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Abstract Closed-loop supply chain (CLSC)design implies
themodelling of the forward and the reverse flowsof products
in an integrated way. This paper introduces nonlinear dimen-
sioning factors in the design of CLSC and uses ant colony
optimization to optimize the design of the supply chain. The
proposed algorithm is called SCAnt-NLDesign. The mod-
elled nonlinear dimensioning factors are: cost variations in
transportation distances between facilities (tapering princi-
ple), scale economies related to transported quantities, and
scale economies regarding the facilities’ capacity. Results
show that the proposed SCAnt-NLDesign algorithm reduced
the total cost in 44%, when compared to a linear formulation
of a CLSC. Note also that a mixed integer linear program-
ming implementation of the nonlinear CLSC was not able to
get closed to the optimal solution, given worse results than
the linear CLSC.
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1 Introduction

As any business activity, the objective of a supply chain is to
maximize the generated economic value (Chopra andMeindl
2014) by satisfying its customers’ requirements with prod-
ucts and services from multiple linked suppliers. A supply
chain (SC), at a strategic/tactical level, is defined as a life
cycle process comprising physical, information, financial,
and knowledge flows (Ayers 2010), between its composing
entities. Activities such as procurement, production, ware-
housing, storage, transportation and demand management
are the main flow generators through the planned structure.
The adequate design of a SC requires the anticipation of
these flow levels (Klibi et al. 2010). The effective coordina-
tion of these flows, within the scope of the defined supply
chain objective(s), is the main goal of supply chain manage-
ment (SCM) (Harrison et al. 2004). SCM then is a process
that aims for efficiency , ranging from the design, planning,
implementation and control of all the activities (Melo et al.
2009). SCM spans all movements and storage of raw materi-
als, work-in-process inventory, and finished goods from the
point-of-origin to the point-of-consumption.

More recently, due to the increase in environmental con-
sciousness and legislative obligations of companies, SCM
no longer stops at the point-of-consumption, but has been
expanded to consider this stage as a new generator of prod-
ucts, these are among others, the finished goods, referred pre-
viously, after their use by the point-of-consumption entities
(usually the customers) (Fleischmann et al. 2005). This flow
of products has been showed to be a good source of revenues
to companies since, after recycling they can be re-introduced
in the market. When these two supply chains (forward—the
supply and reverse—the return) are considered as an inte-
grated structure, this is called a closed-loop supply chain,
and consequently its design must be approached in an
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integrated way (Salema et al. 2010), and more recently in
Esteves et al. (2012), where a mixed integer linear pro-
gramming (MILP) model and an ant colony optimization
(ACO) algorithm application, respectively, are used to design
a closed-loop supply chain (CLSC).

The supply chain design, in the context of this work is
done by selecting the feasible set of factories, warehouses
and disassembly centres, and the flows of products between
each one of these facilities that optimizes a predetermined
criteria for value creation.

Baumgartner et al. (2012) showed that the inclusion of
nonlinear conditions at the strategic stage leads to better sup-
ply chain designs. The introduction of these nonlinear factors
is important due to the generation of economical scale effects
shown to have a significant impact on the global cost of the
modelled supply chain and on the network structure. There-
fore, in this work, nonlinear criteria factors are considered
for the supply chain design.

The nonlinearities considered in this paper are the most
common in SCM when modelling the scale economy
effects (Train and Wesley 2007; Baumgartner et al. 2012):
scale economies with transportation distance—the taper-
ing principle; scale economies with transported quantities—
cost/transported quantity coefficient andwarehouses and dis-
assembly centres cost-capacity factor.

These factors provide not only a new and more realistic
approach to CLSC design, but, at the same time, test the
capacity of MILP formulations to solve this kind of prob-
lems, in which the introduction of nonlinearities renders the
formulation much more complex.

This paper proposes an ant colony algorithm to opti-
mize closed-loop supply chains entitled SCAnt-NLDesign.
This paper proposes an ant colony algorithm to optimize
CLSCs entitled SCAnt-NLDesign. Three types of nonlin-
earities are considered: scale economies with transportation
distance (tapering principle); scale economies with trans-
ported quantities (cost/transported quantity coefficient); and
warehouses and disassembly centres’ cost-capacity factor.
The simultaneous formulation of these three nonlinearities
is novel in the supply chain formulation, to the best of
our knowledge. Although the proposed algorithm is based
on the SCAnt-Design algorithm proposed in Esteves et al.
(2012), SCant-NLDesign introduces new pheromone matri-
ces, and a new approach to optimize them, as well as dif-
ferent heuristics which are defined in a clear mathematical
way (see Sect. 5.2.2). This paper shows clearly the advantage
of SCAnt-NLDesign over the MILP formulation in terms of
results and computational time.

Section 2 gives an overview of the supply chain manage-
ment process and reviews the literature related to this work.
Section 3 presents a definition and more detailed characteri-
zation of the supply chain problem, narrowing the scope and
defining the modelling principles that conditioned Sect. 4, in

which the mathematical model is structured and presented.
This model was the base for Sect. 5, in which the devel-
oped ACO algorithm and its implementation is described.
The application of the developed algorithm to a case study is
presented in Sect. 6. The dataset used and the results achieved
are presented as well as a benchmarking of the results, by
comparing them to other methods. In Sect. 7, the conclu-
sions achieved with this work, and possible future work is
presented.

2 Supply chain management and literature review

SCM can be defined as the systemic, strategic coordination
of the traditional business functions within a particular com-
pany and across businesses within the supply chain, for the
purposes of improving the long-termperformance of the indi-
vidual companies and the supply chain as a whole (Hugos
2006). It complies the coordination of production, inventory,
location, and transportation among the participants in a sup-
ply chain to achieve the best mix of responsiveness and effi-
ciency for the market being served (Mentzer et al. 2001).

As anymanagement activity, the decisions regarding SCM
can be classified in levels, according to their time horizon,
financial investments among others. The decisions classified
as strategic aremade for a long time horizon (manymonths or
years), with high financial investments, based on predictions
and assuming very little or no uncertainty in data (Harrison et
al. 2004). In the context of SCM, the strategic component is
usually named supply chain design and includes the follow-
ing decisions (Harrison et al. 2004; Melo et al. 2009), which
are made with the goal of satisfying customers’ demands:

– Which facilities should be used (opened)?
– What production processes?
– What transportation modes and lanes?
– What size should the workforce be?
– Which customers should be serviced from which facility
(facilities) so as to minimize the total costs?

– Definition of internal policies for relationships between
the participants.

In Govil and Proth (2002) it is noticed that when answering
to these questions, one should account for two cases, the case
in which all the components belong to the same company and
the case in which some of the components do not. In the first
case, the goal is to maximize the total profit generated by the
system, even if the decisions to reach such goal result in an
increase in the cost of some activities. In this paper, the case
study presented in Sect. 3 considers the existence of only one
owner.

The decisions made at strategic level, consider an “inten-
sive” use, during the time horizon, and will act as constraints
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for the tactical/operational level decisions. This intensive use
is called the supply chain execution, which according to Har-
rison et al. (2004), deals with tactical and operational issues
and is focused on the definition and implementation of short-
term (from days to months) plans for the accomplishment of
its objectives. These plans are made based on data that are
assumed to vary according a certain probability distribution
and with the constraints of the pre-established and fixed (or
nearly so) infrastructure. Since we are working at a strategic
level, the cost associated with the modification of a deci-
sion is very high. The concept of dynamics is recognized but
not directly considered, instead the model will consider the
demand as stable for the time horizon and assume robustness
in the supply chain design.

2.1 Literature review

2.1.1 Supply chain design optimization

One of the most usual approaches to make a supply chain
design is through the use of operations’ research methodolo-
gies, that have the intent of “optimizing” a representation of
the supply chain, normally through a graph approach, in the
scope of one or several objectives and constraints. The liter-
ature concerning the supply chain design is extensive. Melo
et al. (2009)made a comprehensive literature survey ofworks
related to location models in the context of SCM. In this
work, the main features to be considered in support decision
making in the SCD context were identified. Authors argue
that most models considering several supply chain design
features do it in a simplified way, lacking on real context.
Barbosa-Póvoa (2012) reviews works published since 2008
addressing supply chain optimization. Among future chal-
lenges, author points out the need for developing solution
methods to solve large-scale problems.

The integration of nonlinear issues into supply chainmod-
elling has been scarcely done. To overcome one of the
major nonlinear models drawbacks, finding global optima,
linearization approaches have been followed. For instance,
nonlinear capacities’ costs have been formulated by
modular capacities (e.g., Correia and Captivo 2003), non-
linear production costs as piecewise linear function (e.g.,
Boek et al. 2006), among others. Very recently, Baumgartner
et al. (2012), presented the design of a forward supply chain
where they introduced economies of scale in transportation
and storage costs, namely product cost and transportation
cost. They used interactive linearization techniques to deal
with the nonlinear costs which were used in the heuristics
developed—deterministic relaxed mixed integer program-
ming (MIP) drop heuristic and deterministic dynamic slope-
scaling drop. The results obtained were compared to the
ones of a branch-and-bound. They showed the superiority
of heuristic approaches to design a multi-echelon forward

supply chain, even though the MIP-based heuristic became
impossible to use when in the case of very large problems.

2.1.2 Closed-loop supply chain design optimization

Aras et al. (2010) review models for the supply chain design
where reverse flow of products are contemplated (includ-
ing CLSC models). Authors argue that CLSC design has
deserved less attention by academia than other reverse sup-
ply chain models.

Salema et al. (2010), proposed a methodology for the
simultaneous design and planning, in which the two deci-
sion levels are integrated by the use of time. A period in the
strategic level of design is considered as a sum of periods
(smaller) at a tactical level. With the objective of minimizing
the global costs and considering environmental limitations, a
MILP formulation is presented. This formulation allows the
modelling of more realistic features of supply chains, includ-
ing flows’ travel times, facilities processing times, product
bill-of-materials and product disassembly structures. Pish-
vaee et al. (2011) propose the optimization of a CLSC using
a MILP model for the design of the supply chain, and pos-
teriorly its robustness is assessed by comparing it to other
solutions obtained by making variations in the models para-
meters. This paper considers and also presents the existence
of two markets: one for new products’ demand and other
for remanufactured products’ returns. Khajavi et al. (2011),
proposed a bi-objective MILP model, for the design of an
integrated, forward and reverse, multi-echelon supply chain.
The defined objectiveswere theminimization of costs and the
maximization of the network responsiveness using a branch-
and bound technique. The authors refer that their work dif-
fers from the other bi-objective models because it addresses
a forward and reverse integrated supply chain. Cardoso et al.
(2013) developed a MILP model for the CLSC design where
flows between all facilities aremodelled, including transship-
ment flows. Demand uncertainty is also modelled together
with facility capacity expansion.

Themain disadvantages ofMILP,when compared to other
approaches are the lack of detail that can be included in a
model that still allows a “fluid” solving of the problem and,
the bigger amount of data needed to characterize the system
(Esteves et al. 2012).

2.1.3 Metaheuristics for supply chains design

Combinatorial optimization problems consist of analysing a
mathematical problem by searching a discrete variable solu-
tion space, to find a solution that best satisfies the objec-
tives of the problem being solved. The number of possi-
ble solutions associated with these problems is usually so
big that an exhaustive search is very expensive, turning this
approach unfeasible. To surpass this limitation, the use of
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metaheuristics is made. This allows the lowering of the com-
putational cost, at the expense of not having the guarantee
of achieving an optimal solution due to the “trap” of local
optima (Dorigo and Stützle 2004).

A metaheuristic is a structured procedure that acts as an
orchestrator of iterations between local improvement proce-
dures and higher level strategies to enable the capacity of
escaping local optima and enhancing the search of a solution
space (Glover and Kochenberger 2003).

Chen et al. (2012) made a survey of several metaheuris-
tics, more specifically the one’s that emulate or are inspired
by living beings and used in the modelling and optimization
of SCM systems. Among these, the authors identified genetic
algorithms, evolutionary programming, evolution strategies,
differential evolution, artificial immune and swarm intelli-
gence, which can be sub-divided in particle swarm, artificial
bee colonies and ant colonies.

ACO (Dorigo and Stützle 2004) is an algorithm that mim-
ics the behaviour of some species of ants. The natural coordi-
nation mechanism among the several ants of the same colony
works in an indirect way and is called stigmergy. The reac-
tion of the same or other ants to the pheromones left in the
environment generates a medium of indirect communication
that, in time, promotes the emergence of a trend to adopt the
“optimal” length path (among the ones available) between
the colony and food sources.

In ACO, artificial ants roam freely throughout the search
space while building stochastic solutions derived from prob-
abilistic decisions based on possibly available heuristic infor-
mation on the problem in question and artificial pheromones,
which change dynamically at run-time to reflect the agents’
acquired search experience. In case heuristic information is
used, one can interpret ACO as being an extension of tra-
ditional construction heuristics through the integration of
the dynamically changing artificial pheromones (Dorigo and
Stützle 2004; Glover and Kochenberger 2003).

The application of ACO techniques to SCM has been
mainly at tactical and operational levels. Chen et al. (2012),
made a reviewof these applications, as e.g., Silva et al. (2009)
considers a multi-actor supply chain in which an ACO algo-
rithm allows the exchange of information between different
optimization problems by means of a pheromone matrix, to
allow for the multiple actors to optimize their own perfor-
mance while at the same time being part of a bigger system.
Wang (2009) dealt with supply chains with losses of produc-
tion called defective supply chains. In Wang (2009), there is
no mention to the question of reverse logistics.

In terms of application of ACO to design, Chen et al.
(2012) refersMoncayo-Martínez andZhang (2011), inwhich
amulti-objective ACO algorithm is presented. The algorithm
has the simultaneous objective of minimizing the costs and
the accomplishment of the delivery due-dates. The analysed
problem involved the choice of the resources across the sup-

ply chain network. A multi-objective ACO, is proposed in
which a multi-colony is used. The successive determination
of non dominated solutions for each of the colonies will form
the final non-dominated solution set.

Esteves et al. (2012), proposed an ACO algorithm that
had the objective of designing a CLSC. This work included
multi-product and multi-echelon considerations. The algo-
rithm not only served as a decision support tool for the facil-
ities location, but also the simultaneous assignment of flows
to a particular facility. In terms of supply chain design it is the
only ACO application found, that contemplates closed-loop
supply chains. Beyond any ACO for CLSC design this paper
introduces nonlinear factors, and to the best of our knowledge
no other, making the same considerations was published to
the date.

3 Problem description and characterization

Nowadays, a supply chain has as a central actor for its design,
the customer as the generator, not only of demand (forward
chain), but also acting as a supplier (reverse chain) of returned
product. This satisfaction implies the existence of flows of
products, variable in quantity and type, between several enti-
ties each with its own function(s) (processes—production,
inventory, logistics and distribution, reprocessing, disposal
or even generation of demand and return) and consequent
influence in the state (characteristics) of the product flow
between them.

The supply chain entities considered in this paper are fac-
tories, warehouses, disassembly centres, disposal facilities
and customers. For instance, a flow from a factory to a ware-
house, has its own characteristics, namely type of products,
quantities and unitary transportation costs.

To be appealing from a business perspective, the satisfac-
tion of customer needs must be economically advantageous,
i.e. the costs must be at least equal or inferior to the gains or
profits achieved with the supply chain. To evaluate the eco-
nomical viability of the investment it is necessary, among
others, to analyse the costs incurred and what is the minimal
total value of these (in this case, only at a strategic level) that
allow the company to satisfy its objectives.

The objective of minimizing the global supply chain cost
will imply the determination of the network’s characteristics,
more specifically, the facilities that compose it and the flows
between the different types of facilities and to the customers.
A possible conceptual model for the considered supply chain
is represented in Fig. 1, where Np is the number of factories,
Nw the number ofwarehouses, Nr the number of disassembly
centres, and Nc the number of customers.

Table 1 describes the data needed to design a supply chain.
This information, is usually related to the supply chain per
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Fig. 1 Supply chain conceptual model

Table 1 Supply chain data

Minimal disposal fraction

Customer’s demand volume Customer data

Customer’s return volume

Customer’s geographical data

Customer’s non-satisfaction costs

Type or kind: relates to the entity’s function Facility data

Geographical data

Opening or renting costs

Capacity: maximum/minimum quantity of
products that can be processed

Type of products Flow data

Flow capacity

Unitary transportation costs

se and the possible external conditioners, as e.g. political or
legislative restrictions.

This model considers that there are some customers’
demand or return not economically viable to satisfy. There-
fore, to be able to analyse and compare both the alternatives,
a non-satisfaction cost is associated with each customer. This
non-satisfaction costs are directly related to a measure of the
“service level” that the company wants to assure to its cus-
tomers, and reflect their importance to the company. Higher
costs will imply the need tomaximize the number of satisfied
customers (Salema et al. 2010).

3.1 Supply chain model

A supply chain can bemodelled as an edge-weighted directed
graph G(V, A, X), where each of the nodes (V ) represents

an entity (factory, warehouse, disassembly centre, customer
or other) and theweight (X) of each edge (A) a quantification
of the referred flow.1

TheSCmodel in this paper is based on the one presented in
(Salema et al. 2007), for a CLSC. The supply chain is divided
in echelons according to the nodes nature. The echelons in
this supply chain are:

1. Factories → warehouses;
2. Warehouses → customers;
3. Customers → disassembly centres;
4. Disassembly centres → factories.

This is an important classification, since it is considered
that the flows only occur in the same echelon, i.e., a
flow cannot connect a warehouse to a disassembly cen-
tre. The model has the objective of optimizing both chains
simultaneously.

This work, makes use of the SCant-Design algorithm
(Esteves et al. 2012), expanding it through the accounting
of possible economies of scale in the supply chain, giving it
not only a more realistic approach, but also, demonstrating
the capacity of metaheuristic methods in solving more com-
plex supply chain problems than the traditional linear and
integer approaches like MILP (Salema et al. 2007).

The SC model has the objective of defining the number,
location and capacity of the facilities to be opened, and also,
the product type and quantity to be processed by each of
the facilities. This SC model can be used to solve location-
allocation, nonlinear, multi-echelon and multi-product prob-
lems.

3.1.1 Supply chain representation

The supply chain presented in Fig. 1 can be modelled as a
network. With the purpose of representing the closed-loop
supply chain the most realistically possible, the following
network elements are considered:

– The nodes (facilities) have the following characteristics:

Input flows—arcs that “bring” products from the pre-
vious network level;
Output flows—arcs that “send” products to the next
network level;
Process—change in the flow characteristics, in this
paper, only quantities can be subjected to changes;

1 A directed graph, also known as a network, is a finite set of nodes and a
set of edges that are defined as ordered pairs of nodes. This order implies
a one-way connection between nodes. If a scalar weight is associated
with every edge the directed graph is called edge-weighted (Christou
2012).
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Capacity—production or storage amounts associated
with each facility.

– The arcs (flows) are characterized by:

Origin—source entity;
Destination—target entity;
Product—each flow has one product associated with
it;
Capacity— related to transportation, define the limits
of each flow.

3.1.2 Modelling assumptions

In the modelling process, the following assumptions were
considered:

Flow of products—there is no flow of materials between
facilities of the same type (e.g. factory → factory).
Stability of the parameters in the time horizon—it has
been considered that the parameters involved in the mod-
elling are stable and do not change in the time horizon.
Value and strategic managerial weight of the customer—
due to the available data for the case study, this is mod-
elled by considering associated with each customer, a
cost of non-satisfaction for its demand and return.
Storage capacity limits—it has been considered that the
warehouses and disassembly centres have a minimum
and maximum storage capacity. Bellow the minimum
the facility is not a viable investment. The maximum is
the top of the budget allowed for the investment in each
facility.
Inventory costs—are considered null, since the ware-
houses and disassembly centres are considered as trans-
shipment platforms, with a zero inventory policy.
Realistic storage capacities—for warehouses and disas-
sembly centres, the total planned capacity is equal to the
quantities that will pass through the facility rounded to
the next minimum capacity multiple defined for the prob-
lem.
Single transportationmode—asingle transportationmode
has been assumed for the model. This transportation
mode has limited capacity implying a maximum ship-
ment size imposed on all network flows.

3.2 Nonlinearities in supply chain design

The nonlinearities considered in this paper are the ones that
were identified as the most common in SCM (Train andWes-
ley 2007; Baumgartner et al. 2012). As referred in Baumgart-
ner et al. (2012) the inclusion of nonlinear conditions at the
strategic stage leads to better supply chain designs and non-
considering them is translated into a lack of realism of the
model. The introduction of these nonlinear factors is impor-

tant due to the generation of the economical scale effects
shown in Sect. 4 and have a significant impact on the global
cost of the modelled supply chain.

These nonlinearities are the following:

– Scale economieswith transportation distance—the taper-
ing principle;

– Scale economies with transported quantities—
cost/transported quantity coefficient;

– Warehouses and disassembly centres’ cost-capacity
factor.

In Train and Wesley (2007), it is referred that to consider, in
a realistic way, the effects of distance in the location choices
of facilities, the relationship between transportation costs
and distance must be defined. This relationship is usually
expressed in terms of cost per transported unit, which is also
a function of the distance. The transportation price per quan-
tity shipped is monotone increasing and concave with the
distance, this nonlinear variation is usually referred in the
literature as the tapering principle.

The tapering rates are defined as a non-direct proportional
increase in rates with distance, this is due to the ability of a
company to spread the transportation costs over a great num-
ber of miles (Coyle et al. 2008). This principle is referred in
Rodrigue et al. (2006), Sahin et al. (2009) and Forkenbrock
(1999). Forkenbrock (1999) analysed several cost generators
in trucking companies, and showed that the private operat-
ing costs condition the unit cost per distance of transporting
cargo. This unit cost shows a decreasing tendency with the
total length of the route chosen for transportation.

In Lapierre et al. (2004), it is showed the existence of
economies of scale at the operational/tactical level, by the
improvement of the transported loads to their maximum val-
ues. This cost variation is showed in Baumgartner et al.
(2012) and defined as a nonlinear function of the transported
volume, due to crescent discounts—incremental discount—
with the increasing of transported volume.

Assuming a fixed cost for a facility, independently of its
capacity, or a linear variation of the cost with capacity is
not very realistic. When the projects are similar, it has been
shown that the ratio of their capacities is not usually the same
as the ratio of their costs (Remer and Mattos 2002). The cost
of opening a warehouse or a disassembly centre, is then a
function of the capacity defined for the facility. This capacity
is the total demand or return to be served by that facility.

This methodology is normally used to estimate the cost of
a facility, in a very early project stage, when the information
is very scarce and the required precision is very raw. An esti-
mation (order of magnitude) of the costs to be incurred can
be produced by using historical information of other simi-
lar projects. An adjustment of these project’s characteristics
(time, location and capacity) to those of the future facility,
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through the use of correctional indexes. Remer and Mattos
(2002), identified the following indexes: inflation indexes;
location indexes and capacity indexes, indicating that due
to their nature, the inflation and location indexes generate a
linear variation in the costs while the capacity index is non-
linear. tIn this work, only the capacity index is considered,
due to the difficulty in estimating the other ones.

Themodelling of these factors assumed, as in Salema et al.
(2007), that each flow has one product associated with it.
Meaning that if there are two materials flowing between the
samepair of origin and destination, a different flow is defined.
Assuming this, the following economies of scale and nonlin-
earities are considered.

3.2.1 Scale economies with transportation distance:
the tapering principle

Forkenbrock (1999), made an analysis of the several expense
categories incurred by a private trucking company, like
salaries, wages, taxes and licenses, insurance and others, and
the length of haul. The result of this analysis led to the estab-
lishment of three distance intervalswith characteristic unitary
transportation costs. These data were used in this paper for
the establishment of a cost variation model that could be rep-
resentative of this principle. The analysis of the available data
showed that the influence of this effect can be included as a
correctional factor Ψ c

t to be applied to the distance, condi-
tioning in this way the transportation cost. This correctional
factor Ψ c

t is dimensionless and can be expressed as:

Ψ c
t = αt · eβt ·

(
t

tmax

)
+ z, (1)

where (tmax) is the maximum distance between any two enti-
ties of a supply chain, t is the distance between the facilities
being analysed, αt and βt are parameters that fit the real
data and z the value to which non-considerable variations of
the cost ratio occur. A detailed explanation of the method-
ology adopted for the determination of these parameters is
presented in Sect. 4.2.1.

3.2.2 Scale economies with transported quantities:
cost/transported quantity coefficient

In this work, the transportation frequencies are not consid-
ered directly, but emulated considering a maximum limit to
each shipment size. The model formulation will condition
these transportation frequencies by trying to find the best
solution in which one of the components of the correctional
factor for the transportation costs induces a fixed amount. The
lowest cost supply chain network topology implies, among
others, the minimization of the number of shipments.

Considering the analysis presented in Lapierre et al.
(2004), for the less than truck load shipment costs, in a certain
geographical area and the following variables:

TWm Total weight of product m to be transported;
Wm Unitary weight of the product m;
CTW Unitary cost to transport TWm ;
CTW
max Maximum unitary cost to transport TWm ;

Xm Demand (quantity) of transported product m;
Qmax Maximum truck capacity, or delivery size;

and,

Xm = TWm

Wm
. (2)

Let the correctional factor applied to unitary cost for any
product m that accounts for the scale economies related to
the transported quantities be Ψ c

X , and can be defined as:

Ψ c
X = αX + βX · ln

(
Xm

Qmax

)
(3)

where αX and βX are parameters that fit the real data.

3.2.3 Warehouses and disassembly centres’ cost-capacity
factor

For the same type of facility there is a nonlinear relation
between their costs and capacity (Remer and Mattos 2002):

f f
C1

=
(
Q2

Q1

)�

(4)

where,

C1 Cost of a base facility;
f f Cost of new facility f ;
Q1 Capacity of a base (existing) facility;
Q2 Capacity of the future facility;
� Cost-to-capacity factor.

This nonlinear cost variation with capacity is of an exponen-
tial nature and the index�q can be defined as (Zugarramurdi
et al. 2002):

�q =
(
Q2

Q1

)�

(5)

The cost-to-capacity factor � is conditioned by the type of
industry considered (Wibowo and Wuryanti 2007). In the
case of supply chains, the value for warehouses and disas-
sembly centres is � = 0, 8 (Peña-Mora et al. 2003). A base
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facility is a facility with exactly the same characteristics as
the one to be established and for which, its capacity Q1 and
respective cost C1 are known.

Using the previous Eqs. (4) and (5), the expression of
the costs of new structures involved in this problem can be
expressed as:

f f = C1 × �q = C1 ×
(
Q2

Q1

)�

. (6)

4 Problem formulation

4.1 Sets, parameters and variables

(a) Sets
The supply chain presented in this paper considers the

following sets: I = {
1, . . . , Np

}
for potential factories, I0 =

I ∪ {0} for potential factories plus a disposal option, J =
{1, . . . , Nw} for potential warehouses, L = {1, . . . , Nr } for
potential disassembly centres, K = {1, . . . , Nc} for potential
customers and M = {1, . . . , Nv} for product types.

(b) Parameters
To model the supply chain presented in Fig. 1, the follow-

ing parameters have been considered:

– dmk and rmk—demand and return of product m for cus-
tomer k, k ∈ K ,m ∈ M ;

– γ—minimal disposal fraction;
– Qmax—maximum delivery size;
– Distances (km)

ti j Distance between factory i and warehouse
j, i ∈ I, j ∈ J ;

t jk Distance between warehouse j and customer
k, j ∈ J, k ∈ K ;

tkl Distance between customer k and disassembly
centre l, k ∈ K , l ∈ L;

tli Distance between disassembly centre l and fac-
tory i, l ∈ L , i ∈ I0;

tmin Minimal distance between any two facilities.

– Unitary costs per km per transported unit:

c f 1
mi j Unitary cost for productm between factory i and

warehouse j in the forward flow;
c f 2
mjk Unitary cost for product m between warehouse

j and customer k in the forward flow;
cr1mkl Unitary cost for product m between customer k

and disassembly centre l in the reverse flow;
cr2mli Unitary cost for productm between disassembly

centre l and factory i in the reverse flow.

– Facilities fixed opening costs:

f pi Fixed total cost of opening factory i, i ∈ I ;
Cw
1 Cost of opening a base warehouse;

Cr
1 Cost of opening a base disassembly centre.

– Warehouses and disassembly centres’ opening costs:

f w
jq Cost of opening warehouse j, j ∈ J ;
f rlq Cost of opening disassembly centre l, l ∈ L .

– cumk Unit cost of customer k non-satisfieddemandof prod-
uct m;

– cw
mk Unit cost of customer k non-satisfied return of prod-
uct m;

– Facility capacities:

g p
i , t pi Maximum and minimum capacity of factory

i, i ∈ I ;
gw
j , twj Maximum and minimum capacity of warehouse

j, j ∈ J ;
Q1 j Capacity of a base warehouse;
grl , t

r
l Maximum and minimum capacity of disassem-

bly centre l, l ∈ L;
Q1l Capacity of a base disassembly centre.

(c) Variables

X f 1
mi j Demand of product m served by factory i to

warehouse j in the forward flow f 1;
X f 2
mjk Demand of product m served by warehouse j

and customer k in the forward flow f 2;
Xr1
mkl Demand of productm returned by customer k to

disassembly centre l in the reverse flow r1;
Xr2
mli Demand of product m returned by disassembly

centre l and factory i in the reverse flow r2;
Umk Non-satisfied demand amount of product m to

customer k;
Wmk Non-satisfied return amount of productm to cus-

tomer k;
Y p
i = 1 If factory i is opened, i ∈ I ;

Yw
jq = 1 If warehouse j is opened with a capacity q, j ∈

J ;
Yr
lq = 1 If disassembly centre l is opened with a capacity

q, l ∈ L .

4.2 Nonlinearities modelling

To account for the nonlinearities defined in Sect. 2.1.2, the
following correctional factors were considered in the model:
If,Ψ a

b is the correctional factor of the parameter (or variable)
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a, considering the parameter (or variable)b, the following can
be defined, respectively, for the tapering principle, economies
of scale with transported quantities and warehouses and dis-
assembly centres’ building sizes.

4.2.1 Tapering principle

To define the correctional factorΨ c
t the following methodol-

ogy was followed. The data presented in Forkenbrock (1999)
were first turned dimensionless relatively to their maximum
cost and deduced from the value after which independently
of the distance increase, non-considerable variations of the
cost ratio occur −z. Where z is the ratio between the mini-
mum and maximum costs, adopted considering a conserva-
tive approach.

These values were associated to the minimum (tmin), mid-
dle (tmid) and maximum (tmax) distances between any two
identities of a supply chain, made dimensionless in relation
to the maximum distance (tmax). The resulting ordered pairs
are the points presented in Fig. 2.

Using these data points, a regression was made to deduce
the variation rule that was the best representation of the data.
The following model for the unitary transportation cost per
distance was found to be the one that best represents this
variation, due to its high value of R2 = 0.9958, which is an
indicator of the goodness of fit of the model. The closest to
1, the better the regression lines approximates the real data
points.

To this variation rule, the model was completed with the
adding of the value of z.

This effect is included in the CLSC, as a correctional
factor Ψ c

t to be applied to the distance, conditioning this
way the transportation cost. Applying the case study data,
where the maximum distance between any two facilities is
tmax = 200 km and z = 0.8. This correctional factor Ψ c

t can
be expressed as:

Ψ c
t = 0.214 · e−0.014·t + 0.8 (7)

where αt = 0.214, βt = −2.8.
The cost correctional factor Ψ c

t variation is presented in
Fig. 2. Considering (7) the variables presented in Table 2
were defined.

4.2.2 Economies of scale with transported quantities

After analysing the case studydata, themaximum transported
quantity between any two facilities is Qmax = 3,000 units and
Wm = 1 weight unit. Using the model presented in (3), and
the case study data, the correctional factor Ψ c

X is defined as:

Ψ c
X = 0.2815 − 0.134 · ln

(
Xm

3,000

)
(8)
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Ψ
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))+ 0.8

R2 = 0.9958

z

Fig. 2 Variation of the correctional factor Ψ c
t with the distance

Table 2 Tapering principle parameters

t Ψ c
t

Factory—Warehouse ti j Ψ c
ti j

Warehouse—Customer t jk Ψ c
t jk

Customer— Disassembly centre tkl Ψ c
tkl

Disassembly centre—Factory tli Ψ c
tli

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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X
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/Q
max

Ψ
Xc

Ψ
X
c  = 0.2815 − 0.134Ln(X

m
/Q

max
)

R2 = 0.9921

Fig. 3 Variation of the correctional factor Ψ c
X with the transported

quantities

whereαX = 0.2815 andβX = −0.134.The cost correctional
factor Ψ c

X variation is presented in figure Fig. 3.
Considering (8) the variables presented in Table 3 were

defined.

4.2.3 Warehouses and disassembly centres’ building sizes

The building size is established by the model, which will
define the quantities of products to be transported from
each warehouse to customer together with the amounts
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Table 3 Economies of scale with transported quantities parameters

Xm Ψ c
X

Forward flow— f

Factory—Warehouse X f 1
mi j Ψ c

X f 1
mi j

Warehouse—Customer X f 2
mjk Ψ c

X f 2
mjk

Reverse Flow—r

Customer—Disassembly centre Xr1
mkl Ψ c

Xr1
mkl

Disassembly centre—Factory Xr2
mli Ψ c

Xr2
mli

of products that will be returned to the disassembly centre by
the customers.

Defining the capacity of awarehouse as Qw
2 and the capac-

ity of a disassembly centre as Qr
2, and the respective costs

of opening these facilities as f w
j and f rl . The costs of open-

ing a base warehouse Cw
1 or a disassembly centre Cr

1 are
always referred to the capacity of a base warehouse Qw

1 or
base disassembly centre Qr

1, respectively.
To make a more realist modelling, the costs of these facil-

ities are a function of the referred quantities, but only after
these have been rounded to the next multiple of the minimum
capacity of the facility, Qw

2 in the case of warehouses and Qr
2

case disassembly centres. Using the model presented in (6)
and � = 0.8 the following is considered.

The cost of opening warehouse w with a storage capacity
of Qw

2 at location j is:

f w
j = Cw

1 ·
(
Qw

2

Qw
1

)0,8

(9)

The cost of opening disassembly centre r with a storage
capacity of Qr

2 at location l is:

f rl = Cr
1 ·

(
Qr

2

Qr
1

)0,8

(10)

4.3 Objective function

The objective function modelling the supply chain defined in
Sect. 3, can be defined as:

min F =
∑
i∈I

f pi · Y p
i +

∑
j∈J

f w
jq · Yw

jq +
∑
l∈L

f rlq · Yr
lq

+
∑
m∈M

∑
i∈I

∑
j∈J

c f 1
mi j · Ψ c

ti j · Ψ c
X f 1
mi j

· X f 1
mi j · ti j

+
∑
m∈M

∑
j∈J

∑
k∈K

c f 2
mjk · Ψ c

t jk · Ψ c
X f 2
mjk

· X f 2
mjk · t jk

+
∑
m∈M

∑
k∈K

∑
l∈L

cr1mkl · Ψ c
tkl · Ψ c

Xr1
mkl

· Xr1
mkl · tkl

+
∑
m∈M

∑
l∈L

∑
i∈I0

cr2mli · Ψ c
tli · Ψ c

Xr2
mli

· Xr2
mli · tli

+
∑
m∈M

∑
k∈K

cumk · dmk ·Umk

+
∑
m∈M

∑
k∈K

cw
mk · rmk · Wmk . (11)

4.4 Constraints

The constraints considered are the following:

– All the demand of each customer is taken into account

∑
j∈J

X f 2
mjk +Umk = dmk, ∀m ∈ M,∀k ∈ K . (12)

– All the return for each customer is taken into account

∑
l∈L

Xr1
mkl + Wmk = rmk, ∀m ∈ M,∀k ∈ K . (13)

– Balance between return and demand volumes

∑
m∈M

∑
k∈K

∑
l∈L

Xr1
mkl ≤

∑
m∈M

∑
j∈J

∑
k∈K

X f 2
mjk . (14)

– Existence of a maximal disposal fraction

γ ·
( ∑
m∈M

∑
k∈K

∑
l∈L

Xr1
mkl

)
≤

∑
m∈M

∑
l∈L

Xr2
ml0. (15)

– Maximumcapacity for factories in the forward and reverse
chains

gp
i Y

p
i ≥

∑
m∈M

∑
j∈J

X f 1
mi j , ∀i ∈ I. (16)

gp
i Y

p
i ≥

∑
m∈M

∑
l∈L

Xr2
mli , ∀i ∈ I. (17)

– Minimum capacity for factories in the forward and reverse
chains

t pi Y
p
i ≤

∑
m∈M

∑
j∈J

X f 1
mi j , ∀i ∈ I. (18)

t pi Y
p
i ≤

∑
m∈M

∑
l∈L

Xr2
mli , ∀i ∈ I. (19)

– Maximum capacity for warehouses

∑
m∈M

∑
i∈I

X f 1
mi j ≤ gw

jqY
w
jq , ∀ j ∈ J. (20)
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– Minimum capacity for warehouses

∑
m∈M

∑
i∈I

X f 1
mi j ≥ t pjqY

p
jq , ∀ j ∈ J. (21)

– Maximum capacity for disassembly centres

∑
m∈M

∑
i∈I0

Xr2
mli ≤ gp

lqY
p
lq , ∀l ∈ L . (22)

– Minimum capacity for disassembly centres

∑
m∈M

∑
i∈I0

Xr2
mli ≥ t plqY

p
lq , ∀l ∈ L . (23)

– Warehouses and disassembly centres act as cross-docking
platforms

∑
m∈M

∑
i∈I

∑
j∈J

X f 1
mi j =

∑
m∈M

∑
j∈J

∑
k∈K

X f 2
mjk (24)

∑
m∈M

∑
k∈K

∑
l∈L

Xr1
mkl =

∑
m∈M

∑
l∈L

∑
i∈I0

Xr2
mli (25)

– General constraints

Umk,Wk, X
f 1, X f 2, Xr1, Xr2 ≥ 0;

Y p
i , Yw

jq , Y
r
lq ∈ {0, 1} . (26)

5 Optimization of closed-loop supply chains using ACO

The objective of this work is to design a CLSC by selecting
the location of factories, warehouses (distribution centres)
and disassembly centres from a set of pre-established pos-
sible locations to ensure that clients’ demands are satisfied.
This paper extends the ACO approach proposed in Esteves
et al. 2012 to supply chain design considering nonlinear fac-
tors. The developed algorithm determines the production and
storage amounts for the factories, warehouses and disassem-
bly centres, as well as which facilities serve which products
to specific clients. So as to minimize the nonlinear objective
function (11).

The model considers that the building sizes are always
multiples of the minimum allowed capacity for the type of
facility being analysed, and it can be applied to any kind of
supply chains: forward, reverse or closed loop. For example,
if the total amount of products passing through warehouse a
is 18,324 units and theminimal capacity is 5,000, the capacity
Q2a to be considered in the estimation of the cost associated
to that warehouse is Q2a = 20,000 units.

The next sections describe the main structures and
processes of the algorithm, as well as its specific parame-
trization and dynamics.

5.1 General proposed algorithm

The algorithmwasdevelopedwith the intent of being applica-
ble to the design of any kind of supply chain, with forward
and reverse flows, i.e. closed-loop flows. To achieve this pur-
pose, it was developed for CLSCs, since it covers all the
possible flows.

In an CLSC, the products are produced at the factories and
distributed to customers through warehouses. When these
products reach their end-of-life state, they are returned from
customers and can either be sent to recycling or disposal at
disposal facilities. This is done through a disassembly centre,
which collects the returned products and sends them to the
factories, in case of recycling, or to disposal.

A generic CLSC is presented in Fig. 4, which served as a
modelling base. The developed algorithm is called SCAnt-
NLDesign and has the structure of a generic ACO algo-
rithm (Dorigo and Stützle 2004). The main characteristic of
ACO presented in Algorithm 1—SCAnt-NLDesign is that
the search of solutions is conditioned by previous informa-
tion left in the system at each interaction. This previous infor-
mation, in the scope of ACO, is called pheromone trails and
mimics the behaviour of ants while searching for food.

Algorithm 1 SCAnt-NLDesign
Initialize forward parameters
Initialize reverse disposal parameters
Initialize reverse reprocessing parameters
for (In = 1 : Icl × rps) do
for (ant = 1 : Na) do
Reset ant path variables
Reset tabu list variables
Select facilities
Compute transition probability
Stage 1: Satisfy all custumers’ demand
Stage 2.1: Fulfil all disposals from custumers to factories
Stage 2.2: Fulfil all remaining returns from custumers to factories
Compute Trail Length
solution ← Compare ant solutions

end for
beat ant solutions ← Apply stagnation control daemon
Update pheromones (daemon choice)

end for

The process of constructing an ant solution proceeds as
follows. At each iteration, a colony of ants is activated. Each
ant, with the purpose of satisfying the customers’ require-
ments (demand and return quantities), creates its own net-
work of facilities (factories, warehouses and disassembly
centres) by selecting those that can probably generate better
solutions, conditioning in this way the search space. Using
this network, the ant will select one of the orders (product
type/customer) and satisfy it, affecting to it a set of facilities.
When all the orders are satisfied, the set of all chosen facil-
ities together with the flows is called a solution, which will
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Fig. 4 Implementation base graph

be evaluated using the objective function presented in (11).
When evaluating a solution, it has been considered that it
may be economically more advantageous not to satisfy cer-
tain demand (or return), than to do so, incurring in a penalty
cost. Themodel determines the economic advantage of deliv-
ering or not a certain quantity of product to a customer. For
each product flow, the costs of non-satisfaction cmk are com-
pared with the total transportation costs of satisfying that
order. If the non-satisfaction cost is lower than the cost of
satisfying that same requirement, the adopted solution is that
of non-satisfaction.

An iteration ends when all the ants of the colony have
built their solutions, and will return the best solution found
in that iteration. This is the solution with the lowest evaluated
cost value, since the objective is to minimize the objective
function.

To allow the conditioned search of the ants solutions,
as prescribed by the ACO methodology, the idealized
pheromone structure for SCAnt-NLDesign is represented in
Fig. 4. In this figure, two kinds of pheromone deposits are
used, one in the arcs and other in the nodes. The pheromones
on the arcs condition the node selection made by an ant
when, at a certain node, and are called connection-related
pheromones. The pheromones on the nodes are called struc-
tural pheromones and condition the facilities selected by an
ant to satisfy the customers’ demands and returns.

Next sections describe Algorithm 1 in detail. First, the
initialization steps of the SCAnt-NLDesign are presented.
The main process of constructing ant solutions is described
next. Follows the description on how the pheromones are

Table 4 Parameters

Parameter Description

ρ Pheromone evaporation rate

Na Number of ants per colony

α Heuristic weight

β Pheromone weight

rps Repetitions

Icl Total number of cycle iterations

In Iteration number n

Szdl Size of a delivery

dlxp Number of expected deliveries

updated, and finally the process of stagnation control daemon
is detailed.

5.2 Initialization

In this step, general parameters and pheromone process para-
meters are defined, such as ρ, α, β and η. There will actually
be four instances of the heuristicmatrix, one for each echelon
of the SC (as e.g. from factories to warehouses).

5.2.1 Parameters

Table 4 presents the parameters description and notation
for the algorithm. The user defined parameters ρ, α and β

are general characteristics of ACO algorithms as referred
to in Dorigo and Stützle (2004). Icl is the total number of
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iterations, that will condition the reset of the pheromone
matrices (which will be addressed in the stagnation control
daemon process in Sect. 5.5). The use of higher or lower val-
ues for Icl implies a trade-off between computation time and
solutions’ space exploration. In is the number of the current
iteration, being an iteration the construction of all the solu-
tions by Na ants that are part of the colony. The parameter
rps is the number of times Icl is repeated. The stopping cri-
teria used in this algorithm are given by the multiplication of
Icl and rps.

In logistics, the size of the delivery Szdl is intrinsic to the
transportation mode used. In this case, Szdl is the maximum
number of units of any of the products that can be transported
in a single delivery between entities in the supply chain net-
work. Its value is defined by the user, and conditions the
number of deliveries expected, dlxp, for the forward flow:

dlxp = dmk

Szdl

and for the reverse flow,

dlxp = rmk

Szdl

5.2.2 Variables

The variables defined for the SCAnt-NLDesign algorithm
are divided into sequential pheromone matrices (SPM),
connection-related pheromone matrices (CPM), structural
pheromone matrices, ant path variables, and tabu list vari-
ables. A summary of the pheromone matrices and heuristics
used in SCAnt-NLDesign is given in Table 5. These variables
are described in detail below.

(a) Sequential pheromone matrices (SPM)

These matrices are used to store the historical information
regarding the sequence in which costumer’s requirements
(demands and returns) are satisfied.

There are four SPM matrices, two regarding the product
sequences (one for the demand satisfaction and another for
return satisfaction) and other two regarding the customers’
sequencing. The SPM that refer to the product sequenc-
ing have a bi-dimensional structure, being the number of
columns equal to the number of products present in the sup-
ply chain and number of rows the number of performed by
the ants. The SPM for customers’ demand and return sat-
isfaction sequences are three-dimensional structures, where
the number of rows is again the number of performed deliv-
eries, the number of columns is the number of customers in
the structure and its depth the number of products present in
the supply chain.

Since there is not a specific allocation rule of customers’
service to facilities (such as nearest customer, or other), SPM
will store the information of previous solutions, which are

Table 5 Variables

Description Variable Dimension

Sequential pheromone matrices (SPM)

Product type demand (τm) f dlxp × Nv

Satisfaction sequence

Customer demand (τmk ) f dlxp × Nc × Nv

Satisfaction sequence

Product type return (τm)r dlxp × Nv

Satisfaction sequence

Customer return (τmk )r dlxp × Nc × Nv

Satisfaction sequence

Connection pheromone matrices (CPM)

Factory → Warehouse τmi j Np × Nw × Nv

Warehouse → Customer τmjk Nw × Nc × Nv

Customer → Disassembly centre τmkl Nc × Nr × Nv

Disassembly centre → Factory τmli Nr × (Ni + 1) × Nv

Structural pheromone matrices (STPM)

Factories τi Np × 2

Warehouse τ j Nw × 2

Disassembly centre τl Nr × 2

Heuristics

Factory → Warehouse ηi j Np × Nw

Warehouse → Customer η jk Nw × Nc

Customer → Disassembly centre ηkl Nc × Nr

Disassembly centre → Factory ηli Nr × (Ni + 1)

used as a decision support structure of the customers’ service
sequence.

(b) Connection-related pheromone matrices (CPM)

Connection-related (or classic) pheromone matrices
(CPM) are pheromone data structures analogous to those
used in general ACOalgorithms. Each entry in thesematrices
refers to a connection between nodes. There are four CPM,
one for each echelon of the supply chain, see Table 5. These
matrices have a tridimensional structure, where the number
of rows and columns are the number of entities in question
(e.g. the number of possible factories and the number of pos-
sible warehouses) and the depth is the number of products
present in the supply chain.

(c) Structural pheromone matrices (STPM)

There is one STPM per type of facility (factories, ware-
houses, disassembly centres and disposal facility). In Table 5,
τa where (a can be i , j or l) represent the probability that
facility a will be chosen by an ant. STPM are used to select
the facilities that will supply a given order to the customer.
This process is explained in detail in Algorithm 1, where the
construction of a solution will be detailed.

(d) Heuristics
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Table 6 Ant path variables

Variable dln f Dimension

A f
p

{
i, j, k,m, dlnq , dl

}
dlnr × |dln f |

Ar
p

{
i, l, k,m, dlnq , dl

}
dlnr × |dln f |

The heuristics values referred in Table 5, represent previ-
ously known information about the problem and are typically
inversely proportional to the distance between two facilities
or customers’ locations (Dorigo and Stützle 2004). Consid-
ering a and b as any two facilities ηab is computed as:

ηab = 1

tab
(27)

where, tab is the distance between facilities a and b.

(e) Ant path variables

In Table 6, the matrices A f
p and Ar

p are defined. These
matrices are the ant paths in the forward and return chains,
respectively, and record the decisions made by the ants. In
both matrices the number of rows is the number of expected
deliveries dlxp. In each row is registered, for each deliv-
ery, the origin, destiny, product, transported quantity and
used facilities. This information regarding each delivery will
define the number of columns in each of the ant pathmatrices.
It is also registered if the delivery is made or not, represented
by the binary variable dl = {0, 1} since the developed algo-
rithm allows for the non-delivery (or return) of any percent-
age of demand (or return) if it proves to be an economically
advantageous decision.

Considering dln f the delivery information, dln the deliv-
ery number, where dlnr = {

1, ..., dlxp
}
and dlnq the quantity

of product m delivered (or returned) to customer k from fac-
tory i through warehouse j (or disassembly centre l).

An ant solution is composed of A f
p and Ar

p,

(f) Tabu list variables

These variables, given in Table 7, are used to control and
track themaximumproduction and storage limits of the facil-
ities. When the limits have been reached, the facility or cus-
tomer becomes part of these lists.

5.3 Constructing an ant solution

In SCAnt-NLDesign, ants incrementally build solutions for
the optimization problem. as represented in Fig. 5.

An ant builds a solution by following Stage 1 (forward
chain) and Stage 2 (reverse chain). Stage 1 satisfy (or not)
custumers’ demand. In the reverse stages, firstly all disposals
from custumers are fulfilled (Stage 2.1) and afterwards the

Table 7 Tabu list and demand control variables

Description Variable

Forward chain Tabu factories �
f
i

Tabu warehouses � j

Tabu customers �
f
k

Unsatisfied demand of
product m for customer k

dumk

Satisfied demand of product
m for customer k

dsmk

Reverse chain Tabu factories �r
i

Tabu disassembly centres �l

Tabu customers �r
k

Unsatisfied return of
product m for customer k

rumk

Satisfied demand of product
m for customer k

rsmk

Unsatisfied disposal of
product m for customer k

r0umk

Satisfied disposal of
product m for customer k

r0smk

remaining returns from custumers to factories are fulfilled
(Stage 2.2).

At each stage, a generic algorithm is followed, which will
be described in Algorithm 2. The termination conditions for
the stages are given in Table 8.

A description of the processes select facilities, compute
transition probability and compute trail length ofAlgorithm1
and the processes select node and satisfy delivery lot size of
Algorithm 2 are described below.

Algorithm 2 Generic stage to build an ant solution
while (Termination condition not satisfied) do
Select node
Satisfy delivery lot size
Update facilities and products tabu lists
Save path

end while

5.3.1 Select facilities

In this process, an ant chooses which facilities are used to
construct a solution. The customer requirements should be
fulfilled, i.e. the total demand and return should be satisfied
considering the production and storage limits. This process
selects the number of facilities using the STPM matrices
and conditions the initial values of the tabu lists regarding
facilities.
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Fig. 5 Scheme for constructing an ant solution

5.3.2 Compute transition probability

In this step, the probability of an ant choosing a certain con-
nection is computed. The transition probability between fac-
tories and warehouses is shown as an example:

pmi j =
[
τmi j

]α · [
ηi j

]β
∑

i 	∈�
f
i

∑
j 	∈� j

[
τmi j

]α · [
ηi j

]β (28)

The pmi j matrix is tridimensional due to τmi j , where the depth is
determined by the number of productsm. A similar approach
is used to compute all other transition probabilities, namely
the ones regardingwarehouses and customers, customers and
disassembly centres, and disassembly centres and factories. It
must be noted that every time a facility enters the tabu list, all
transition probabilities in which that facility is involved must
be computed again, due to the denominator of the transition
probability in (28).

5.3.3 Select node

In the node selection processes, the ant will choose the prod-
uct itwill deliver (or return), the customer to be served and the

Table 8 Termination conditions for the several stages

Stage Termination condition

Stage 1 All customer demand satisfied

Stage 2.1 All disposals from customers to factories fulfilled

Stage 2.2 All remaining returns from customers to factories fulfilled

facilities it will use to satisfy that product order, conditioned
by the tabu lists for products, customers and facilities, the
previously built network (facilities selection in Sect. 5.3.1),
the previously existing information stored in the pheromone
matrices associated with products τm and customers τmk and
the transition probabilities previously determined (transition
probability in Sect. 5.3.2) In the forward chain, the ant will
choose which order will be served, from the product orders
not yet satisfied. After choosing the order to be served, the
ant selects the warehouse that will supply such order. Such
selection is made taking into account the warehouse tabu
list and the previously calculated client to warehouse transi-
tion probabilities. In this step, the variable that controls the
number of times that warehouses are used is also updated.
In the end, the ant will choose the factory that will produce
those items taking into consideration both the factory tabu
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list and the previously calculated warehouse to factory tran-
sition probabilities. The variable that controls the number of
times that factories are used is also updated. This sub-process
is repeated until all customers’ demand have been satisfied.

In the reverse process, the algorithm proceeds in the same
way, but considering the reverse supply chain.

5.3.4 Satisfy delivery lot size

This step analyses the customers’ requirements of the chosen
product and compares it to both the remaining storage capac-
ity of the facility (warehouse or disassembly centre) and the
remaining production capacity of the selected factory. The
smallest of these will determine the size of the delivered lot,
so that no capacity restrictions are violated.

5.3.5 Compute trail length

This step evaluates the total cost of the solution designed by
the ant. This process analyses the number of facilities, paths,
transported quantities and products in each solution. The con-
structed solution is evaluated using the objective function in
(11). The capacity of the warehouses and disassembly cen-
tres considered is the sum of the total amount of products
passing through, rounded to the next multiple of each facil-
ity minimum capacity.

For example, if the total amount of products passing
throughwarehousea is 18,324units and theminimal capacity
is 5,000, the capacity Q2a to be considered in the estimation
of the cost associated to that warehouse is Q2a = 20,000
units.

The cost of non-satisfaction of the demand and return
of any customer is also considered in this step, by com-
paring the transportation cost of satisfaction with those of
non-satisfaction. The cost that better reflects the objective of
minimizing the costs, will be the one considered.

5.4 Pheromone update

This step chooses which solution is used to update the
pheromone matrices, either the iteration-best or the best-so-
far solution. This is achieved by gradually increasing the
frequency in which the best-so-far tour is chosen for the trail
update.

The following Eqs. (29) and (30) are used to compute the
probability of choosing the best-so-far-ant solution (pbs) and
the iteration-best-ant solution (pib).

pbs = 0.1 + 0.9 · In
Icl · rps (29)

pib = 1 − 0.1 ·
(
1 − In

Icl · rps
)

(30)

Equations (29) and (30) show that the bigger the number of
iterations, the bigger the probability of the best-so-far tour
is chosen. This choice is made probabilistically according to
a random uniform distribution, after normalization of both
values. All pheromone matrices are subject to evaporation
before any pheromone is laid on a path. The pheromone
deposition is different for SPM, CPM and STPM. Next sec-
tions describe each pheromones update in more detail. All
pheromone matrices use the following variables:

val cost improvement capacity of A f
p or Ar

p;
ρ pheromone evaporation rate;
�τ pheromone amount deposited;
In current iteration;
I(n−1) previous iteration.

The pheromone update can be expressed by:

τ(In) = τ(I(n−1)) × ρ + �τ (31)

5.4.1 Update of sequential pheromone matrices

The SPM regarding the product sequence pheromone matri-
ces are updated A quantity �τa corresponding to 10 % of
val is added to the pheromone matrix in the product used in
the delivery.

The pheromone matrices regarding sequences in which
clients are served (or return products) are updated in a similar
fashion, considering the product, and also the customer that
was served in a certain delivery.

5.4.2 Update of connection-related pheromone matrices

First let us consider as an example the update of factory to
warehouse pheromone matrix. Beyond the flow between a
certain factory and a certain warehouse, it is also of inter-
est to keep track of how many times a certain connection
between these same facilities was used. If a connection had
a certain flow Φ of product passing through it in only one
delivery, and another connection had that same amount of
product passing through it in two or more deliveries, than
it is reasonable to consider that the second connection is of
additional interest to more clients than the first. In accor-
dance, the second connection should have a higher value of
pheromone deposit. Thus, a connection that was used more
often is of higher importance to more elements in the supply
chain. Table 9 describes the CPM update variables.

The pheromone deposited in a connection depends on the
flow passing through a connection (Φab) and the number of
times this connection was used (uab). Thus, the amount of
pheromone to deposit in the connection fromentitya to entity
b is given by:
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Table 9 CPM update variables

Description Variable

Product flow matrices

Factory → warehouse Φi j

Warehouse → customer Φ jk

Customer → disassembly centre Φkl

Disassembly centre → factory Φli

Product use matrices

Factory → warehouse ui j

Warehouse → customer u jk

Customer → disassembly centre ukl

Disassembly centre → factory uli

�τab = Φab

uab
(32)

This pheromone deposit is a quantity inversely proportional
to the total cost resultant from the ant path, Icl and the for-
getting factor (ρ).

5.4.3 Update of structural pheromone matrices

Structural pheromone matrices are updated with a quantity
inversely proportional to the total cost resultant from the ant
path, in a comparable fashion to what occurred with SPM. If
a given factory, warehouse or disassembly centre is used by
an ant, a pheromone quantity �τa corresponding to 10 % of
val is deposited.

5.5 Stagnation control daemon

This process was developed with the purpose of allowing the
algorithm to escape from local optima. It keeps a record of
the last few iterations and checks for stagnation behaviour.
If such behaviour is detected (i.e. the best solution so far
has not changed in a predetermined number of consecutive
iterations) this process initiates a sequential re-initialization
of the pheromone matrices, in the following order:

1. Sequential pheromone matrices;
2. Connection-related pheromone matrices;
3. Structural pheromone matrices.

The fact that pheromone matrices are sequentially re-
initialized is due to the need of keeping some previous infor-
mation, since re-initializing all the matrices at the same time
would be the same as starting the optimization process from
scratch.

This type of search space exploration methods is simi-
lar to the ones used by other ACO metaheuristics, such as
MMAS (Dorigo and Stützle 2004). According to Dorigo and

Stützle (2004), experience has shown that pheromone trail
re-initialization, when combined with appropriate choices
for the pheromone trail update, can be very useful to refo-
cus the search on a different search space region. When such
methods were applied, considerable improvement over using
only iteration-best or best-so-far update were observed.

Several tests to the proposed SCAnt-NLDesign algorithm
showed that the best resultswere obtainedusing the following
condition to define the stagnation scenario:

– The objective function F defined in (11) does not
decreasesmore than ε for 20× Icl iterations (in this paper,
ε is equal to 0.01).

6 Case study

6.1 Problem instance

The following case study consists of a CLSCwhere there are
six possible locations for factories, ten possible locations for
warehouses, ten possible locations for disassembly centres.
Customers are considered as being grouped into fifty clusters
located in the same geographical area, for simplicity these
clusters will be referred to as customers. It is assumed that
each costumer has a known demand for every type of product
and will return a certain amount of every kind of product as
“end-of-use product”. The case study is also a multi-product
model in which three different types of products are consid-
ered, which increases the problem complexity. The details of
the case study are presented in Table 10.

The parameters identified in Table 4 were adjusted to
achieve the more efficient convergence of the algorithm. The
adjustment tests were done to get the best trade-off between
the total cost F and the running time, by adjusting the values
of Icl , rps, and the number of ants in each colony Na , for
several runs of the algorithm.

The tests were executed for anα = 1 and aβ = 2, andwas
found that the more efficient convergence of the algorithm,
was made for a number of 2 ants and a total of 400.000
iterations (Icl · rps) of the algorithm. The tests were run in a
computer with a processor i7-2600 with 3.40GHz and 8 Gb
of ram. The algorithm was coded and ran in Matlab R2010b
on a Windows 7 operating system.

6.2 Results

The algorithm ran 30 times using the parameters defined in
the previous section. The obtained results are presented in
Table 11.

The lowest total cost achieved was 54 023×103 monetary
units with an average running time of 11h. All demand and
return from customers was satisfied. For this lowest total
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Table 10 Facilities and
transportation data Description Parameter Values

Fixed cost per factory (m.u.) f pi 9,000,000

Cost (m.u.) per base warehouse (Q1 j = 27.500 un.) C1 j 1,000,000

Cost (m.u.) per base disassembly centre (Q1l = 27.500 un.) C1l 1,000,000

Disposal fraction γ 0,1

Capacity limits Units

Maximum factory production gp
i 50,000

Minimum factory production t pi 5,000

Maximum warehouse capacity gp
i 50,000

Minimum warehouse capacity t pi 5,000

Maximum disassembly centre capacity gp
i 50,000

Minimum disassembly centre capacity t pi 5,000

Transportation cost per Km per product (m.u.) Product type (m)

1 2 3

From factory to warehouse c f 1
mi j 5,72 4,93 4,78

From warehouse to customer c f 2
mjk 7,30 6,94 5,93

From customer to disassembly centre cr1mkl 7,19 5,48 5,95

From disassembly centre to factory cr2mli 7,90 7,77 6,00

Table 11 Case study - Results

Min. Total cost

Average Std. deviation

(103m.u.) (103m.u.) (103m.u.)

54 023 54 297 212

cost were selected three factories, seven warehouses and four
disassembly centres.

The factory to warehouse product flow and the disassem-
bly centre to factory product flow are shown in Figs. 6 and
7, respectively. It can be observed, that in terms of produc-
tion, there is a tendency to maximize the usage of factories
2 and 5, while factory 3 is used to absorb the rest of the
demand. In the case of the reverse chain, the returned prod-
ucts are sent preferably to factory 3 and the factories 2 and 5
have about 1/3 of factory’s 3 the usage. A sensitivity analy-
sis was made and showed that, when the production capacity
increases from 50.000 to 60.000 units, factory 3 is no longer
used in the forward chain, but kept being a part of the reverse
chain. A deeper analysis shows that the factories (forward
and reverse) are always the same—2, 3, 5—including the dis-
posal centre in the reverse chain, and the same is verified in
the case of disassembly centres—3, 5, 9, 10. The used ware-
houses change, but warehouse 4 has always a smaller usage
when compared to the others.

Fig. 6 Factory to warehouse product flow

Fig. 7 Disassembly centre to factory product flow
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Table 12 SCAnt-NLDesign and MILP results

Objective function terms Model Lowest cost
(103) m.u.

Nonlinear MILP 106 879

SCAnt-NLDesign 54 023

Linear MILP 84 842

SCAnt-Design 85 127

6.3 Comparison between SCAnt-NLDesign and MILP
results

The instance of a supply chain described here have
also been optimized using a commercial MILP solver
(GAMS/CPLEX). The results are presented in Table 12.
Please note that the results for the linear case were already
presented in Esteves et al. (2012). The nonlinear correctional
factors introduced in this work were implemented in MILP
using standard classical linearizationmethods, such as piece-
wise linearization, which introduces a bias into the real solu-
tion. Further, the MILP approach became more complex and
difficult to solve in GAMS/CPLEX, which was translated in
a solution with a gap of 76.3 %.

On the other hand, the improvement achieved by SCAnt-
NLDesignwith the nonlinear model is very significant, being
the cost reduced in 37 %. Note however that this reduction
was expected due to the nonlinear terms introduced in the
supply chain. Another significant achievement in the pro-
posed SCAnt-NLDesign is the much better results it presents
when comparedwith theMILP approach. It is clear theMILP
cannot get close to the solution in the nonlinear case. The
results obtained with a MILP approach are 98 % higher than
using SCAnt-NLDesign which allows us to conclude that the
proposed SCAnt-NLDesign algorithm is adequate for mod-
elling supply chains with nonlinear dimensioning factors.

In terms of computational time, the SCAnt-NLDesign
algorithm took in average 11h to reach a solution, about
40 % less time than the MILP model, which needed 17h30.
Note that the SCAnt-NLDesign allows the use of any kind of
terms, linear or nonlinear, without any significant increase in
the computational time.

7 Conclusions

This paper introduces the effect of economies of scale in
the design of CLSCs. Three economies of scale are con-
sidered: the tapering principle (scale economies with the dis-
tance), scale economieswith transported quantities, and scale
economies related to thewarehouses and disassembly centres
capacities. These economies of scale are nonlinear, and are

expressed as correctional factors in the objective function.
The objective is to make the model as realistic as possible.

To show this influence, instances of CLSCs without non-
linear factors (Salema et al. 2006; Esteves et al. 2012) were
compared to the ones developed in this work. This compari-
son showed that the inclusion of nonlinearities in the model
conduced to a much lower total cost (37 %) when compared
to the previous linear model.

Future work can consider a multi-objective approach,
where the minimization of environmental impacts and the
costs are evaluated simultaneously. Further, uncertainty in
theCLSCmodel can also be considered, as already addressed
in other works (Klibi et al. 2010; Salema et al. 2010).
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