Modelling Home Social Care Services with Non-Loyalty Features

Maria Isabel Gomes
Centro de Matemática e Aplicações
Faculty of Science and Tecnology, Nova University of Lisbon

Joint work with Tânia Ramos, CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Isabel Gomes

- Assistant Professor at Department of Mathematics of FCT, Nova University of Lisbon
- Researcher at Centro de Matemática a Aplicações (CMA), Nova University of Lisbon
- mirg@fct.unl.pt
- http://docentes.fct.unl.pt/mirg

Home social care service problem

Formal homecare services as meal delivery, activities of the daily living, adult day care, amongst other, started to be provided to persons in need of assisted living support

Caregivers

Home social care service problem

Define a daily work schedule for each caregiver (which patient to visit and when)

Caregiver | Mon | Tue | Wed | Thu | Fri | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Patient 1 | Patient 4 | Patient 1 | Patient 4 | Patient 1 |
| Patient 4 | Patient 9 | Patient 4 | Patient 9 | Patient 4 | |
| Patient 7 | | | | | |

Home social care service problem

Real Case Study: a Portuguese catholic parish

- 66 patients
- Services offered:
- Meal delivery
- Activities of the daily living: bathing, dressing, medication assistance, home cleaning
- Adult day care
- Transportation to (and from) the day care center
- Patient visit frequency: from three times a day to once a week

Home social care service problem

Real Case Study: a Portuguese catholic parish
Non-Loyalty between Caregiver and Patient

Caregivers must rotate among patients and among teams on a weekly basis

Patients live in two different urban areas

Some patients need to be walked to the Day Care Centre

Home social care service problem

Real Case Study: a Portuguese catholic parish

Specific Features
6 caregivers

- Work in teams of 2
- Each team departs from the Day Care Centre and returns at the end of the day
- Lunch-break at 1 p.m. a the Day Care Centre
- One team has to arrive at 12 p.m. to help delivering meals

Current planning

Modelling approach

Define a daily work schedule for each caregiver

Multi-period Vehicle Routing Problem with Time-Windows

- Patient visiting time
- Sequence of visits

Allocation problem

Non-loyalty between caregiver and patient

MPVRPTW: Modelling approach

Vehicle Routing Problem

With Time-Windows

Task/Service?

Visit duration 60 minutes

Time-Window [0 min - $\mathbf{2 4 0} \mathbf{~ m i n}$]

MPVRPTW: Modelling approach

Patient with more than one visit per day

1. Change a diaper in the morning
2. Change a diaper after lunch
3. Change a diaper in the afternoon

Replicas with adequate timewindows

Lunch Break

Fictitious Patient located at the Day Care Centre

Visit duration 60 minutes

> Time-Window
> $[300 \mathrm{~min}-300 \mathrm{~min}$]

Walking transportation services
Fictitious Patient located at the Day Care Centre that needs to be visited immediately after

MPVRPTW: Modelling approach

Services
Vehicles

Patients

Teams

Binary variable
$\begin{array}{ll}x_{i j}^{k t} & =1 \text { if team } k \text { travels from } i \text { to } j \text { (immediately) on day } t ; ~ \\ 0 \text { otherwise }\end{array}$

Continuous variable
$s_{i}^{k t} \quad$ Starting time of team k to visit patient i on day t

MPVRPTW: Modelling approach

Objective function

Minimize the total walking time

Constraints

(1) All request have to be attended
(2) All teams must leave from the depot
(3) All teams must arrive to the depot
(4) Time window constraint
(5) Only one team can visit each patient during the week
(6) The same team has to visit the patient and all the corresponding replicas
(7) Some patients need to be walked to day care center after being visited
(8) All teams have to visit lunch break node

MPVRPTW: results

Current Walking Time
924 minutes/week

MPVRPTW: results

MPVRPTW: Solution approach

Sort the week days by according to the number of patients to visit

2
Solve single day MILP model for day t_{1}

3 Solve single day MILP model for day t_{2} and fixed assignment for t_{1} patients

4
Repeat step 3 until all week days are solved

Each patient with a visit at $t=t_{1}$ is assigned to a team

MPVRPTW: Solution approach

Monday and Thursday
145 minutes $\times 2$ days

Tuesday, Wednesday, Friday
141 minutes $\times 3$ days

MPVRPTW: Solution approach

Workload

2400 minutes / week

Min Max Workload: results

Teams working areas

— 1 - 푸T.UnL centro de matemálica
e aplicectoes

Allocation problem: modelling

We want to design week schedule such that:

- Each caregiver belongs to only one team
- All teams have two caregivers
- All teams work every week
- All caregivers should visit all patients
- All caregivers have to work with each other
- Scheduling must allow a rolling horizon
- No caregiver can stay in a team more than n weeks in a row
- One, and only one, caregiver have to stay in the team at least 2 consecutive weeks

Allocation problem: modelling

Decision Variables

$$
\begin{aligned}
& x_{i j}^{k t}=1 \text { if a pair of caregivers }(i, j) \text { is assigned to team } k \text { at week } t \\
& y_{i}^{k t}=1 \text { if caregiver } i \text { is assigned to team } k \text { at week } t
\end{aligned}
$$

Objective Function

Min "Dummy" Variable

Allocation problem: modelling

We want to design week schedule such that:

- Each caregiver belongs to only one team
- All teams have two caregivers
- All teams work each week

$$
\begin{aligned}
& \sum_{k} y_{i}^{k t}=1, \quad \forall_{i, t} \\
& \sum_{i, j: i \neq j} x_{i j}^{k t}=1, \quad \forall_{k, t} \\
& x_{i j}^{k t} \leq y_{i}^{k t} \mathrm{e} x_{i j}^{k t} \leq y_{j}^{k t}, \quad \forall_{k, t, i, j: i \neq j}
\end{aligned}
$$

Allocation problem: modelling

We want to design week schedule such that:

- Each caregiver belongs to only one team,
- All teams have two caregivers,
- All teams work each week
- All caregivers should visit all patients
- All caregivers have to work with each others

$$
\begin{aligned}
& \sum_{t} y_{i}^{k t} \geq 1, \quad \forall_{i, k} \\
& \sum_{k, t} x_{i j}^{k t} \geq 1, \quad \forall_{i, j: i \neq j}
\end{aligned}
$$

Allocation problem: modelling

We want to design week schedule such that:

- Each caregiver belongs to only one team
- All teams have two caregivers
- All teams work each week
- All caregivers should visit all patients
- All caregivers have to work with each others
- Scheduling must allow a rolling horizon
- No caregiver can stay in a team more than n weeks in a row

$$
\sum_{\tau=0}^{\mathrm{n}} y_{i}^{k(t++\tau)} \leq \mathrm{n}, \quad \forall_{i, k, t}
$$

Allocation problem: modelling

We want to design week schedule such that:

- One, and only one, caregiver has to stay in the team at least 2 consecutive weeks

$$
\begin{aligned}
& x_{i j}^{k t}+x_{i j}^{k(t++1)} \leq 1, \quad \forall_{k, t, i, j: i \neq j} \\
& y_{i}^{k t}+y_{j}^{k t} \geq x_{i j}^{k t}, \quad \forall_{k, t, i, j: i \neq j} \\
& y_{i}^{k t}+y_{j}^{k(t++1)} \geq x_{i j}^{k t}, \quad \forall_{k, t, i, j: i \neq j} \\
& y_{i}^{k(t++1)}+y_{j}^{k t} \geq x_{i j}^{k t}, \quad \forall_{k, t, i, j: i \neq j} \\
& y_{i}^{k(t++1)}+y_{j}^{k(t++1)} \geq x_{i j}^{k t}, \quad \forall_{k, t, i, j: i \neq j}
\end{aligned}
$$

Allocation problem: results

6 caregivers

2 caregivers/team

15 different pairs of caregivers

Weekly schedule for each Caregiver

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8

Team 1	$(2,1)$	$(6,2)$	$(6,4)$	$(6,1)$	$(3,1)$	$(5,3)$	$(5,4)$	$(4,2)$
Team 2	$(4,3)$	$(4,1)$	$(5,1)$	$(5,2)$	$(6,5)$	$(6,2)$	$(3,2)$	$(6,3)$
Team 3	$(6,5)$	$(5,3)$	$(3,2)$	$(4,3)$	$(4,2)$	$(4,1)$	$(6,1)$	$(5,1)$

Allocation problem: results

6 caregivers

2 caregivers/team

15 different pairs of caregivers

Weekly schedule for each Caregiver

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8

Team 1	$(2,1)$	$(6,2)$	$(6,4)$	$(6,1)$	$(3,1)$	$(5,3)$	$(5,4)$	$(4,2)$
Team 2	$(4,3)$	$(4) 1)$	$(5,1)$	$(5,2)$	$(6,5)$	$(6,2)$	$(3,2)$	$(6,3)$
Team 3	$(6,5)$	$(5,3)$	$(3,2)$	$(4,3)$	$(4,2)$	$(4,1)$	$(6,1)$	$(5,1)$

Allocation problem: results

6 caregivers

2 caregivers/team

15 different pairs of caregivers

Weekly schedule for each Caregiver

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8

Team 1	$(2,1)$	$(6,2)$	$(6,4)$	$(6,1)$	$(3,1)$	$(5,3)$	$(5,4)$	$(4,2)$
Team 2	$(4,3)$	$(4,1)$	$(5,1)$	$(5,2)$	$(6,5)$	$(6,2)$	$(3,2)$	$(6,3)$
Team 3	$(6,5)$	$(5,3)$	$(3,2)$	$(4,3)$	$(4,2)$	$(4,1)$	$(6,1)$	$(5) 1)$

Conclusions

- Home Social Care Services with Non-Loyalty between Caregiver and Patient
- Modelling approach

Further Work

$>$ Develop different solution approaches
> Non-daily patients: given the frequency, decide patient visiting days
$>$ Apply the model to a larger case-study
$>$ Extend the model to accommodate the entrance of new patients and the exiting of actual patients while minimize the changes in a existent work schedule

Modelling Home Social Care Services with Non-Loyalty Features

Maria Isabel Gomes
Centro de Matemática e Aplicações
Faculty of Science and Tecnology, Nova University of Lisbon

Joint work with Tânia Ramos, CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Portugal

- Team 1 Monday and Thursday

Depot - 215 - 312 - $279-242-182-324-215^{\prime}-$ Lunch - $215^{\prime \prime}-279^{\prime}-312^{\prime}-250-$ Depot Tuesday, Wednesday and Friday
Depot - 215-312-242-324-279-215' - Lunch - 312' - 279' - 215' - Depot

- Team 2 Monday, Tuesday, Wednesday, Thursday and Friday

Depot - 267-175 - Transport - Lunch Delivery - Lunch - 267' - Depot

- Team 3 Monday, Tuesday, Wednesday, Thursday and Friday Depot - 316-280-264-249-300-255 - Lunch - 316' - Depot

