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Abstract

In this work we propose a stochastic model for the design and planning of closed-loop supply chains.
Uncertainties in demand and return volumes are modelled together with uncertain transportation
costs. A two-stage stochastic programming is developed and a sensitivity analysis to the worst-case
probability is performed in order to test the solution robustness. Finally, in order to prove the
goodness of the stochastic approach, the value of the stochastic solution and the value of perfect
information are computed. An example based on a real case shows the model applicability.

Palavras chave: Closed-Loop Supply Chain, Design and Planning, Two-stage Stochastic Optimiza-
tion.

1 Introduction
Nowadays the integration of forward and reverse flows in supply chains is a major concern for industries
resulting in a high interest at the academia level. In such context, as points out [Fleischmann et al., 2001],
the simultaneous design of the forward and reverse channels may lead to significant cost savings. Closed-
loop chain network design has been an area of intensive research in the past decade as shown in the
detailed literature review of [Akçali et al., 2009]. Authors have addressed strategic and tactical decisions
for a single product in a single period [Fleischmann et al., 2001], for a single product in a multi-period
setting [Beamon and Fernandes, 2004], for multi-products in a single period [Uster et al., 2007] and for
multi-products in a multi-period setting [Salema et al., 2010]. Notice that in the aforementioned models,
all the parameters are assumed to be deterministic. However, given the strategic nature of design deci-
sions, several sources of uncertainty play a major role in the network behavior and therefore should not
be disregarded. The stochastic closed-loop network design problem has been addressed by fewer authors
when compared with the deterministic case. One of the first works was accomplished by [Inderfurth, 2005]
for a single period in a multi-period setting and by [Listes, 2007] for a single product network in a single
period. [Salema et al., 2007] and [Chouinard et al., 2008] proposed a two-stage stochastic model for a
multi-product product network in a single period. [Pishvaee and Rabbani, 2011] address uncertainties
in the closed-loop supply chain through a robust optimization approach which avoids, according to the
authors, the fitting of probability distributions for the uncertainty sources (transportation costs, demand
and return volumes). [Zeballos, 2012] proposed a two-stage stochastic MILP model to study the quantity
and quality of customer returned products. In this work, both sources are modelled simultaneously con-
sidering the maximization of total expected supply chain profit. Very recently, [Amin and Zhang, 2013]
studied the design and planning of closed-loop supply chain in a three-step approach. Firstly, a qualita-
tive approach is used to identify possible entities that will integrate the network design phase. Follows
the evaluation of entities and the network configuration that in parallel approaches provide the inputs for
the final step. In this third and last phase, a multi-objective MILP model selects and allocates customers’
orders to the network entities. Uncertainties are addressed in phase two: a fuzzy approach models the
uncertainty concerning the “importance” of entities to the network; a stochastic nonlinear MILP model
tackles the network configuration where demand is the source of uncertainty. In this work different
sources of uncertainties are tackled but not in an integrated way. [Cardoso et al., 2013] proposed a model
for the design and planning of closed-loop supply chains and studied the impact that different network
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configurations have on the Net Present Value (NPV). In addition, authors address the demand uncer-
tainty in a multi-period setting. Demand uncertainty is modelled by a discrete probability distribution,
which in a three time period planning horizon leads to a total of nine scenarios. A sensitivity analysis
is performed on demand volumes and on the scenario probability distribution considering two different
cases: the network flow structure is fixed or changes with the scenario. [Ramezani et al., 2013] proposed
a multi-objective two-stage stochastic model where several sources of uncertainty such as selling prices,
costs and demand and return rates are modelled. The ε-constraint methodology is used to approximate
the Pareto Front considering three objectives: the maximization of profit and customer’s service level
and the minimization of defective parts acquired from the suppliers.

With two exceptions, all the above works addressed stochasticity in a single period context and in a
single source of uncertainty. In this work we study three sources of uncertainties: transportation costs,
demand and return volumes. The large fluctuations of diesel prices observed during the last 4 years:
-21%, 15%, 19% and 5% (price increase in Portugal and when compared with the year before) and the
fact that transportation costs represent a large fraction of the supply chain costs (in [Cardoso et al., 2013]
transportation costs account on average for 38% of the total costs), turn the capturing of this uncertainty
as one of the key features of the present model. Notice that since operational decisions are stochastic
decisions, in the sense that they depend on the randomness realizations, and network design decisions are
not stochastic, since they’re to be taken in a unique way given all circumstances, a two-stage stochastic
programming is adopted as a modelling framework. Further, random parameters are assumed to be
discretely distributed with two possible realizations: normal case and worst case. Given the complexity
of assessing a value for the worst case probability a sensitivity analysis to the worst-case probability is
performed in order to test the solution robustness and support the network design decisions. Finally, in
order to prove the goodness of the stochastic approach, the value of the stochastic solution and the value
of perfect information are computed.

The paper is structured as follows. In the next section a detailed description and complete formulation
of the model developed is presented. Section 3 is devoted to the computational tests and result analysis
regarding a multi-period and multi-commodity network case study and finally, section 4 states the main
conclusions.

2 The modelling approach

The model here proposed is an extension of the previous work of [Salema et al., 2010] in the sense that
it addresses the uncertainty problem by considering transportation costs, customers’ demands and cus-
tomers’ returns to be stochastic.Other than stochasticity, further refinements regarding the previous
model include the fact that sales revenues are also considered, all the monetary values involved in future
time periods are updated to their present value and that manufacturing and remanufacturing processes are
now distinguishable in the sense that, beyond the recycled raw materials/recovered components that feed
production, the model also accounts for the amount of brand-new materials/components to be acquired,
so that the production costs are fully captured.

All entities composing the supply chain
(Figure 1) act as product transformation
points. Factories manufacture new prod-
ucts and/or remanufacture used ones.
Warehouses execute postponement oper-
ations, which customize products to meet
customers’ demand. Customers’ disposed
products are collected by disassembly
centres which, after sorting and disas-
sembling operations, send components
to be remanufactured or to be properly
disposed.

Figure 1: Closed-loop supply chain
network structure.
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Since operational decisions are to be undertaken for an entire time horizon, a two-unit scale is adopted
for time modelling.Given a time horizon (e.g. 10 years), customers’ demand has to be satisfied in some
predefined time units, named the macro-period (e.g. yearly), while all planning decisions are to be taken
in a smaller time scale, as months or weeks (the micro-period).

2.1 Stochastic modelling

In order to address stochasticity, we adopted a two-stage recourse model, where first stage decisions
concern the design of the supply chain while second stage decisions regard the planning of the supply
chain. We assumed that the random vector ξ that pieces together the stochastic components has finite
support so that all the possible realizations of ξ are completely described by a set of scenarios. First stage
decisions, involving the location of the four echelon network (plants, warehouses, customers and disas-
sembly centres), are to be defined in order to maximize the expected net present value over all scenarios
considered, and second stage decisions are to be defined for each one of the scenarios considered, so that
different levels of production, storage and distribution flows will be obtained for each scenario.

As mentioned, three sources of uncertainty are modelled. Though a similar modelling approach is
followed for each stochastic component, it is important to stress that each plays a different role in the
model: demand is one of the models independent parameters, return uncertainties are variable constraint
coefficients and transportation costs are objective function coefficients. As for the modelling, in particular
for the demand modelling, if d denotes a product demand value and δds the demand variability factor for
scenario s, the demand to be satisfied will be given by d+δdsd = (1+δds )d. Regarding the returned volume,
since it is assumed that demand doesn’t have to be totally satisfied, the return volumes will depend on
the met demand. Thus, if xd denotes the customer product demand volume that is satisfied, ρ the
expected return rate and δrs the return variability factor of scenario s, the total returned volume is given
by (1 + δrs)ρxd. Finally for the modelling of transportations costs, where c denotes the transportation
cost, x the transported amount and δts the transportation cost variability factor in scenario s, the total
transportation cost will be given by (1 + δts)cx.

2.2 Model formulation

Consider the sets and parameters defined in Appendix A and B and the following decision variables.

Continuous variables:

Xspijt′ amount of product p dispatched from entity i to entity j at micro-period t′ under
scenario s
Y Sup
spit′ (Y dc

spit′) amount of product p manufactured (remanufactured) by factory i at micro-
period t′ under scenario s
Sspit′ amount of product p stocked at entity i at micro-period t′ under scenario s
Uspit unmet demand of product p in customer i at macro-period t under scenario s.

Binary variables:

Zi equal to 1 if entity i is opened/included in the supply chain.

The problem can then be stated as:

Max F= ∑

s∈S

∑

t′∈Tm

∑

i∈Idc

∑

j∈Ic

∑

p∈P(Idc)

probsξp/(1 +Rt)1+MacroP (t′)Xspijt′

−
∑

i∈I\Ic
cfixi Zi
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−
∑

s∈S

∑

t′∈Tm

∑

i∈If

∑

p∈P(If )

probsc
pr1
pit′/(1 +Rt)1+MacroP (t′)Y Sup

spit′

−
∑

s∈S

∑

t′∈Tm

∑

i∈If

∑

p∈P(If )

probsc
pr2
pit′/(1 +Rt)1+MacroP (t′)Y dc

spit′

−
∑

s∈S

∑

t′∈Tm

∑

i,j∈Ii�=j

∑

p∈P(Set(i))

probs(1 + δtsMacroP (t′))c
tr
pit′/(1 +Rt)1+MacroP (t′)dijXspijt′

−
∑

s∈S

∑

t′∈Tm

∑

i∈Idc

∑

p∈P(Idc)

probs(1 + δtsMacroP (t′))c
tr
pit′/(1 +Rt)1+MacroP (t′)diDispXspiDispt′

−
∑

s∈S

∑

t′∈Tm

∑

i∈I\Ic

∑

p∈P(Set(i))

probsc
st
pit′/(1 +Rt)1+MacroP (t′)Sspit′

−
∑

s∈S

∑

t∈T

∑

i∈Ic

∑

p∈P(Idc)

probsc
u
pit′/(1 +Rt)1+tUspit (1)

s.t.
∑

p̃∈PIsup

βp̃pXsp̃i(t′−τSup,i) = Y Sup

spi(t′+φSup
p̃p )

s ∈ S, p ∈ P(If ), i ∈ If , t
′ ∈ Tm : (t′ − τSup,i) ∈ Tm (2)

∑

p̃∈PIdc

βp̃pXsp̃i(t′−τdc,i) = Y dc
spi(t′+φdc

p̃p)
s ∈ S, p ∈ P(If ), i ∈ If , t

′ ∈ Tm : (t′ − τdc,i) ∈ Tm (3)

Sspi(t′−1) + Y Sup
spit′ + Y dc

spit′ = Sspit′ +
∑

j∈Idc

Xspijt′ s ∈ S, p ∈ P(If ), i ∈ If , t
′ ∈ Tm : (t′ − 1) ∈ Tm (4)

Sspi(t′−1) +
∑

j∈If

∑

p̃∈PIf

βp̃pXsp̃ji(t′−τji−φp̃p) = Sspit′ +
∑

j∈If

Xspijt′

s ∈ S, p ∈ P(Iw), i ∈ Iw, t
′ ∈ Tm : (t′ − 1) ∈ Tm (5)

Sspi(t′−1) +
∑

j∈Ic

∑

p̃∈PIc

βp̃pXsp̃ji(t′−τji−φp̃p) = Sspit′ +
∑

j∈If

Xspijt′ +XspiDispt′

s ∈ S, p ∈ P(Idc), i ∈ Idc, t
′ ∈ Tm : (t′ − 1) ∈ Tm (6)

Uspit ≥ Zi(1 + δdst)dpit −
∑

j∈Iw

∑

t′∈MicroP (t)

Xspji(t′−τji) s ∈ S, p ∈ P(Iw), i ∈ Ic, t ∈ T (7)

∑

j∈Iw

∑

p̃∈PIw

(1 + δrsp̃p)ρp̃pXsp̃ji(t′−τji−φp̃p) =
∑

j∈Idc

Xspijt′

s ∈ S, p ∈ P(Ic), i ∈ Ic, t
′ ∈ Tm : (t′ − τji − φp̃p) ∈ Tm (8)

XspiDispt′ ≤ (1− αp)
∑

j∈Ic

∑

p̃∈PIc

βp̃pXsp̃ji(t′−τji−φp̃p)

s ∈ S, p ∈ P(Idc), i ∈ Idc, t
′ ∈ Tm : (t′ − τji − φp̃p) ∈ Tm (9)

∑

p∈P(If )

(Y Sup
spit′ + Y dc

spit′) ≤ MaxCapi × Zi s ∈ S, i ∈ If , t
′ ∈ Tm (10)
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∑

p∈P(If )

(Y Sup
spit′ + Y dc

spit′) ≥ MinCapi × Zi s ∈ S, i ∈ If , t
′ ∈ Tm (11)

∑

p∈P(Set(i))

Xspijt′ ≤ MaxFij × Zi s ∈ S, i, j ∈ I : i �= j, t′ ∈ Tm (12)

∑

p∈P(Set(i))

Xspijt′ ≥ MinFij × Zi s ∈ S, i, j ∈ I : i �= j, t′ ∈ Tm (13)

∑

p∈P(Set(i))

Sspit′ ≤ MaxSti × Zi s ∈ S, i, j ∈ I\Ic : i �= j, t′ ∈ Tm (14)

∑

i∈Iw

Zi ≥
∑

i∈If

Zi (15)

Xspijt′ ≥ 0 s ∈ S, p ∈ P(Set(i)), (i, j) ∈ A, t′ ∈ Tm (16)

Y Sup
spit′ ≥ 0, Y dc

spit′ ≥ 0 s ∈ S, p ∈ P(If ), i ∈ If , t
′ ∈ Tm (17)

Sspit′ ≥ 0 s ∈ S, p ∈ P(Set(i)), i ∈ I\Ic, t′ ∈ Tm (18)

Uspit ≥ 0 s ∈ S, p ∈ P(Ic), i ∈ Ic, t
′ ∈ Tm (19)

Zi ∈ {0, 1} i ∈ I (20)

The objective function (1) expresses the total expected supply chain profit composed by: the expected
revenue (first term), the opening fixed costs (second term), the expected productions costs for manufac-
tured products (third term) and for remanufactured products (fourth term), expected transportation
costs between all entities (fifth term), expected disposal costs (sixth term), expected stock costs (seventh
term) and finally the expected penalty cost for not serving the demand of the included customers. All
monetary values are reduced to their present value and fixed investment costs are equally divided over
the assets useful life. Since the time horizon considered (e.g. five years) is assumed to be smaller than
the assets useful life (e.g. fifteen years), the assets value at the end of the time horizon is not considered.
Notice that a long asset useful life assumption is only appropriate if the addressed industry is not of short
life-cycle products, otherwise a procedure similar to the one proposed by [Cardoso et al., 2013] must be
performed. Equation (2) ensures that for every scenario, for each manufactured product p, all the com-
ponents needed in the factories at time t′ are transformed into p, so that p is available at time t′ +ΦSup

p̃p ,
where ΦSup

pp̃ is the respective production time. Equation (3) establishes an equivalent result for reman-
ufactured products. Equations (4), (5) and (6) are the balance equations at factories, warehouses and
disassembly centres that ensure that the total flow dispatched from the entity (outbound flow) is equal
to the level stock changes plus the flow that is dispatched to the entity (inbound flow). Notice that in
equations (5) and (6), for a given entity the outbound flow of product p at time t′ depends on the inbound
flow at time t′ − τji − Φpp̃ where Φpp̃ is the processing time of product p̃ into p, and τji is the shipping
time between the origin and destination entities. A main feature of this model is the fact that product
demands are considered to be stochastic. Since a recourse programming context was adopted, penalties
for not meeting customer’s demands were considered in the objective function. The amount of unmet
demand is precisely defined by equation (7), which states that for every scenario and for every client,
the unmet demand of product p is the difference between the demand of the product and the amount
that was delivered to the client during the macro-period t. Notice that a product that reaches a client at
time t′, must have been dispatched from the warehouse at time t′ − τji, thus the amount of p delivered
to customer i is given by Xspji(t′−τji) summed over all warehouses j and all micro-time periods t′ that
occur between the macro-time periods [t− 1, t]. Regarding the demand of p, Zi(1 + δdst)dpit ensures that
only demands of clients that belong to the network are considered. Since dpit is the expected demand,
δdst is the demand variability factor (measured as a percentage of the expected demand and dependent
of t) under scenario s. Another new feature of this model regards the stochasticity of product returns
which is handled by equation (8). This equation is the balance equation at customers that ensures that
for every scenario, customer and product returned from customers, the amount of product p shipped to
all disassembly centers at time t′ must be equal to the amount of products p̃ that are returned as p.
Notice that the amount of products p̃ to be returned as p, is the amount of p̃ dispatched from all the
warehouses at time t′ − τji − φ(p̃p) (where the parameters are defined as before) times the return rate
of product p̃ as p which is given by (1 + δrp̃p)ρp̃p. Since ρp̃p is the expected return rate of p̃ as p, δrp̃p
is the return variability factor (measured as a percentage of the expected return rate) under scenario



32 IO 2013 | XVI Congresso da Associação Portuguesa de Investigação Operacional

s. Equation (9) assures that disassembly centres can only send to disposal less than a fraction of the
returned products, in order to comply with the recovery targets set by legislation. This equation can be
easily modified to cover the case where the disposal represents a third player (e.g. external recycling) so
that (1− αp) is the fraction of products not suitable for remanufacturing. The maximum and minimum
production capacities of factories are defined by equations (10) and (11) respectively, the maximum and
minimum flow capacities are defined by equations (12) and (13) respectively and finally (14) sets the
maximum stock levels at the different entities where products may be stored, i.e. factories, warehouses
and disassembly centres. Constraint (15) ensures that the number of warehouses should be at least as
large as the number of plants, so that the distribution structure is more decentralized in order to better
encompass the transportation costs variations. Constraints (16) to (20) establish variables’ domains.

3 Example details and results analysis

The computational tests were performed on a multi-period and multi-commodity network based on the
work addressed by [Salema et al., 2010] where a glass supply chain network was studied. This network
superstructure was defined with possible five plants, eight warehouses, 18 customers and eight disassembly
centres. Three different products were considered in the flows plants-warehouses (F1 to F3), six for the
flows warehouses-customers (A1 to A6), one for the flows customers-disassembly centres (R) and finally
two for the closing loop flows disassembly centres-plants (C1 and C2) and one for the flows suppliers-
plants (S). A three-year time horizon, with one year macro-time unit and three months micro-time unit
was considered (parameters’ values may be found in Appendix C). Regarding the number of scenarios, a
normal case (NC) and a worst case (WC) scenario were identified.

As mentioned, transportation costs were defined as (1 + δtsMacroP (t′))c
tr
pit′ and an annual variability

factor of 5% and 10% increase was set for the normal and worst cases respectively. Customers’ demands
were assumed to increase annually 2% under a normal scenario and decrease 10% in the worst case. Cus-
tomers’ returns were defined as (1+ δrsp̃p)ρp̃p where the values of the parameters ρp̃p and δrsp̃p were set as
in Table 1. δrsp̃p was assumed to have a null value under the normal scenario δrNCp̃p so that no variability
is incurred, while for the worst case scenario δrWCp̃p, the values were defined in order to ensure that fewer
products are collected and that products with a larger return rate also present a smaller variability.

Table 1: Values for Return fraction and variability factor.

A1 A2 A3 A4 A5 A6
Return fraction ρp̃p 0.45 0.7 0.5 0.8 0.4 0.9
Variability factor Normal Case δrNCp̃p 0 0 0 0 0 0

Worst Case δrWCp̃p 0.2 0.1 0.2 0.05 0.2 0.05

The model was implemented in OPL using CPLEX 12.4 as solver. All the tests reported were con-
ducted on a laptop with a 2.4 GHz Core i5 processor and all recourse problems were solved on average in
2079 seconds with computing times ranging from 1200 till 2871 CPU seconds. Recourse problems have
22066 constraints and 26505 variables from which 39 are binary. All monetary values presented were
rescaled by a 1/1000 monetary units (m.u.) factor.

In order to analyse the solution robustness to the worst case scenario probability, the net present
value and the number of entities were computed for probability values ranging from 0 to 100% following
an increment of 20%. The results obtained for the expected value of perfect information (EVPI) and the
value of the stochastic solution (VSS) were also analysed. Since the problem under analysis is a maxi-
mization problem, it is well known (see [Birge and Louveaux, 1997]) that the expected value of perfect
information is the defined as EVPI = WS - RP and the value of the stochastic solution as VSS = RP -
EMV, where RP denotes the recourse program presented above, WS the wait-and-see problem and EMV
the expected result of the mean problem. Thus, RP = minxEξz(x, ξ) will define the recourse problem,
WS = Eξ(minxz(x, ξ)) the wait-and-see problem and EMV = Eξ(z(minxz(x,E(ξ)), ξ)) the expected
result of the mean problem.
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Figure 2 shows that, for whatever problem considered, the net present value decreases when the worst
case probability increases and that globally, for worst case probabilities levels above 60% the supply chain
system becomes unprofitable. Figure 3 exhibits the fact that, for the expected mean value problem, the
network structure has two different configurations and that again the 60% worst case probability level
is the turning point. Notice that the graphs of the number of plants and distribution centres are over-
lapped in figure 3. When analysing the NPV decrease trends (Fig. 3), it becomes clear that the WS
problem solution exhibits a linear trend due to the fact that the probabilities changes only affect the
objective function coefficients. As for the EMV, the NPV decrease follows from the network topology
decrease depicted by figure 3. Regarding the recourse problem, two different decreasing rates trends
can be identified. A steepest NPV decrease for probability values up to 60% with an average loss of 500
(m.u.×103) per a 20% probability increase, while for probability values above 60%, the average loss is
only of 200 (m.u.×103) per a 20% probability increase. Such trend difference may be explained by the
fact that the system topologies of probability levels up to 40% include 14 customers, while for probability
levels beyond 60%, only 7 customers are considered (see Table 2). Notice that as theoretically expected
the RP solution value is bounded above by the WS solution value and below by the EMV solution value.

Figure 2: Relation between models’ solutions
and worst case probability.

Figure 3: Relation between EMV network
entities number and worst case probability.

Regarding the network structure solutions of the EMV and RP problems, Figure 3 and Table 2 show
that as the worst case probability increases, the network becomes smaller, but in all cases the network
design is quite robust to the worst case probability changes since only two different network configurations
come up from the six probability levels analysed. As Table 3 points out no network modification occurs
at probability levels up to 40%, at 60% the topology changes dramatically by reducing from two to one
plant, from two warehouses to a single one, and cutting 7 of the 14 clients. Notice that for networks
designed for worst case probability levels higher than 60% only small changes occur with a single customer
being replaced by another one.

Table 2: Hamming distance between the EMV an RP solution.

Probability 0 0.2 0.4 0.6 0.8 1
Plants 0 0 0 0 0 0

Warehouses 0 0 0 0 0 0
Clients 0 0 0 1 0 0

Sorting Centres 0 0 0 0 0 0

Table 3: Hamming distance for RP solutions pairs.

Probability (0,0.2) (0.2,0.4) (0.4,0.6) (0.6,0.8) (0.8,1)
Plants 0 0 1 0 0

Warehouses 0 0 1 0 0
Clients 0 0 7 1 1

Sorting Centres 0 0 0 0 0



34 IO 2013 | XVI Congresso da Associação Portuguesa de Investigação Operacional

Figure 4 presents the expected value of perfect information and the value of the stochastic solution.
From Figure 2, it is clear that the deviation of the RP solution regarding the WS solution, and thus the
EVPI value, increases for worst case probabilities up to 60% and decreases for probabilities that exceed
that level, which explains the EVPI trend shown in Figure 4. Also the fact that the deviations of the
EMV and RP solutions are larger for worst case probabilities ranging from 60 to 80% as it can be seen in
Figure 2, explains the VSS trend depicted by Figure 4. Globally, both plots show that the 60% worst
case probability level is the probability level for which it pays the most to access accurate information
about the future (EVPI plot) and for which the cost of ignoring uncertainty is one of the largest (VSS
plot). Another important feature is the fact that the value of the stochastic solution is almost insignificant
for probability levels below 40%.

Figure 4: Relations between EVPI, VSS and worst case probability.

Finally, it is important to notice that, from a management perspective, the probability levels that are
relevant are all that do not exceed the 60% level, since that is the range where the system is profitable.
From a methodological perspective, any system analysis performed for probability levels below 40% can
be achieved by applying the simple deterministic expected mean value problem, while for a worst case
probability above that level, a stochastic programing approach should be adopted.

4 Conclusions

In this work we propose a two-stage MILP model for the design and planning of closed-loop supply
chains accounting for different sources of uncertainty: product demands, return volumes, and transporta-
tion costs. Moreover, a multi-period and multi-product context is also contemplated.

The proposed formulation was applied to case based on a Portuguese glass company, where two sce-
narios (normal and worst case) were solved and results compared. A sensitive analysis was performed
to assess the solution robustness regarding the worst case scenario probability. The expected value of
perfect information and the value of the stochastic solution were also analysed. Results have shown that
for values between 40% and 60% of the worst case probability, the network stops being profitable. It is
between these same values that the network structure suffers the largest change. Half of the customers
are no longer supplied and it can be observed a reduction to half on the number of opened factories and
warehouses.

Given the fact that the range of the network profitability has been identified, a deeper analysis to
the network robustness should be conducted. Such analysis will certainly involve a larger number of
scenarios and thus the development of a decomposition strategy that will allow such modelling stands as
future work. Furthermore, in this work we considered decisions to be taken in a risk neutral context, but
in a context with a large uncertainty as it happens in the supply chain environment, risk management
models should be encompassed. Thus, an extension of the present model that incorporates risk-averse
measures such as the conditional value at risk will be undertaken. Finally, let us note that though we
restricted the network design decisions to the first stage, a two-stage stochastic modelling approach would
still be appropriate even if network decisions had to be taken throughout the time horizon, as long as
those decisions had to be the same. On the contrary, if network decisions depended on the outcomes up
to the moment where they’re to be taken, then a multi-stage stochastic modelling approach should be
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considered. Such extension will also be considered in the future so that the real multi-stage management
decisions of the supply-chain system are fully captured.

Acknowledgement
This work was partially supported by the Portuguese National Science Foundation through the project
PTDC/SEN-ENR/102869/2008 and by CMA/FCT/UNL, under the project PEst OE/MAT/UI0297/2011.

References
[Akçali et al., 2009] Akcali, E., Çetinkaya, S., Üster, H., (2009). Network design for reverse and closed-

loop supply chains: An annotated bibliography of models and solution approaches. Networks, 53:231–
248.

[Amin and Zhang, 2013] Amin, S.H., Zhang, G., (2013). A three-stage model for closed-loop supply chain
configuration under uncertainty. International Journal of Production Research, 51:1405–1425.

[Birge and Louveaux, 1997] Birge,J., Louveaux, F.,(1997). Introduction to Stochastic Programming.
Springer

[Beamon and Fernandes, 2004] Beamon,B.M., Fernandes, C., (2004). Supply-chain network configura-
tion for product recovery. Production Planning & Control, 15: 270–281.

[Cardoso et al., 2013] Cardoso, S.R., Barbosa-Póvoa, A.P.F.D., Relvas, S.,(2013). Design and Planning
of Supply Chains with Integration of Reverse Logistics Activities under Demand Uncertainty.
European Journal of Operational Research 226: 436–451.

[Chouinard et al., 2008] Chouinard, M.,D’Amours, S., Aït-Kadi, D., (2008). A stochastic programming
approach for designing supply loops. International Journal of Production Economics, 113: 657–677.

[Fleischmann et al., 2001] Fleischmann, M.,Beullens, P., Bloemhof-Ruwaard, J.M., Wassenhove, L.N.
Van, (2001). The impact of product recovery on logistics network design. Production and Operations
Management, 10: 156–173.

[Inderfurth, 2005] Inderfurth, K (2005) Impact of uncertainties on recovery behavior in a remanufactur-
ing environment: a numerical analysis. International Journal of Physical & Logistics Management,
35:318–336.

[Listes, 2007] Listes, O., (2007). A generic stochastic model for supply-and-return network design.
Computers & Operations Research, 34: 417–442.

[Pishvaee and Rabbani, 2011] Pishvaee, M.S., Rabbani, M., (2011). A robust optimization approach
to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling,
35:637–649.

[Ramezani et al., 2013] Ramezani, M., Bashiri,M., Tavakkoli-Moghaddam, R., (2013). A new multi-
objective stochastic model for a forward/reverse logistic network design with responsiveness and
quality level. Applied Mathematical Modelling, 37: 328–344.

[Salema et al., 2007] Salema, M.I.G., Barbosa-Povoa,A.P., Novais, A.Q., (2007). An optimization model
for the design of a capacitated multi-product reverse logistics network with uncertainty. European
Journal of Operational Research, 179: 1063–1077.



36 IO 2013 | XVI Congresso da Associação Portuguesa de Investigação Operacional

[Salema et al., 2010] Salema, M.I.G.,Barbosa-Povoa, A.P., Novais, A.Q., (2010). Simultaneous design
and planning of supply chains with reverseflows: A generic modelling framework. European Journal
of Operational Research, 203: 336–349.

[Uster et al., 2007] Uster, H., Easwaran, G.,Akçali, E., Çetinkaya, S., (2007). Benders decomposition
with alternative multiple cuts for a multi-product closed-loop supply chain network design model.
Naval Research Logistics (NRL), 54: 890–907.

[Zeballos, 2012] Zeballos, L.J., Gomes, M.I.,Barbosa-Povoa, A.P., Novais, A.Q.,(2012). Addressing the
uncertain quality and quantity of returns in closed-loop supply chains. Computers & Chemical
Engineering, 47: 237–247.

Appendix A:
The following sets were considered:
If , Iw, Ic, Idc potential location for factories, ware-
houses,clients and disassembly centres, respectively
I = If

⋃
Iw

⋃
Ic

⋃
Idc

P(I∗) products/components supplied by entities of
set I∗ ⊆ I
PSup components for manufactured products pur-
chased at suppliers

S scenarios considered
Tm, T micro-time and macro-time periods, respec-
tively
Set of all possible network flows:
A = {(i, j) : {i ∈ If ∧ j ∈ Iw}

⋃{(i, j) : i ∈ Iw ∧ j ∈
Ic}

⋃{(i, j) : i ∈ Ic ∧ j ∈ Idc}
⋃{(i, j) : i ∈ Idc ∧ j =

Disp}⋃{(i, j) : i ∈ Idc ∧ j ∈ If}
where Disp is the disposal option made available at
disassembly centres.

Appendix B:
The following parameters were considered:
Revenues
ξp sell price of product p
Costs
Rt interest rate
cfixi opening fixed cost of entity i
cpr1pit′ unit production cost of product p manufac-
tured by factory i at time-period t′

cpr2pit′ unit production cost of product p manufac-
tured by factory i at time-period t′

ctrpit′ unit transportation cost of product p supplied
by entity i at time-period t′

cstpit′ unit cost of product p stocked at entity i at
time-period t′

cuspit unit penalty cost of unmet demand of product
p at customer i at macro-time t
Product parameters
βp̃p conversion product rate of component p̃ into
product p
φSup
p̃p manufacturing time of component p̃ into prod-

uct p
φdc
p̃p remanufacturing time of component p̃ into

product p
φp̃p processing time of product p̃ into product p
ρp̃p product p̃ expected return rate as product p
dpit demand of product p at customer i at macro-
time t

αp recovery target of product p
Time parameters
τji transportation time between entities j and i
Distance parameter
dji distance between entities j and i
Scenario parameters
probs scenario probability
δtsMacroP (t′) transportation cost variability factor
at macro-time t for scenario s
δdst demand variability factor at macro-time t for
scenario s
δrsp̃p product p̃ return rate as product p variability
factor for scenario s
Capacity parameters
MaxCapi maximum production capacity at factory
i
MinCapi minimum production capacity at factory
i
MaxFij maximum flow between entities i and j
MinFij minimum flow between entities i and j
MaxSti maximum stock level at entity i
Functions of parameters
Set(i) = I∗ if i ∈ I∗
MicroP (t) = {t′k, t′k+1, . . . , t

′
k+n} set of micro-time

periods between macro-time periods (t− 1) and t

MacroP (t′) = � t′−1
n 	 = t macro-time t at which

micro-time t′ belongs.

Appendix C:
If = {Évora, Leiria, Lisboa, Porto, Setúbal}
Iw = {Braga, Coimbra, Leiria, Lisboa, Porto, Santarém,Setúbal,Viseu}
Ic = {Aveiro, Beja, Braga, Bragança, Castelo Branco, Coimbra, Évora, Faro, Guarda, Leiria Lisboa,
Portalegre, Porto, Santarém, Setúbal,Viana Castelo, Vila Real, Viseu}
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Idc = {Braga, Coimbra, Leiria, Lisboa, Porto, Santarém,Setúbal,Viseu}
P(If ) = {F1, F2, F3} P(Iw) = {A1,A2,A3,A4,A5,A6}
P(Ic) = {R} P(Isc) = {C1,C2} PSup = {M1,M2}
Tm = 4 T = 3
Rt = 3%


