

Modelling Home Social Care Services with Non-Loyalty Features

Maria Isabel Gomes

Centro de Matemática e Aplicações

Faculty of Science and Tecnology, Nova University of Lisbon

Joint work with Tânia Ramos, CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Portugal

CMA / FCT / UNL

Isabel Gomes

- Assistant Professor at Department of Mathematics of FCT, Nova University of Lisbon
- Researcher at Centro de Matemática a Aplicações (CMA), Nova University of Lisbon
- mirg@fct.unl.pt
- http://docentes.fct.unl.pt/mirg

Formal homecare services as meal delivery, activities of the daily living, adult day care, amongst other, started to be provided to persons in need of assisted living support

Caregiver	Mon	Tue	Wed	Thu	Fri
	Patient 1 Patient 4	Patient 4 Patient 9	Patient 1 Patient 4 Patient 7	Patient 4 Patient 9	Patient 1 Patient 4
	Patient 2	Patient 2 Patient 5	Patient 2	Patient 2 Patient 5	Patient 2 Patient 8
	Patient 6 Patient 3 Patient 9	Patient 6 Patient 3	Patient 6 Patient 3 Patient 9	Patient 6 Patient 3	Patient 6 Patient 3 Patient 9

Real Case Study: a Portuguese catholic parish

- 66 patients
- Services offered:
 - Meal delivery
 - Activities of the daily living: bathing, dressing, medication assistance, home cleaning
 - Adult day care
 - Transportation to (and from) the day care center
- Patient visit frequency: from three times a day to once a week

Home social care service problem

Real Case Study: a Portuguese catholic parish

Non-Loyalty between Caregiver and Patient

Caregivers must rotate among patients and among teams on a weekly basis

Patients live in two different urban areas

Some patients need to be walked to the Day Care Centre

Specific

Features

Home social care service problem

Real Case Study: a Portuguese catholic parish

6 caregivers

- Work in teams of 2
- Each team departs from the Day Care Centre and returns at the end of the day
- Lunch-break at 1 p.m. a the Day Care Centre
- One team has to arrive at 12 p.m. to help delivering meals

Specific

Features

Current planning

CMA / FCT / UNL

Define a daily work schedule for each caregiver

Multi-period Vehicle Routing Problem with Time-Windows

Allocation problem

- Patient visiting time
- Sequence of visits

Non-loyalty between caregiver and patient

Task/Service?

Patient

Patient 1

- 1. Bathing (15 min)
- 2. Dressing (5 min)
- 3. Medication assistance (5 min)
- 4. Home cleaning (35 min)

Visit duration 60 minutes

Time-Window [0 min – 240 min]

MPVRPTW: Modelling approach

Patient with more than one visit per day

- 1. Change a diaper in the morning
- 2. Change a diaper after lunch
- 3. Change a diaper in the afternoon

Lunch Break

Fictitious Patient located at the Day Care Centre

Visit duration 60 minutes

Time-Window [300 min – 300 min]

Replicas with adequate time-

windows

Walking transportation services

Fictitious Patient located at the Day Care Centre that needs to be visited immediately after

CMA / FCT / UNL

MPVRPTW: Modelling approach

Binary variable

$$x_{ij}^{kt} = 1$$
 if **team** k travels from i to j (immediately) on day t;
0 otherwise

Continuous variable

 S_i^{kt} Starting time of **team** k to visit patient i on day t

Objective function

Minimize the total walking time

Constraints

- (1) All request have to be attended
- (2) All teams must leave from the depot
- (3) All teams must arrive to the depot
- (4) Time window constraint
- (5) Only one team can visit each patient during the week
- (6) The same team has to visit the patient and all the corresponding replicas
- (7) Some patients need to be walked to day care center after being visited
- (8) All teams have to visit lunch break node

MPVRPTW: results

MPVRPTW: results

MPVRPTW: Solution approach

MPVRPTW: Solution approach

MPVRPTW: Solution approach

Min Max Workload: results

CMA / FCT / UNL

Teams working areas

- Each caregiver belongs to only one team
- All teams have two caregivers
- All teams work every week
- All caregivers should visit all patients
- All caregivers have to work with each other
- Scheduling must allow a *rolling horizon*
- No caregiver can stay in a team more than *n* weeks in a row
- One, and only one, caregiver have to stay in the team at least 2 consecutive weeks

Decision Variables

$$\chi_{ij}^{kt} = 1$$
 if a pair of caregivers (*i*,*j*) is assigned to team *k* at week *t*

 $y_i^{kt} = 1$ if caregiver *i* is assigned to team *k* at week *t*

Objective Function

Min "Dummy" Variable

We only need a feasible solution!

CMA / FCT / UNL

- Each caregiver belongs to only one team
- All teams have two caregivers
- All teams work each week

$$\sum_{k} y_{i}^{kt} = 1, \quad \forall_{i,t}$$
$$\sum_{i,j:i\neq j} x_{ij}^{kt} = 1, \quad \forall_{k,t}$$

$$x_{ij}^{kt} \le y_i^{kt} e x_{ij}^{kt} \le y_j^{kt}, \quad \forall_{k,t,i,j:i \neq j}$$

Allocation problem: modelling

- Each caregiver belongs to only one team,
- All teams have two caregivers,
- All teams work each week
- All caregivers should visit all patients
- All caregivers have to work with each others

$$\sum_{t} y_i^{kt} \ge 1, \qquad \forall_{i,k}$$

$$\sum_{k,t} x_{ij}^{kt} \ge 1, \qquad \forall_{i,j:i\neq j}$$

Allocation problem: modelling

- Each caregiver belongs to only one team
- All teams have two caregivers
- All teams work each week
- All caregivers should visit all patients
- All caregivers have to work with each others
- Scheduling must allow a *rolling horizon*
- No caregiver can stay in a team more than *n* weeks in a row

$$\sum_{\tau=0}^{n} y_i^{k(t++\tau)} \le n, \qquad \forall_{i,k,n}$$

We want to design week schedule such that:

• One, and only one, caregiver has to stay in the team at least 2 consecutive weeks

 $\begin{aligned} x_{ij}^{kt} + x_{ij}^{k(t++1)} &\leq 1, \quad \forall_{k,t,i,j:i\neq j} \\ y_i^{kt} + y_j^{kt} &\geq x_{ij}^{kt}, \quad \forall_{k,t,i,j:i\neq j} \\ y_i^{kt} + y_j^{k(t++1)} &\geq x_{ij}^{kt}, \quad \forall_{k,t,i,j:i\neq j} \\ y_i^{k(t++1)} + y_j^{kt} &\geq x_{ij}^{kt}, \quad \forall_{k,t,i,j:i\neq j} \\ y_i^{k(t++1)} + y_j^{k(t++1)} &\geq x_{ij}^{kt}, \quad \forall_{k,t,i,j:i\neq j} \end{aligned}$

6 caregivers 2 caregivers/team

15 different pairs of caregivers

Weekly schedule for each Caregiver

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Team 1	(2,1)	(6,2)	(6,4)	(6,1)	(3,1)	(5 <i>,</i> 3)	(5 <i>,</i> 4)	(4,2)
Team 2	(4,3)	(4,1)	(5,1)	(5,2)	(6,5)	(6,2)	(3,2)	(6,3)
Team 3	(6,5)	(5,3)	(3,2)	(4,3)	(4,2)	(4,1)	(6,1)	(5,1)

6 caregivers 2 caregivers/team

15 different pairs of caregivers

Weekly schedule for each Caregiver

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Team 1	(2,1)	(6,2)	(6,4)	(6,1)	(3,1)	(5 <i>,</i> 3)	(5,4)	(4,2)
Team 2	4, B)	(41)	(5,1)	(5,2)	(6,5)	(6,2)	(3,2)	(6,3)
Team 3	(6,5)	(5,3)	(3,2)	(4,3)	(4,2)	(4,1)	(6,1)	(5,1)

6 caregivers 2 caregivers/team

15 different pairs of caregivers

Weekly schedule for each Caregiver

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Team 1	(2,1)	(6,2)	(6,4)	(6,1)	(3,1)	(5,3)	(5,4)	(4,2)
Team 2	(4,3)	(4,1)	(5,1)	(5,2)	(6,5)	(6,2)	(3,2)	(6,3)
Team 3	(6.5)	(5 <i>,</i> 3)	(3,2)	(4,3)	(4,2)	(4,1)	(6,1)	(51)
								/

CMA / FCT / UNL

Conclusions

- Home Social Care Services with Non-Loyalty between Caregiver and Patient
- Modelling approach

Develop different solution approaches

- Non-daily patients: given the frequency, decide patient visiting days
- > Apply the model to a larger case-study
- Extend the model to accommodate the entrance of new patients and the exiting of actual patients while minimize the changes in a existent work schedule

Modelling Home Social Care Services with Non-Loyalty Features

Maria Isabel Gomes

Centro de Matemática e Aplicações

Faculty of Science and Tecnology, Nova University of Lisbon

Joint work with Tânia Ramos, CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Portugal

CMA / FCT / UNL

Team 1 <u>Monday and Thursday</u>

Depot -215 - 312 - 279 - 242 - 182 - 324 - 215' - Lunch - 215'' - 279' - 312' - 250 -Depot <u>Tuesday, Wednesday and Friday</u>Depot <math>-215 - 312 - 242 - 324 - 279 - 215' - Lunch - 312' - 279' - 215' - Depot

- Team 2 <u>Monday, Tuesday, Wednesday, Thursday and Friday</u>
 Depot 267 175 Transport Lunch Delivery Lunch 267' Depot
- Team 3 Monday, Tuesday, Wednesday, Thursday and Friday Depot – 316 – 280 – 264 – 249 – 300 – 255 – Lunch – 316' – Depot