
Increasing Quality in Scenario Modelling with
Model-Driven Development

João Pedro Santos, Ana Moreira, João Araújo, Miguel Goulão
Departamento de Informática, CITI, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

{joao.santos, amm, ja, miguel.goulao}@di.fct.unl.pt

Abstract— Models, with different levels of detail, share similar
abstractions that can be reused by means of model-driven
techniques such as transformations. For example, scenarios are a
well-known technique in requirements engineering to represent
behavioral flows in a software system. When using UML,
scenarios are typically represented with activity models in the
early stages of software development, while sequence models are
used to describe more detailed object interactions as modeling
progresses. This paper defines transformation rules to automate
the migration from activity to sequence models. We present a
case study illustrating the application of our transformation
rules. Our preliminary assessment of the impact of the benefits of
using these transformations points to: (i) a reduction of around
50% in the effort building sequence models, (ii) increased
traceability among models, and (iii) error prevention when
migrating from different scenario notations.

Keywords – Scenario Modeling, Model Transformations,
Model-Driven Engineering

I. INTRODUCTION
Scenarios [1, 2] are widely used in Requirements

Engineering (RE) to represent paths of possible behavior
through a use case which are investigated to elaborate
requirements. A scenario is “a straight-line sequence of
(possibly numbered, typically interactive) steps taken by
independent-acting (presumably intelligent) agents playing
(system) roles” [1]. Scenarios specify system and user
interactions, or use cases; they ensure that stakeholders share a
sufficiently wide view of the system. Scenarios are applicable
to all types of systems, at any stage of the development life
cycle (thus, at different levels of abstraction). Approaches
using UML [3] represent scenarios through activity [4] and
sequence models [5]. While activity models are mostly used in
the preliminary stages of analysis and design, sequence models
tend to be used later, as the design progresses, where more
detailed descriptions of object interactions become necessary.

Some behavioral and structural abstractions present in
activity models can be reused automatically in sequence
models by means of transformations. This is the fundamental
motivation of this paper: to study how information contained in
activity models can be systematically used for constructing
sequence models, improving the process of moving from
requirements to design. By using Model-Driven Engineering
(MDE) [6-8] techniques, such as defining transformations
between two kinds of models, it is possible to decrease the time
costs on modeling scenarios, if the transformations used are

correct and applicable to any problem domain. Additionally,
we use MDE to support traceability between artifacts of
different models.

The remaining of this paper is organized as follows. Section
2 describes transformation rules to map activity models into
sequence models, addresses the refinement of the generated
models and discusses traceability support. Section 3 introduces
the supporting tool to implement the transformations defined in
the previous section. Section 4 illustrates the application of our
approach to an existing scenario of a case study and compares
the costs of modelling the scenario by hand and by refinements
of the generated model. Finally, Section 5 concludes the paper
and provides directions for future work.

II. MIGRATING FROM ACTIVITY TO SEQUENCE MODELS
Now we describe both the transformation rules to generate

sequence models from activity models and the refinements that
can be applied to the generated model. First of all, we must
guarantee that the activity models are deterministic. According
to [3], “the order in which guards are evaluated is undefined
and the modeler should arrange that each token only be chosen
to traverse one outgoing edge, otherwise there will be race
conditions among the outgoing edges”. This means that:

• Guards should not overlap. For example, guards such
as x <0, x = 0, and x > 0 are consistent whereas guards
such as x <= 0 and x >= 0 overlap thus being inconsistent
as it is not clear what should happen when x = 0;

• Guards on decision points must form a complete set.
For example, guards such as x < 0 and x >0 are not
complete because it is not clear what happens when x = 0.

The following two subsections describe how activity model
elements are mapped into sequence model elements in terms of
transformation rules, and what kind of refinements can be
made after the generation process.

A. Generating Sequence Models
This section lists transformation rules between activity and

sequence abstractions. Each sequence model element type
(Object, Message, Operator) is grouped into a main rule,
making three in total. Each rule has sub-rules specifying how
properties of that element type can be derived and in what
contexts this element should be generated.

Rule 1: Generating Objects in Sequence Models

2010 Seventh International Conference on the Quality of Information and Communications Technology

978-0-7695-4241-6/10 $26.00 © 2010 IEEE

DOI 10.1109/QUATIC.2010.36

204

Our proposal handles four types of objects [9]: actor
object—external person or entity that interacts with the system;
boundary or interface object—user interface elements such as
screens, reports, HTML pages, or emails; control object—the
glue between interface objects and entity objects, implementing
the logic required to manage the various objects and their
interactions; entity object—the information processed by the
system and typically found at the database level as data.

Interface and control objects are created by default in
sequence models with the name of the activity model that
represents the scenario under study. In activity models, it is
common to represent access operations (read or write) to
objects. These operations are represented with flows between
activities and objects. We map objects found on activity
models to entity objects in the sequence model. Actor objects
are generated based on swimlanes representing actors on the
activity model.

Rule 2: Generating Messages in Sequence Models

Each activity in an activity model is mapped into a message
in the sequence model. Complex and, therefore, decomposable
messages can then refined into a set of messages. Our approach
uses sub-rules to identify the source and target object of the
generated messages, i.e., which object is the caller and which
is the callee. Four sub-rules are required for this purpose.

Rule 2.1: Object flows

The direction of the flow which connects an activity to an
object indicates if it is a read or a write operation. For write
operations the direction of the flow is from the activity to the
object. For read operations the direction is reverse. A write
operation triggers the creation of a message from the control to
the entity object with the name of the activity. For a write
operation, a return message with type void from the entity to
the control object is created. Figure 1 depicts this rule.

Activ ity1

ObjectX

ControlObject ObjectX

Activity1()

Figure 1 - Rule based on object flow denoting a write operation

Read operations require a return message with type not
void is created from the control to the entity object. The name
of the returned message is determined by the name of the
returned object. For example, if a message getX is sent to an
entity object, the return message to the control object is named
X. The type of the return object is not generated and should be
refined by the user. Figure 2 depicts this rule.

Rule 2.2: Message name

This is based on the names of the created messages. Some
message names implicitly give information about the objects’
type (interface, control, entity) the target of the message has.
For example, showMessage() is typically sent to interface
objects to display messages to the user. On the other hand,

interfaces only receive messages from controls or actors.
However, it is not common actors calling an interface’s
showMessage(). The recurring pattern is that the message is
sent from a control to an interface object.

Get X

ObjectY

ControlObject ObjectY

getX()

:X

Figure 2 - Rule based on Object Flow denoting a read operation

Rule 2.3: Swimlanes

When a message is generated from an activity that is inside
a swimlane representing an actor, the source object of that
message is of type actor. As actors only access interfaces, the
pattern is that the source and target of the message are the actor
and interface objects, respectively. Figure 3 depicts this rule.

SystemActor User

A ...

User Interface

A()

Figure 3 – Swimlanes representing actors (left); corresponding message (right)

Rule 2.4: Redirecting Messages

The main goal of interface objects is to redirect messages
from actor to control objects, and vice-versa. Messages to
achieve this goal are created automatically. When an actor calls
an interface, the latter redirects the call to the control. Although
this is not always desirable (e.g., user editing a form), in most
cases it is. If this redirected message is not desired, the user
needs to remove during the refinement phase. The reciprocal
situation also happens, that is, when a control object makes a
call to an interface object, the interface object redirects the call
to the actor object.

Rule 3: Generating Sequence Model Operators

Sequence models may use several kinds of operators, such
as: ALT (or alternative), where only one of multiple fragments
satisfying the condition is executed; PAR (or parallel), where
different fragments run in parallel; OPT (optional), where the
fragment executes only if the condition is true; LOOP, where
the fragment executes multiple times while the guard condition
is true. Each of these fragments is generated by sub-rules.

Rule 3.1: Generating PAR Operators

A PAR operator is created in the sequence model when a
pair of fork-join elements is in the activity model. The elements
between fork and join are included in a PAR fragment.

Rule 3.2: Generating ALT, OPT and LOOP Operators

Decision nodes in an activity model require:

205

1. Handling outgoing flows that form a cycle. Algorithms
for graphs with cycle detection mechanisms can be used
to detect cycles in an activity model. Activity models can
be viewed as graphs, where activities and flows between
activities are seen as nodes and edges, respectively. For
each cycle detected, a LOOP operator is created with a
guard condition, respective messages and sub-operators.

2. Handling the remaining outgoing flows. If the number
of output flows is 1, an OPT fragment is created with its
guard condition. If the number of outgoing flows is
greater than 1, a fragment ALT is created. Within this
fragment, there should be an alternative for each outgoing
flow with its guard condition. The elements inside the
flow of each guard are moved to the respective fragment.

B. Refining Sequence Models
After generating the sequence model, the domain analyst

must refine it. This is needed because sequence models are
more fine-grained than activity models and, hence, additional
information should be provided to the generated model. During
this, the domain analyst should follow these typical
refinements:

• Add arguments and types (string, int, etc): complete the
message specification with arguments and their types.
Specify the object type for the existing return messages.

• Decompose a message to a set of messages: as
mentioned before, the behavior of an activity may be
complex, and may be decomposed into several messages.
Another solution is to decompose the complex activity
using another activity model, for example, and regenerate
the sequence model.

• Add return messages: for synchronous calls it is
necessary to identify messages in which the related return
message was not automatically generated. By default, the
return messages are only created when read or write
operations are identified.

• Add variables: sometimes, the result of an operation call
needs to be saved in a variable, to be used later. This
variable can be used, for example, as part of a guard
condition.

• Initialize guards: in some situations, it is necessary to
initialize the value of a generated guard so that it can be
evaluated the first time it is used.

• Delete undesired elements: undesired sequence model
elements can be generated by the transformation; these
should be deleted by the domain analyst.

III. TOOL SUPPORT
We implemented a plug-in for the Eclipse platform [10] to

support the transformations described before, and used the
Eclipse Modelling Framework (EMF) and UML2 plug-in for
Eclipse1. EMF allows defining metamodels. It also has a code
generation facility that helps manipulating and reading
instances of metamodels. The UML2 plug-in is an EMF-based
implementation of the UML2 metamodel for Eclipse and was

1 www.eclipse.org/uml2/

used to access the metamodel and concrete syntax of activity
models. Since sequence models are not implemented yet on
the UML2 plug-in, we used EMF to specify our own
metamodel for sequence models, created based on the UML2
infrastructure specification2. Finally, we used EMF generated
Java code to read abstractions from activity models, process
them, and create sequence model abstractions. One current
limitation of our tool is that it does not support nested loops
detection nor compound activities in activity models. The
graphical user interface is very simple; the user only needs to
right click in the source model (activity model) and select the
option to convert into a sequence model. After this generation,
the user can use the EMF environment to refine the sequence
model.

To receive traceability information between activity and
generated sequence model elements, a defined metamodel is
used to link abstractions from the activity to sequence models
(see Figure 4). A user can see how activity elements are
related with sequence elements through navigation.

Activity -
Message

Swimlane -
Actor

Object -
EntityObject

Activity
Node

ObjectActivity

Flow

MessageObject

SwimLane

Fragment

Entity Actor

Figure 4 - Activities and Sequence Models Unified Metamodel

This metamodel is composed of activity (left) and sequence
(right) model elements and then metaclasses are used to link
activity to sequence abstractions (center). The central
abstractions unify the concepts present on activity and
sequence models and reflect the result of the transformation.
The metamodel element with name Activity-Message allows
preserving the connection between Activities and the sequence
model messages that it generated. The element Object–Entity
connects the objects found on the activity model and the
generated entity object in the sequence model. Finally, the
element Swimlane-Actor shows how swimlanes in the activity
model were the source for the actor objects.

IV. APPLICATION TO A CASE STUDY
This section uses the case study Mobile Media [11] to

illustrate the proposed approach. Mobile Media is a software
system for mobile devices such as mobile phones, which
manipulates photo, music and video on mobile devices. The
user can manipulate data, such as adding and deleting media,
configure a media file as a favorite, add or delete media
albums. The user can also access the data on the device. The
user can list albums, media, view the favorites media or
eventually play a media file (play a video, see a photo or hear
a sound). Finally, the user can share the media data with other
mobile media users, by sending messages. These messages
can be sent via an SMS or Email protocol. Due to space
restrictions, we only present one of the scenarios - send media
via SMS - of this case study.

2 http://www.omg.org/technology/documents/formal/uml.htm

206

A. Activity Model for “Send Media via SMS”
In Send Media via SMS, the user starts by selecting the

Send Media via SMS option, then the system asks for media to
send. The user selects the media to send in the message. Then,
he specifies the target number of the message. This
information is enough to send the message to the target mobile
device (activity Send Message). If the message is sent without
errors, it is saved locally in the Mobile Media system and
“Message Sent Successfully” is shown to the user. Figure 5
depicts this scenario represented through an activity model.

System "Mobile Media"Actor "User"

Select Send
Media via SMS

Show Message
"Select Media to

Send"

Select Media Get Media

mediaObject:
MediaShow Message

"Select a
destination
Number"

Select target
number

Send
message Show Message

"Try Again?"

Show Message
"Error sending

message"

Answer retry

Create
message

messageObject:
Message

Show Message
"Message Sent

Sucessfully"

SendOK

[yes]

[yes]

retry

[no]

[no]

Figure 5 - Activity model for Send Media via SMS

B. Generation of Sequence Model for “Send Media via
SMS”

By applying the rules discussed in Section II, we generate
the sequence model depicted in Figure 6 for the scenario Send
Media via SMS.

Table I shows how each numbered element was created and
which transformation rule was used.

C. Refining the Sequence Model for “Send Media via SMS”
After the generation of the candidate sequence model,

some refinements can be done to obtain a more complete
sequence model. The following points show some of the
possible refinements for this example:
• The message selectMedia() can be completed with an

argument of type String, denoting the path of the selected
media.

• The message selectTargetNumber() can be completed
with an argument of type integer, denoting the destination
number of the message.

• The message sendMessage() can be completed with two
arguments: the path of the selected media and the
destination number of the message. The return of that
message should also be assigned to a variable sendError
which will be evaluated on the LOOP operator.

• The variable retry of the loop fragment must be initialized
to be evaluated on the first iteration of the loop. In this
case, the value should be retry = yes in order to execute
the loop the first time. The answerRetry() return value
should also be assigned to the retry variable.

Figure 7 illustrates a refined version of the sequence model.

User SendMediaViaSMS sendMediaViaSMS mediaObject:Media messageObject:
Message

loop

[sendOK = no && retry = yes]

alt

[retry = yes]

[retry = no]

opt

[sendOK = yes] par

selectSendMediaViaSMS()

selectSendMediaViaSMS()

showMessage ("Select Media to Send")

showMessage ("Select Media to Send")

selectMedia()

selectMedia()

getMedia()

:Media

selectTargetNumber()

selectTargetNumber()

sendMessage()

showMessage ("Error Sending
Message")

showMessage ("Error Sending
Message")

confirmation()

confirmation()

showMessage ("Try Again?")

showMessage ("Try Again?")

answerRetry()

answerRetry()

sendMessage()

showMessage
("Message Sent
Sucessfully")

showMessage
("Message Sent
Sucessfully")

storeMessage()

Figure 6 - Sequence model for the scenario Send Media Via SMS

TABLE I. RULES APPLIED FOR SEQUENCE MODEL GENERATION

Nr. Rule Applied
1 Rule 2.2. This message was created from the activity

Select Send Media Via SMS. The source of the message is
the actor object, since it was the first generated message.

2 Rule 2.4. This message was created using the rule that
redirects a message from the actor object to the control
object.

3 Rule 2.3. This message has interface as the target object
since the message name fits with the pattern ShowMessage

4 Rule 2.1. This message was created with name Media
since the last created message denotes a read operation.

5 Rule 2.2. The name of this message was derived from an
activity with the same name. This message has the control
object as source and target, since no other rules were

207

applicable in this situation.
6 Rule 3.2. This fragment was created as a loop was

detected in a decision node with an outgoing flow with
guard [sendOK = no]. Since the cycle includes also the
outgoing flow with guard [yes] both conditions must be
true to enter the loop fragment.

7 Rule 3.2. This fragment was created since a decision node
with two outgoing flows and no loops were detected on the
activity model.

8 Rule 2.1. This message was created with type void since
the previously created message denotes a write operation.

D. Discussion
We have shown the application of a scenario of the Mobile

Media case study with positive results. More scenarios have
been developed and sequence models generated successfully.
Statistical tests involving a total of 11 scenarios to
quantitatively evaluate the gain were also applied (not shown
here due to lack of space) with positive results.

In order to compare costs between creating a sequence
model from scratch or use our approach and refine the
generated model, we can associate each sequence model
element action with a cost. If we consider that actions made in
a sequence model such as (i) removal of any kind of element;
(ii) insertion of a variable/argument name; (iii) insertion of a
variable/argument type; (iv) insertion of an operator (PAR,
ALT, etc) and respective guard conditions; (v) insertion of an
object and its name; (vi) insertion of a message and the
corresponding procedure call name (if necessary), have one
unit of time cost (to simplify, we considered all types of action
as having the same cost), differences in time costs can be
calculated.

If we compare the time cost to create the sequence model
presented previously from scratch (72 additions) and the cost
needed for refinement over the generated model (30 additions
+ 2 removals) we can conclude that the cost has decreased
from 72 to 32 units of time cost, a value that shows a
significant improvement.

There is also a limitation with our approach, regarding
reuse of refinements performed by the user when the sequence
model is re-generated. The refinements done previously are
currently lost and must be redone by the domain analyst. We
are currently working to support reuse of refinement
information as a future step.

It is also important to point that our approach is dependent
on the quality of the activity diagrams, so poor activity
diagrams will lead to poor sequence diagrams and more effort
needed in the refinement stage.

V. RELATED WORK
Each UML model represents a particular aspect of a

software system from a particular viewpoint. However,
overlapping between the different models exists. This overlap
can be used in the form of semi-automatic transformations
between notations, to reduce the design time and help
maintaining consistency between different models. The
authors of [12-14] define transformations between different

models or viewpoints in UML or other languages, aiming at
automating part of the modeling process.

retry = yes

User sendMediaViaSMS sendMediaViaSMS mediaObject: Media messageObject: Message

loop

[sendOK = no && retry = yes]

alt

[answer = yes]

[answer = no]

opt

[sendOK = yes]

par

selectSendMediaViaSMS()
selectSendMediaViaSMS()

showMessage("SelectMediatoSend")

showMessage("SelectMediatoSend")

selectMedia()
selectMedia()

getMedia(media_id:
String):media:

Media
selectTargetNumber(numberid:integer
) selectTargetNumber(numberid:integer

)
sendOK= sendMessage(numberid:integer,
media:Media)

showMessage("Error
sending message")

showMessage("Error
sending message")

:
confirmation :

confirmation
showMessage ("Try Again?")

showMessage ("Try Again?")

retry= answerRetry(answer: String)
retry= answerRetry (answer:
String)

sendOK= sendMessage(numberid:integer, media:Media)

showMessage("Message
Sent Sucessful ly")

showMessage("Message
sent Sucessfully")

storeMessage(mediaid:String, numberid:integer)

Figure 7 - Refined sequence model for the scenario Send Media Via SMS

When defining these transformations, new problems arise,
related to differences in expressivity between models.
Sometimes, these differences are addressed by extending the
original notation of a model to enrich its semantic information
and, thus, facilitate the definition of the transformation rules
[13]. Other works [12, 14] address those differences at the
transformation level, maintaining the original notation of the
models. In this case, the transformations are difficult to
express if the models have poor overlap between them. This
section briefly presents and comments some scenario-based
related work, taking these considerations in mind. We will see
that the work we present in this paper complements and
completes the existing work.

Whittle and Schumann [12] present an algorithm to
automatically generate UML statecharts from a collection of
scenarios represented using UML sequence models. In this
work, they address several issues, such as detecting conflicts
arising from the merging of independently developed
sequence models and find behavioural similarities between
different sequence models. They do this at the algorithm or
transformation level.

There are also works that extend the original UML2
notation to enrich the semantic information needed for a

208

transformation. An example is the work presented in [13],
where they extend the UML2 Activity Model with process
goals and performance measures to make them conceptually
visible. They also provide transformation rules to BPEL
(Business Process Execution Language) to make the measures
available for execution and monitoring. In this work, the
additional notation defined, for the activity models, allow both
models being semantically closer, which made the definition
of the transformation rules easier.

Gutiérrez et al [14] propose to generate automatically,
through model transformations, an activity model representing
the use case scenario from a textual template. In this work, we
observed that the semantic inherent to the abstractions present
on the template (if-then-else, requirements numeration
indicating parallelism) and on the activity model were very
close, which resulted in a relatively trivial set of
transformation rules.

Petriu and Sun proposed a way to generate activity models
from sequence models [15] in a reverse engineering approach,
where the source model is more fine-grained than the
generated model. This is useful when handling legacy
systems. However, in a context where we first model the
system at higher levels of abstraction and then progressively
move towards a more fine-grained models, the solution
proposed in [15] does not help. The work proposed by Dijkman
and Joosten [16] is also another example of transforming fine-
grained models (business models) into coarse grained models
(use case models).

In our approach, we have not extended the activity and
sequence models standard notation; we concentrate our effort
on the definition of transformation rules to facilitate the semi-
automatic generation of sequence models from activity
models. Both models have different levels of granularity,
representing different viewpoints, which makes the definition
of transformation rules more difficult. However, since some
information between them overlaps, such as, for example,
conditional behaviour or concurrency, it is possible to
automate part of the process using model transformations.

VI. CONCLUSIONS AND FUTURE WORK
Modelling scenarios with activity and sequence models of

a system can be semi-automated by using transformation
techniques, a key concept in MDE. By using transformations,
it is possible to reuse information which was directly mapped
from one model to another. This frees the burden of the
domain analyst from creating similar abstractions which can
be automatically generated and also avoids modelling errors,
concentrating the effort on the refinement stage of generated
artefacts. Transformation rules were defined to generate
sequence models artefacts from activity models artefacts. Our
transformational rules support the automation of the creation
of objects, messages and operators for sequence models from
the information contained in activity models.

Our initial validation effort, through the case study
described in section IV provided encouraging feedback
concerning the desired effort reduction. Indeed, the number of
edits required for building a sequence model from the activity

model decreased by around 55%, when using our semi-
automatic transformation approach. The advantages, from a
quality point of view, include: (i) a reduction in the effort
building the sequence model, (ii) increased traceability among
models (through the semi-automatic translation rules), (iii)
error prevention when migrating from different scenarios
notations, and (iv) support for reuse of sequence models
design best practices, thus providing a good stepping stone for
high quality scenario modelling.

 For future work, we plan to fully implement the
transformation rules described in this paper. Currently, we
have an initial version3, which is implemented using Eclipse
[10], EMF and UML2 plug-in. We also plan to apply our
approach in projects where real case studies are available in
order to further validate the claim about time costs
improvement provided by our approach. Finally, we plan to
extend our approach to support reutilization of refinement
information.

REFERENCES
[1] I. Alexander and N. Maiden, Scenarios, Stories, Use Cases: Through

the Systems Development Life-Cycle: John Wiley, 2004.
[2] M. Karen and H. Karan, User-centered requirements: the scenario-

based engineering process: Lawrence Erlbaum Associates, Inc., 1997.
[3] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling

Language User Guide, 1st ed. Reading, MA, USA: Addison-Wesley,
1998.

[4] M. Alférez, U. Kulesza, A. Sousa, J. Santos, A. Moreira, J. Araújo, and
V. Amaral, "A Model-Driven Approach for Software Product Lines
Requirements Engineering," in 20th International Conference on
Software Engineering and Knowledge Engineering, San Francisco Bay,
USA, 2008, pp. 779-784.

[5] W. Hongyuan, Z. Ke, F. Tie, C. Haiyan, and Z. Yinshi, "Synthesizing
Statecharts Through Sequence Diagrams Analysis," in Conference on
Software Engineering and Applications, 2004, pp. 617-622.

[6] M. Volter and T. Stahl, Model-Driven Software Development.
Glasgow, UK: Wiley, 2006.

[7] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software
Development. Berlin, Germany: Springer, 2005.

[8] S. J. Mellor, MDA Distilled Principles of Model-Driven Architecture.
Boston, MA, USA: Addison-Wesley, 2004.

[9] I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach: Addison Wesley, 1992.

[10] D. Carlson, Eclipse Distilled: Addison-Wesley Professional, 2005.
[11] T. Young, "Using AspectJ to Build a Software Product Line for Mobile

Devices -
www.cs.ubc.ca/grads/resources/thesis/Nov05/Trevor_Young.pdf,"
University of Waterloo, 2005.

[12] J. Whittle and J. Schumann, "Generating Statechart Designs from
Scenarios," in International Conference on Software Engineering,
Limerick, Ireland, 2000, pp. 314-323.

[13] B. Korherr and B. List, "Extending the UML 2 Activity Diagram with
Business Process Goals and Performance Measures and the Mapping to
BPEL *," in 25th International Conference on Conceptual Modeling,
pp. 7-18.

[14] J. J. Gutiérrez, C. Nebut, M. J. Escalona, M. Mejías, and I. M. Ramos,
"Visualization of Use Cases through Automatically Generated Activity
Diagrams," in Model Driven Engineering Languages and Systems,
Toulouse, France, 2008, pp. 83-96.

[15] D. C. Petriu and Y. Sun, "Consistent behaviour representation in
activity and sequence diagrams," in Third International Conference on
the Unified Modeling Language, 2000, pp. 359-368.

[16] R. Dijkman and S. Joosten, "Deriving use case diagrams from business
process models," CTIT Technical Reports Series, vol. 08, 2002.

3 http://ample.di.fct.unl.pt/VML_4_RE/ActivityToSequenceModels.zip

209

