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Abstract In this work we present the sequential and parallel versions of a 

heuristic algorithm for the solution of a two-stage stochastic mixed 0-1 

model for closed loop supply chain planning problem along a time hori-

zon. Some computational experience conducted on randomly generated 

networks shows the quality of the proposed approach. 
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Introduction 

The fact that simultaneous design of the forward and reverse channels may 

lead to significant cost savings, has focused the interest of industry and ac-

ademia in closed loop supply chains network design. Still, the research in 

the field has mostly addressed the deterministic case. However, the net-

work parameters are uncertain by nature along a time horizon. Some of the 

first works addressing the stochastic case are presented in [1] for a single 

product in a multi-period and in [2] for a single product network in single 

period. [3] presents a two-stage stochastic model for a multi-product net-

work in single period. The multi-period setting has been recently addressed 

in [4] and [5]. A recent review on reverse logistics and closed loop supply 

chain presented in [6] provides a very deep perspective on the work devel-

oped in this field. In most published works, a limited number of sources of 
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uncertainty is addressed (mostly, product demand) and the solving proce-

dures are either based on exact commercial solvers that cannot tackle real 

size problems or on meta-heuristic procedures that are too problem de-

pendent.  

In this work we address several sources of uncertainty simultaneously and 

assume the related random vector to have a discrete distribution, so that the 

design and planning of a closed loop network is modelled as a two-stage 

stochastic mixed 0-1 program. Due to the large scale of the problem, a sto-

chastic version of the heuristic Fix and Relax algorithm presented in [7] is 

introduced in this work to tackle the problem under study. The sequential 

and parallel versions of the algorithm are also presented. A computational 

experience is reported in a set of randomly generated networks, where both 

versions of the algorithm are considered. 

Problem description and modelling approach 

The modelling framework subject of this paper is an extension of the de-

terministic closed loop supply chain model introduced in [8] whose risk 

management is presented in [9]. The forward and reverse supply chains are 

operated by the same original equipment manufacturer (OEM). Products 

recovered from clients (end-of-life products) and processed in disassembly 

centres, are sorted according to their quality: top quality products are sold 

to a secondary market, good enough products are sent back to plants to be 

remanufactured and low quality products are disposed. The overall net-

work decisions concern strategic (network topology) and operational is-

sues (network usage planning).  

Several sources of uncertainty are taken into account, namely products’ 

demand, returned products’ qualities and volumes, transportation costs, 

available budget for attending the financial costs, annualized amortization 

of the investment costs in all entities, etc., where entities name plants, dis-

tribution and disassembly centres. Since the random vector that pieces 
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together the stochastic components was assumed to have finite support, all 

its possible realizations are fully described by a set of scenarios, say .  

We point out that due to the multi-period (e.g. 15 years) character of the 

problem and the different nature of the decisions involved, strategic deci-

sions (i.e. location of the three-echelon network and the production capaci-

ties) must be specified at pre-defined periods (so named macro-periods) in 

the time horizon (e.g., years 1, 6 and 11), while all operational decisions 

(i.e. production and inventory levels and network flows) are to be taken for 

every period t of the time horizon (e.g., a year) given by the set T.  

Let the following notation be considered for the two-stage model presented 

below:    and    denote the objective function coefficients for the 0-1 

strategic variables in vector   , and the continuous (operation) variables in 

vector   , respectively,   
  and   

  are the related coefficient vectors for 

the   
  and   

  variables in period  , for scenario    ,    is the weight 

of scenario ,    and     are the matrices for the first stage constraint,    

is the related rhs, and   
      

  ,   
 ,   

 ,   
  are the related elements for 

the second stage constraint. Then the two-stage model can be expressed by 
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(1) 

where the objective function is the maximization of the Net Present Value 

of the expected profit over the scenarios along the time horizon. Notice 

that the x variables represent the strategic decisions of location of all enti-

ties that compose the supply chain and the strategic decisions of plants’ 

production capacity that are operated in the network. Since those decisions 

are to be taken from a discrete set of alternatives, the x variables are bina-

ry. The y variables represent the operational decisions involved, namely 

the volume of product flows between entities of consecutive levels (from 
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plants to distribution centres, distribution centres to customers, customers 

to disassemble centres and from this last entity to secondary market, dis-

posal and plants) and the inventory levels at all entities. Finally, the two 

sets of constraints represent, respectively, the several constraints that have 

to be ensured in time period 1 and for all periods and scenarios, namely 

balance equations among entities, upper and conditional lower bound on 

product flow between entities and on production at plants, stock upper 

bounding and annualized amortization bounding.  

Algorithmic approach 

In the algorithm that we propose for solving model (1), a set of levels (de-

noted as L) is considered along the time horizon defined by disjoint sets of 

consecutive periods. At each level a mixed 0-1 model (1) is solved by fix-

ing the binary variables of ancestor levels to the value obtained at the op-

timization of their related models and relaxing the integrality of the binary 

variables related to successor levels.  

Let partition of level set L be such that L = L1  L2 and L1  L2 = , 

where L1 is the set of levels related to first stage and L2 includes the other 

levels. We present a rough description of the algorithm where a reductive 

full backward step is imposed when the full time horizon has been cov-

ered. Such backward step reduces the number of entities that exhibit dif-

ferentiated costs (in the case, plants) and, as pointed in [9], it leads to bet-

ter results. 

Let t
l
 denote the last period in level l, for l  L and   

  the model for sce-

nario Ω at level l where  =0 if l L1. Then, for any model   
  the bi-

nary variables of ancestor levels are fixed (to the value, say  ̂) and the in-

tegrality of all binary variables of successor levels are relaxed. 
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Let E denote the set of entities and    
  denote the first stage binary varia-

bles related to entity e, for e  E, where level l is set to 1. Then, the rough 

algorithm in its parallel and sequential versions is as follows:  

Step 0: Set label backward :=’ false’ and z := - . 

Step 1: (Solution for first stage levels).  

Solve sequentially model   
   l     .  

Set parameter num_e:= ∑  ̂  
 

    (number of opened e entities). 

Step 2: (Solution for second stage levels).  

Parallel version: 

Solve in parallel the | | independent scenario-based models   
    l      

Sequential version: 

Solve sequentially the | | independent scenario-based models   
   l  

  . 

Step 3: (Objective function value).  

Compute z  such that 

z =           ̂        ∑   
   ∑   

  ̂ 
    

   
     . 

If backward:=’false’ then set backward:=’true’, append constraint 

∑    
 

   =num_e-1 to model   
  and go to step 1. 

Computational experience and results analysis 

The computational results for a set of multi-period multi-commodity net-

works randomly generated instances are reported as extensions of the de-

terministic case presented in [8] to the stochastic one. Four networks 

(N1,N2, N3, and N4) were generated considering 18 customers, Ω=12 sce-

narios and T=15 periods time horizon. Table 1 gives the models' dimen-

sions. Its headings are: number of constraints (m), 0-1 variables (n01), con-

tinuous variables (nc), non-zero elements in constraint matrix (nel) and 

constraint matrix density (den, in %). Observe the large model dimensions 

of the instances considered.  
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Table 1: Models’ dimensions 

 m n01 nc nel den 

N1 200 578 159 91 100 783 797 0.0043 

N2 369 190 309 173 735 1 516 202 0.0024 

N3 706 414 609 339 005 2 975 097 0.0012 

N4 823 036 618 386 663 3 360043 0.0011 

 

For each network two instances were created by using two different sets of 

scenario's probabilities (namely, P1 and P2) as given in Table 2. Addition-

ally, |L|=4, where L1 ={1,2,3} with            and L2 ={4} where 

t
4
=15. Levels l=1, 2 and 3 share the first stage but differ in the entities to 

each they refer to, since priorities were set among them (by order: plants, 

distribution centres, and disassembly centres). The macro-periods are 1, 6 

and 11. Note: it is assumed that the decisions on the plants selection can 

only be made at period 1.  

Table 2: Scenario probabilities 

 Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10 Sc11 Sc12 

P1 0.01 0.01 0.03 0.10 0.10 0.10 0.15 0.25 0.25 0.15 0.05 0.04 

P2 0.01 0.01 0.01 0.02 0.05 0.10 0.05 0.15 0.10 0.18 0.12 0.20 

 

HW/SW platform: a WS with a 2 Intel Xeon E5430 266 GHz processor (4 

cores each), 24 MB of RAM, gcc 4.9.2 as compiler, C++ code and CPLEX 

v12.6 as the MIP engine.  

Table 3 shows the computational comparison of CPLEX and the sequential 

and parallel versions of the proposed algorithm, where the latter use 8 

cores. The headings are: zCPLEX solution value by plain using of CPLEX; 

zalg proposed algorithm solution value, optimality GAP of zalg versus zCPLEX, 

such that, GAP% = ( zCPLEX - zalg ) / zCPLEX 100; tCPLEX, tseqalg, and tparalg 

computing times (s.) for obtaining zCPLEX and zalg with the sequential and 

parallel versions of the algorithm, respectively. 
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Table 3: Computational results 

 zCPLEX zalg GAP % tCPLEX tseqalg tparalg 

N1P1 25 739.9 25 739.9 0 25 653 6868 2565 

N1P2 15 307.5 15 307.5 0 11 156 7788 2778 

N2P1 210 684.5 210 684.5 0 400 2568 1085 

N2P2 181 182.7 186 182.7 0 170 5301 3036 

N3P1 -95 742.0 -95 742.0 0 768 1044 272 

N3P2 -110 352.0 -110 352.0 0 457 1131 342 

N4P1 221 680.7 221 680.7 0 207 1921 419 

N4P2 151 899.0 151 899.0 0 175 1369 354 

 

Observe that in all instances the algorithm produced the optimal solutions. 

It proved to be extremely effective in half of the instances, reducing the 

computing time up to one order of magnitude. On the other hand, CPLEX 

requires smaller computing times for those instances where the optimum is 

found at the very first B&B nodes, which is not very frequent in real world 

instances. Two major facts should be stressed. First, in all networks the 

parallel version of the algorithm achieved an impressive computing time 

reduction with respect to the sequential one, varying from 43 up to 78%. 

Second, the MIP problems solved at the first stage (that, by construction, is 

not parallelizable) are the hardest ones. 

Conclusions  

We have studied the performance of the sequential and parallel versions of 

a useful heuristic algorithm for the solution of a two-stage stochastic 

mixed 0-1 model of a closed loop supply chains design and operation 

planning problem in a dynamic setting where uncertainties appear any-

where.  
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