modeling framework developed by Salema et al. (2010). 

Strategic decisions involving the four echelon network facilities (plants, warehouses, 

customers and disassembly centers) are made in the first stage, while the acquisition, 

production and logistics planning are decided in the second stage. We assumed that the 

random vector   has finite support and s=1,…,n indexes the possible realizations 

(scenarios) of              their probabilities. As in the deterministic model two time 

scales were considered: a macro scale for strategic decisions time and a micro scale for 

planning decisions. The integer L-shaped method is adopted as the solution tool and 

computational tests are performed on multi-period and multi-commodity networks 

randomly generated from a reference case previously addressed by the authors (Salema 

et al, 2010).  

2. Problem formulation 

The problem is formulated as a two-stage stochastic model so that strategic decisions 

involving the location of the four echelon network facilities (plants, warehouses, 

customers and disassembly centers) are made in the first stage, while each scenario’s 

production and logistics planning are decided in the second stage.  

Briefly, the model defines the entity i (plant, warehouses, customers or disassembly 

centre) to be opened /served, and for each scenario s, the amount of product m served by 

entity i to entity j at micro-time period t, the amount of product m stocked in i at micro-

time t, and the customers’ unmet demand at macro-period T, so that the expected total 

supply chain cost is minimized. The objective function involves a deterministic cost, the 

first stage cost, and an expected second stage cost that is equal to the product of the 

scenario probability    by the associated second stage scenario cost, summed over all 

scenarios. The first stage cost is composed by the entities’ opening/use fixed costs and 

the penalty costs for leaving a customer out of the supply chain, while the second stage 

cost under each scenario s is composed by the cost of the lost demand of all customers 

for all products in all macro-time periods, the inventory costs for all products at all 

entities (with the exception of customers) for all micro-time periods, and flow costs for 

all products between all entities for all micro-time periods. Plants’ maximum and 

minimum production capacities, maximum and minimum flows’ capacities, and mass 

balance equations for all entities are ensured for all scenarios. Briefly the two-stage 

problem obtained follows the general form: 
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where   denotes the vector of the first stage variables from the   set i.e. the hypercube 

with the appropriate dimension,    the second stage variables under scenario s and    is 

the deterministic first stage cost.  

3. Solution methods 

From the general form given above it is clear that the problem is a large mixed integer 

linear problem that presents a special structure: the dual angular structure. A classical 

approach to such problems is the Bender’s decomposition that iteratively solves the n 

linear subproblems in the variables    where the coupling variables x are fixed to a 

given value. The optimal simplex multipliers thus obtained (  ) generate a new cut  

  ∑  (  )
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)  

that is added to the first stage problem (master problem) 

     
       

s.t.                      

    

The first stage optimal solution values set the values of the coupling variables for the 

next subproblems iteration in the variables   . The procedure is repeated until the 

  value exceeds the subproblems expected cost function value. This procedure has been 

largely applied in the context of two-stage linear recourse programming with continuous 

first and second stage variables and was proposed by Van Slyke and Wets (1969) as the 

L-shaped method. Other than the cuts previously indicated and known as optimality 

cuts, the L-shaped method adds feasibility cuts to the master problem in order to ensure 

that the first stage solution is feasible for the second stage subproblems. In the 

multi-period, multi-product closed loop supply chain design and planning problem it is 

clear that every first stage solution x also has a feasible solution in the second stage, so 

that the stochastic program has the relatively complete recourse property. Therefore 

only optimality cuts were considered. The solution procedure adopted was the L-shaped 

extension to integer variables due to Laporte and Louveaux (1993) and known as the 

integer L-shaped method. In particular the optimality cuts are defined as: 

    (    )(∑    ∑   )          (    )(|    |    

where    is the r
th

 feasible solution,    the corresponding expected second-stage value 

and   is a lower bound of the expected second stage cost. In this case we set the   value 

as the linear relaxation problem (LRP) expected second-stage cost and explored 

successively the N0, and N1 neighborhoods of the LRP solution until optimality was 

reached. Notice that the t-neighborhood of solution    is defined as the set of all 

solutions so that  |∑    ∑           
|  |  |   . 

4. Results analysis 

The computational tests here presented were performed on multi-period and multi-

commodity networks randomly generated from a reference case previously addressed in 

Salema et al (2010). In particular for a 5-year time horizon, with a one-year macro-time 

unit and two-months micro-time unit, we randomly generated 5 instances of a network 

with 5 plants, 10 warehouses, 25 customers and 10 disassembly centers. Concerning the 

products, 3 different products were considered in the flows plants-warehouses, 6 for the 

flows warehouses-customers, 1 for the flows customers-disassembly centers and finally 

2 for the closing loop flows. Regarding the number of scenarios, a pessimistic, expected 

and optimistic scenarios were identified.  The customers’ demands and returns expected 
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values and standard deviations were set as        and       , respectively, where 

   and    are denoted for the macro-period t and    and    are denoted for product p. 

The parameter   was set to the values -1, 0 and 1 according to the pessimistic, expected 

and optimistic scenario, respectively. In order to establish customers’ demands expected 

values and standard deviations, product demands were generated according to a uniform 

distribution U[500,2000] and    was defined as                      and    

was set as 
  

  
   . The values of the parameters    and    are given in the table below. 

Table 1 – Customers’ demands parameters 

 t=1 t=2 t=3 t=4 t=5 

   0.5 0.52 0.55 0.48 0.49 

   0.05 0.20 0.20 0.40 0.40 

 

Finally, for the returns’ expected values and standard deviations,    was defined as 

                     and    was set as 
  

  
   . The values of the parameters 

   and    are shown below. 

Table 2 – Returns’ parameters 

 p 1 p 2 p 3 p 4 p 5 p 6 

   0.45 0.7 0.5 0.8 0.4 0.9 

   0.20 0.10 0.20 0.05 0.20 0.05 

 

 The table below presents the computational times of CPLEX 12.2 and the integer L-

shaped method in order to solve up to optimality the different problem instances. Both 

methods run on a laptop with a 2.4 GHz Core i5 processor. Notice that while CPLEX 

was straight used to solve the mixed integer problem, the L-shaped required the solution 

of the linear relaxation problem. Since this preprocessing was automatically integrated 

in the method, the computational times given below already include this aspect. 

The cases studied involved 121050 equations and 267800 variables, being 50 discrete 

variables. 

Table 3 – Computational Times 

 CPLEX 12.2 

(seconds) 

Integer L-shaped 

(seconds) 

Time reduction 

(%) 

Network 1 2068 818 60 

Network 2 1152 246 79 

Network 3 1149 322 72 

Network 4 1609 524 67 

Network 5 4522 225 95 

 

Regarding the results here presented, two major facts should be stressed. First, the 

integer L-shaped method solves up to optimality all problem instances and outperforms 

the commercial software CPLEX.  The computing time reductions face to the CPLEX 

results range from 60 up to 95%. Second, though the number of decision variables 

involved in the different networks is the same, the computing performance exhibits a 

significant variability due to the network structure variability. Experiences involving 

larger networks were also carried out but the need of exploring the N2 neighborhood of 

the LRP solution, led to unconcluded results.  



A two-stage stochastic model for the design and planning of a multi-product CLSC 5 

5. Conclusions 

In this work we proposed a two-stage stochastic model for the design and planning of 

closed-loop supply chains where customers demands’ and returns’ are uncertain. The 

integer L-shaped method was adopted to face the multi-period environment. The 

computational tests performed on a multi-period and multi-commodity networks 

randomly generated showed that the solution technique outperformed the commercial 

solver CPLEX. 

As future work the authors aim to test the solution procedure in more complex networks 

with larger number of variables. In a first approach, tests will be conducted within the 

same context of the pessimistic, expected and optimistic scenarios. More scenarios are 

also to be considered, but since the solution of the linear relaxation problem will be at 

some point no longer possible, a different solution method will have to be adopted. The 

sample average approximation rises then as the appropriate solution tool to be analyzed. 
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