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ABSTRACT 

Background: Aspect-oriented programming (AOP) is an 

emerging programming paradigm whose focus is about improving 

modularity, with an emphasis on the modularization of 

crosscutting concerns. 

Objective: The goal of this paper is to assess the extent to which 

an AOP language – ObjectTeams/Java (OT/J) – improves the 

modularity of a software system. This improvement has been 

claimed but, to the best of our knowledge, this paper is the first 

attempting to present quantitative evidence of it. 

Method: We compare functionally-equivalent implementations of 

the Gang-of-Four design patterns, developed in Java and OT/J, 

using software metrics. 

Results: The results of our comparison support the modularity 

improvement claims made in the literature. For six of the seven 

metrics used, the OT/J versions of the patterns obtained 

significantly better results. 

Limitations: This work uses a set of metrics originally defined 

for object-oriented (OO) systems. It may be the case that the 

metrics are biased, in that they were created in the context of OO 

programming (OOP), before the advent of AOP. We consider this 

comparison a stepping stone as, ultimately, we plan to assess the 

modularity improvements with paradigm independent metrics, 

which will conceivably eliminate the bias. Each individual 

example from the sample used in this paper is small. In future, we 

plan to replicate this experiment using larger systems, where the 

benefits of AOP may be more noticeable. 

Conclusion: This work contributes with evidence to fill gaps in 

the body of quantitative results supporting alleged benefits to 

software modularity brought by AOP languages, namely OT/J. 

Categories and Subject Descriptors 

D 2.2 [Software Engineering]: Design Tools and Techniques – 

object-oriented design methods. 

D.2.8 [Software Engineering]: Metrics – complexity measures, 

product metrics.  

D.3.3 [Programming Languages]: Language Constructs and 

Features – classes and objects, patterns and polymorphism. 

General Terms 

Measurement, Design, Languages. 

Keywords 

Aspect-Oriented Programming, Object Teams, Modularity, 

Metrics, Evidence-Based Software Engineering. 

1. MOTIVATION 

1.1 Problem Statement 
AOP is an emerging software composition paradigm whose main 

purpose is to improve modularity in software, when compared to 

traditional programming paradigms like OOP, with a strong 

emphasis on the modularization of crosscutting concerns [22]. 

AspectJ [21, 35] is the best-known AOP representative and seems 

to be the most widely used. However, many consider AspectJ to 

have a negative impact on software modularity [6, 14, 28, 30]. 

OT/J [16, 18, 32] is a more recent AOP language and in [16] 

Herrmann claims that concepts and mechanisms from OT/J 

“provide a better decoupling, modularization and flexibility” than 

AspectJ. However, alleged superiorities are mostly supported by 

argumentation. So far, systematic studies and quantitative 

evidence supporting such claims are lacking. 

This paper presents an initial exploratory study of OT/J’s impact 

on programs’ modularity, focused on comparing results obtained 

by Java and OT/J. Comparisons with AspectJ are ongoing and are 

left for future work. The study was carried out through use of the 

metrics suite offered by the Eclipse [36] plug-in for developing 

OT/J (OTDT) [33] that collects metrics for both Java [31] and 

OT/J. 

This paper’s organization is adapted from the “standard” 

experimental report structure proposed in [20]. This section states 

the problem of quantitatively assessing OT/J’s support for 

modularity. Section 2 discusses relevant related work performed 

on the quantitative assessment of other AOP languages with 

respect to their support for modularity. Section 3 presents a short 

overview of OT/J. Section 4 discusses the design of our empirical 

evaluation of OT/J’s support for modularity, in contrast with that 

of Java. Section 5 presents the execution of the empirical study. 

Section 6 reports the results of that study. Section 7 discusses the 

results. Section 8 concludes the paper and outlines our plans for 

future work. 
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1.2 Research Objectives 
Research objectives are presented in the format proposed in [20]: 

Analyze the OT/J language,  

for the purpose of assessing the usefulness of its language 

constructs (using the Java language as a yardstick),  

with respect to software modularity,  

from the point of view of developers who may implement 

analogous systems in both the ObjectTeams/Java and Java 

languages, 

in the context of an introductory observational study on a 

repository that includes functionally equivalent pattern 

implementations in both Java and OT/J. 

1.3 Context 
This study builds on previous work within our research group [11, 

12], namely the implementation of the well-known Gang-of-Four 

(GoF) design patterns [9] in OT/J1. Two repositories of 

implementations of the GoF are used: Hannemann & Kiczales’ 

[15] and Cooper’s [7]. We consider results from this study valid 

only in the context of the patterns’ examples used, rather than as 

applying to software modules in general. Further research must be 

conducted to assess which conclusions are specific to the 

implementations used and which are generalisable. 

2. RELATED WORK 
Few metrics for AOP were proposed in the literature. Zhao was 

one of the first to propose modularity metrics specific for AOP, 

having formalised coupling [37] and cohesion [38] metrics. 

Sant’Anna et al. developed a metrics’ suite which includes 

metrics adapted from known OOP metrics [27]. Several 

quantitative studies using this suite have been developed. Garcia 

et al. [10] performed a quantitative assessment of the modularity 

of design-patterns examples in AspectJ, comparing them to Java 

implementations of the same examples. Kulesza et al. [23] studied 

the effect of AspectJ with respect to maintainability. Both studies 

were favourable to AOP. 

Lopes and Bajracharya [24] used Design Structure Matrices and 

Net Option Value to compare AOP and OOP systems. Their work 

suggests that, in some cases, AOP is beneficial, while in others it 

should be considered prejudicial. Similar mixed results were 

obtained by Bryton [3]. 

Performing comparisons between two paradigms is problematic: 

it’s easy to mix apples with oranges, particularly because each 

paradigm uses its own language mechanisms to support the 

features under scrutiny (e.g. modularity). A possible solution is to 

develop paradigm-independent metrics. An example is provided 

by Bryton and Brito e Abreu [4], where a paradigm independent 

meta-model for modularity is proposed and a set of metrics is 

formally defined upon the paradigm-independent meta-model. A 

related approach is to develop a multiparadigm metric, that is, a 

metric that measures concepts from multiple paradigms [25]. In 

our opinion, this approach is more prone to introducing biases 

than the paradigm-independent one. It mixes concepts from each 

of the paradigms in the same metric, rather than translating those 

concepts to an allegedly neutral representation before measuring 

them. In both approaches, the challenge is to ensure that the 

mapping from each paradigm to the paradigm-independent (or the 

                                                                 

1 The material used for this study is available at: 
http://ctp.di.fct.unl.pt/~mpm/AOLA/ 

multi-paradigm) representation is “fair”. In this context, “fairness” 

means that mappings between different paradigms do not 

artificially introduce any sort of bias in the metrics values. 

Otherwise, significant differences observed in the metrics may 

result from the mapping, rather than from fundamental differences 

introduced by each of the paradigms, as desirable in a metrics-

based paradigm comparison. 

3. AN OVERVIEW OF OBJECT TEAMS 
This section outlines the main features of OT/J [18], which is the 

implementation of the Object Teams model for Java. Refer to [18] 

for an exhaustive definition of the language. 

Object Teams introduces a new module concept, the Team, which 

unifies the notions of class and package (and can be seen as an 

aspect module). A Team can contain one or more Roles. A Role 

encapsulates behaviour which can decorate one base class (in this 

case, the Role is considered to be bound to the base class). Teams 

and Roles can be seen, respectively, as outer and inner Java 

classes. 

The code sketch in Listing 1 illustrates these concepts. 

PrinterAdapterTeam is a Team and Adapter is a Role 

bound to the base class SOPrinter. 

01 
02 
03 
04 
05 
06 

public team class PrinterAdapterTeam { 
 public class Adapter playedBy SOPrinter { 
  // Role implementation 
 } 
 // remaining Team implementation 
} 

07 
08 
09 

public class SOPrinter { 
 // normal (base) class 
} 

Listing 1. Examples of a Team, a Role and a base class. 

The binding of a Role class to a base class has no effect on its 

own, but is the basis for 2 kinds of bindings: callins and callouts. 

3.1 Callin Binding 
A callin binding declares that a given Role method should be 

executed for every call of the associated base method (line 4 of 

Listing 2). This type of binding can be of type before, after or 

replace. This is similar to advice in AspectJ but it is worth noting 

that this mechanism retains a polymorphic feel, with each 

individual callin mapping being one-to-one. A parallel can also be 

made in the context of traditional inheritance between the way a 

subclass constructor implicitly calls a superclass constructor. 

In Listing 2, after the execution of displayMsg, the callin 

method updateObservers will be invoked: 

01 
02 
03 
04 
05 
06 
07 
08 

public team class ScreenObserverTeam extends 
  ObserverProtocolTeam { 
 public class Subject playedBy Screen { 
  updateObservers <- after displayMsg; 
  // void updateObservers() inherited from the Subject 
  // Role of the super-Team ObserverProtocolTeam 
 } 
} 

09 
10 
11 
12 
13 

public class Screen { 
 public void displayMsg(String s) { 
  print(s); 
 } 
} 

Listing 2. Example of a callin binding 



 

 

3.2 Callout Binding 
Callout bindings allow Role instances to forward method calls to 

base methods (or fields). This can be used to “implement” abstract 

methods of a Role (see lines 5 and 6 in Listing 3 for an example) 

in a way that mimics the relationship between abstract classes and 

concrete subclasses in traditional inheritance. This way, a Role 

can contain abstract methods and still be concrete, completed 

through callouts to the base. This mechanism is not present in 

AspectJ. 

01 
02 
03 
04 
05 
06 
07 
08  

public team class ScreenObserver { 
 public class Observer playedBy Screen { 
  public abstract void update(); 
  public abstract int howMany(); 
  update -> refresh; 
  howMany -> get elems; 
 } 
} 

09 
10 
11 
12 
13 
14 

public class Screen { 
 public int elems; 
 public void refresh() { 
  //implementation 
 } 
} 

Listing 3. Example of a callout binding. 

3.3 Translation polymorphism 
There is no sub-type relation between a Role and its base class but 

under certain conditions their instances are substitutable. Two 

mechanisms allow this kind of polymorphism: lifting (translation 

of a base class to one of its Roles) and lowering (the inverse of 

lifting, i.e., the mapping of a Role to its associated base). 

3.4 Team Inheritance 
In OT/J, Teams and Roles are first class citizens, so inheritance 

works as traditionally for both Teams and Roles, with respect to 

their members. Roles enclosed within a super-Team are inherited 

by sub-Teams via implicit inheritance. Thus, if a sub-Team has a 

Role of the same name as an inherited Role, the latter is implicitly 

overridden and subject to dynamic dispatch. 

3.5 Other features 
OT/J offers several other features like the possibility to 

dynamically activate/deactivate Teams (which determines the 

effectiveness of a callin bindings) and decapsulation, i.e., the 

violation of access restrictions to bind Roles to otherwise 

inaccessible (e.g., private) base methods and fields. Herrmann 

argues that this mechanism is useful for extending an existing 

module with new functionalities, without having to modify it – 

but warns that it should be used as a last resort [17]. 

4. EXPERIMENTAL DESIGN 

4.1 Goals 
The research objective presented in sub-section 1.2 is too abstract 

for the purposes of the proposed assessment. To make it more 

concrete, we break it down into seven sub-goals (Table 1), where 

the variation lies on the metric under assessment. In the sub-goals 

definition “(...)” is used to denote that we keep the corresponding 

part of the more abstract research objective. This allows us to 

highlight the differences among the seven sub-goals. 

 

Table 1. Research goals. 

Goal Description 

G1 

Analyze the OT/J language, 

(...) 

with respect to the Coupling between object classes [5] 

metric, 

(...) 

G2 

Analyze the OT/J language, 

(...) 

with respect to the Number of classes used by this class 

metric, 

(...) 

G3 

Analyze the OT/J language, 

(...) 

with respect to the Number of classes using this class 

metric, 

(...) 

G4 

Analyze the OT/J language, 

(...) 

with respect to the Response For a Class [5] metric, 

(...) 

G5 

Analyze the OT/J language, 

(...) 

with respect to the Number of Children [5] metric, 

(...) 

G6 

Analyze the OT/J language, 

(...) 

with respect to the Depth of Inheritance Tree [5] metric, 

(...) 

G7 

Analyze the OT/J language, 

(...) 

with respect to the Lack of Cohesion in Methods [5] 

metric, 

(...) 

 

4.2 Experimental Units 
The experimental units of this observational study are the 

individual examples of the aforementioned design patterns 

implementations. 

4.3 Experimental Material 
 All the 23 Hannemann & Kiczales’ [15] GoF design patterns 

[9] examples, implemented in both OT/J and Java. 

 18 of James Cooper’s [7] GoF design patterns examples, 

implemented in both OT/J and Java. 

Five of the James Cooper’s patterns (Builder, Façade, Factory 

Method, Interpreter and State) were not yet implemented in OT/J. 

We’re planning to implement them in the future. 

4.4 Tasks 
As noted on the previous sub-section, the subjects of this study are 

design pattern implementations. As such, this common item in the 

experimental design description is not applicable for this study. 



 

 

4.5 Hypotheses and variables 

4.5.1 Hypotheses 
The goals lead us to test seven different basic hypotheses, in order 

to assess the effect of OT/J on each metric (when compared to 

Java). We identify the hypotheses as H1, H2, H3, H4, H5, H6 and 

H7 (Table 2). For each hypothesis, we formulate both a null and 

an alternative hypothesis. 

Table 2. Research hypotheses. 

Hypotheses  

H1 

H10 
OT/J provides no significant improvement on the 

patterns’ Coupling between object classes. 

H11 
OT/J provides a significant improvement on the 

patterns’ Coupling between object classes. 

H2 

H20 
OT/J provides no significant improvement on the 

patterns’ Number of classes used by this class. 

H21 
OT/J provides a significant improvement on the 

patterns’ Number of classes used by this class. 

H3 

H30 
OT/J provides no significant improvement on the 

patterns’ Number of classes using this class. 

H31 
OT/J provides a significant improvement on the 

patterns’ Number of classes using this class. 

H4 

H40 
OT/J provides no significant improvement on the 

patterns’ Response For a Class. 

H41 
OT/J provides a significant improvement on the 

patterns’ Response For a Class. 

H5 

H50 
OT/J provides no significant improvement on the 

patterns’ Number of Children. 

H51 
OT/J provides a significant improvement on the 

patterns’ Number of Children. 

H6 

H60 
OT/J provides no significant improvement on the 

patterns’ Depth of Inheritance Tree. 

H61 
OT/J provides a significant improvement on the 

patterns’ Depth of Inheritance Tree. 

H7 

H70 
OT/J provides no significant improvement on the 

patterns’ Lack of Cohesion in Methods. 

H71 
OT/J provides a significant improvement on the 

patterns’ Lack of Cohesion in Methods. 

 

4.5.2 Independent variables 
The independent variable is the same for all the hypotheses. This 

variable, which we’ll call “Is OT/J” assumes the value true for 

pattern instances implemented in OT/J and false otherwise. 

4.5.3 Dependent variables 
The dependent variables used in this experiment represent the 

various metrics collected with the OTDT plug-in. Only metrics 

that could be applied to both Java and OT/J were used. However, 

two sets of metrics were intentionally left out, despite being 

computed for both languages: Lines of Code (due to being known 

poor predictors of modularity) and Number of Classes/Interfaces 

(due to OT/J Teams and Roles not being counted for these metrics 

and hence rendering them not directly comparable). Except for the 

Depth of Inheritance Tree metric, all our dependent variables are 

normalized on the experimental unit’s number of modules 

(Classes, Teams, Roles and Implementations) for which the 

dependent variables apply. This is to mitigate the effect of the 

implementations’ different sizes. 

In summary, our dependent variables are: 

Coupling between object classes (CBO). The OTDT defines this 

metric as the number of classes coupled to a class X through a 

uses or used by relationship (Teams, Roles and Interfaces are also 

included in this definition of class), and, according to source code 

comments found in [34], is implemented as defined in [5]. OTDT 

offers two variations of this metric, of which “closed scope” was 

selected to force the computation of CBO exclusively for the 

classes composing each experimental unit. 

Number of classes used by this class (NCUBC). Defined, by 

OTDT, as the number of classes used by a class X (Teams, Roles 

and Interfaces are also included in this definition of class). The 

“closed scope” variation is used. 

Number of classes using this class (NCUC). Defined, by OTDT, 

as the number of classes using a class X (Teams, Roles and 

Interfaces are also included in this definition of class). The 

“closed scope” variation is used. 

Response For a Class (RFC). The OTDT defines this metric as 

the cardinality of the set containing the methods declared by and 

the methods called by a class X (Teams and Roles are also 

included in this definition of class), and, according to source code 

comments found in [34], is implemented as defined in [5]. The 

“closed scope” variation is used. 

Number of Children (NOC). Defined, by OTDT, as the number 

of immediate subtypes of a type X and, according to source code 

comments found in [34], is implemented as defined in [5]. The 

“closed scope, include implementation” variation is used (to count 

the implementations of an Interface as its children). 

Depth of Inheritance Tree (DIT). Defined, by OTDT, as the 

number of super-types in the longest path from a type X to a root 

type of its inheritance hierarchy and, according to source code 

comments found in [34], is implemented as defined in [5]. The 

“closed scope, include implementation” variation is used. 

Lack of Cohesion in Methods (LCOM). The OTDT’s definition 

for this metric is: number of method pairs that do not have any 

used instance variables in common, minus the number of method 

pairs that have at least one used instance variable in common. The 

minimum value for this metric is zero. According to source code 

comments found in [34], LCOM is implemented as defined in [5]. 

As RFC, this metric doesn’t apply to Interfaces. 

4.6 Design 
In this case study, we use a single group of subjects (the pattern 

implementations) and a single observation. 

4.7 Procedure 
Collection of metrics was automated, using the built-in metrics 

available in the OTDT Eclipse plug-in (version 1.4.0 Milestone 2, 

based on Eclipse version 3.6.0 M4). 

4.8 Analysis Procedure 
We follow the following steps: 

 Compute descriptive statistics: For all our independent and 

dependent variables, we collect a set of descriptive statistics. 

These descriptive statistics provide us with a first overview of 

our data, which we further detail in subsequent analyses. 



 

 

 Normality tests: Data is checked for normality, so that the 

statistics tests which are suitable for our data can be selected. 

 Analysis of differences between groups: Finally, we perform 

a test to detect whether there are significant differences 

between groups. This allows us to test the hypotheses stated in 

sub-section 4.5.1. 

5. EXECUTION 

5.1 Sample 
We used the metrics set on the experimental material. No 

exclusions were made. 

5.2 Preparation 
No special preparations were required, other than installing a 

version of the OTDT shipped with the metrics plug-in. The 

implementations used in [11, 12] were analyzed as they were, 

with no adaptations specifically for the present study. 

5.3 Data Collection Performed 
Data collection follows the plan outlined in the sub-section 4.7. 

6. ANALYSIS 

6.1 Descriptive Statistics 
For each variable, we present the number of cases, the mean value 

within the sample, standard deviation, minimum value, maximum 

value, skewness and kurtosis (Table 3). 

Table 3. Descriptive statistics of the metrics. 

 H1 H2 H3 H4 H5 H6 H7 

Metric CBO NCUBC NCUC RFC NOC DIT LCOM 

N 82 82 82 82 82 82 82 

Mean 1,6395 0,8524 0,8524 3,8468 0,2319 0,79 0,1327 

Std.Dv. 0,5178 0,2802 0,2802 1,5932 0,2064 0,623 0,5712 

Min. 0,67 0,33 0,33 1,25 0,00 0 0,00 

Max. 3,43 1,71 1,71 8,67 0,67 3 5,00 

Skew. 0,916 0,838 0,838 0,731 0,362 0,486 7,880 

Kurt. 1,357 0,870 0,870 0,280 -1,153 0,526 67,057 

 

To decide whether it is appropriate to use parametric tests for our 

hypothesis, we need to check if the variable has a normal 

distribution. Positive skewness indicates an asymmetric 

distribution, with a higher frequency of the variable’s lower 

values. In other words, the distribution is right-skewed. This 

contrasts with the normal distribution, which is symmetric and 

should therefore exhibit a skewness of 0, providing us a hint on 

the non-normality of our data. 

We use further tests to confirm the non-normality of this variable. 

Table 4 presents results of two such tests: the Kolmogorov-

Smirnov with the Lilliefors correction and the Shapiro-Wilk’s 

normality tests. The former is the most widely used test and 

adequate for our sample size. The latter is often used with smaller 

samples, and used here for confirmation purposes only. The null 

hypothesis, for each of the tests, is that the sample comes from a 

normal distribution. The alternative is that the sample comes from 

a non-normal distribution. 

 

 

Table 4. Normality tests. 

 Kolmogorov-Smirnov Shapiro-Wilk 

Metric Statist df Sig. Statist df Sig 

CBO 0,152 82 0,000 0,945 82 0,002 

NCUBC 0,147 82 0,000 0,947 82 0,002 

NCUC 0,147 82 0,000 0,947 82 0,002 

RFC 0,106 82 0,024 0,960 82 0,011 

NOC 0,187 82 0,000 0,893 82 0,000 

DIT 0,325 82 0,000 0,756 82 0,000 

LCOM 0,408 82 0,000 0,226 82 0,000 

These values confirm the non-normality of the sample. As such, 

we use non-parametric procedures for testing our hypotheses. 

6.2 Data Set Reduction 
No experimental units were removed from the sample. 

6.3 Hypotheses testing 
We perform the Mann-Whitney U test (Table 6), which is a non-

parametric alternative to assess whether two samples of 

observations come from the same population. The test starts by 

ranking all observations, regardless of the sample they come from. 

Values are ranked in descending order. Table 5 summarizes the 

information concerning computed ranks. Note that the number of 

implementations per language is constant (41) and that all OT/J’s 

mean ranks are lower. 

Table 5. Ranks for the hypotheses. 

H Metric Lang. N Mean Rank Sum Ranks 

H1 CBO 
Java 41 48,44 1986,00 

OT/J 41 34,56 1417,00 

H2 NCUBC 
Java 41 47,20 1935,00 

OT/J 41 35,80 1468,00 

H3 NCUC 
Java 41 47,20 1935,00 

OT/J 41 35,80 1468,00 

H4 RFC 
Java 41 51,35 2105,50 

OT/J 41 31,65 1297,50 

H5 NOC 
Java 41 56,33 2309,50 

OT/J 41 26,67 1093,50 

H6 DIT 
Java 41 47,83 1961,00 

OT/J 41 35,17 1442,00 

H7 LCOM 
Java 41 43,32 1776,00 

OT/J 41 39,68 1627,00 

The Mann-Whitney U (M-W U) tests are summarized in Table 6. 

We can observe that for hypotheses H2 and H3, the null 

hypothesis can be rejected with p < 0,05. Hypotheses H1, H4, H5 

and H6 can also be rejected with p < 0,01. In other words, for 

these six hypotheses we found significantly lower metric values 

for the OT/J instances, comparing to their Java counterparts. 

For hypothesis H7, no significant differences were found, so we 

can reject it. 



 

 

Table 6. Mann-Whitney U test. 

H Metric M-W U Wil. W Z AS(2-t) 

H1 CBO 556,000 1417,000 -2,645 0,008 

H2 NCUBC 607,000 1468,000 -2,169 0,030 

H3 NCUC 607,000 1468,000 -2,169 0,030 

H4 RFC 436,500 1297,500 -3,747 0,000 

H5 NOC 232,500 1093,500 -5,735 0,000 

H6 DIT 581,000 1442,000 -2,789 0,005 

H7 LCOM 766,000 1627,000 -0,901 0,368 

 

7. INTERPRETATION 

7.1 Evaluation of Results and Implications 
Our results support the claims on the improved modularity 

brought by OT/J [16]. Six out of the seven metrics used to assess 

the modularity (CBO, NCUBC, NCUC, RFC, NOC and DIT) 

showed significantly better values for the OT/J implementations. 

Coupling between object classes (CBO) measures the number of 

classes coupled to each class of the system. Since low coupling is 

a desirable feature of a modular design, this could indicate a 

strength of OT/J. A possible explanation could reside on two 

mechanisms introduced by OT/J, which CBO ignores: callins and 

callouts. Roles and base classes coupled via these bindings are 

ignored by this metric. This makes OT/J implementations’ 

measured coupling potentially lower than it is in reality. It must be 

noted that this metric is criticized for its lack of differentiation 

between coupling within a component and inter-component [2, 

19]. 

The Number of classes used by this class (NCUBC) and Number 

of classes using this class (NCUC) metrics are related to the 

coupling of a system (in fact, CBO uses these two metrics). As 

aforementioned, low coupling is a desirable feature of a modular 

system, which could, once again, indicate a strong point for OT/J. 

However, the considerations made for CBO apply likewise to 

these two metrics, due to callins and callouts not being counted 

for NCUBC and NCUC. The values of these two metrics are 

always equal because a “closed scope” version is used (note that if 

A uses B, then B is used by A). 

Response For a Class (RFC), defined as the cardinality of the set 

containing the methods declared by and the methods called by a 

class, is improved by OT/J, as well. Originally defined as a 

complexity metric [5], RFC is highly correlated to the coupling of 

a system [29], being therefore also related to its modularity. 

Callins and callouts are not counted for this metric, which, in 

many implementations, originates Roles with a value of zero RFC 

(Roles with bindings, but no methods – all its methods are 

inherited). With the normalization of this metric, these zero RFC 

Roles have the negative effect of reducing the value of this metric 

for the whole OT/J experimental unit. 

Number of Children (NOC) counts how many direct subtypes a 

given entity has. Based on NOC, it is clear that OT/J significantly 

reduces the use of inheritance as an extension mechanism. This 

can be justified by the usage of a new extension mechanism 

introduced by OT/J: the played by relationship, through which a 

base class can see its behaviour extended by a Role and vice-

versa. This mechanism is ignored by the metric. 

Depth of Inheritance Tree (DIT) measures how many super-types 

there are in the longest path from a type X to a root type of its 

inheritance hierarchy. In the context of OOP, a high DIT was 

shown to be correlated to a complex design and fault-prone code 

[8]. However, the lower value obtained in OT/J implementations 

may be a reflection of the limitation discussed above: OT/J’s 

richer set of mechanisms for module extensibility are not fully 

assessed. 

With respect to Lack of Cohesion in Methods (LCOM), no 

significant difference was found. As LCOM has no discriminative 

power in this context, no conclusions concerning differences 

between the two languages can be drawn from it. 

7.2 Threats to Validity 
We consider two kinds of threats: the first relates to a potential 

bias introduced by the metrics suite used in this study and the 

second to the experimental units used. 

The metrics suite was originally developed for OOP and later 

adapted to AOP, and in particular to OT/J. As discussed in [3, 4], 

performing comparisons among different paradigms with metrics 

defined especially for one of those paradigms may yield 

misleading results. Although these metrics have been validated in 

the context of OOP, their applicability to AOP is yet to be 

demonstrated. In our opinion, we would ideally strive for a 

paradigm-independent set of metrics when performing these kinds 

of inter-paradigm assessments. However, paradigm-independent 

metrics are still in an “embryonic” stage. 

As for the external validity of our experiment, we should note that 

the design pattern implementations, in both languages, are fairly 

small. This is especially relevant, as modularity is a quality 

attribute that becomes increasingly important as systems grow 

larger and more complex. In addition, our implementation set is 

composed solely of design pattern implementations and, in that 

sense, may lack heterogeneity. This may potentially introduce 

biases related to idiosyncrasies of this group. Furthermore, the 

implementations were built by a small number of developers and 

may therefore be tainted with their personal style, although special 

effort was made, as much as possible, to mitigate this effect. 

7.3 Inferences 
The analysis performed in this observational study should hold for 

implementations of similar characteristics (in particular their 

complexity). Extrapolating these results to larger implementations 

should be performed with caution, as discussed in the previous 

section. 

7.4 Lessons Learned 
With respect to the operationalisation of the observational study 

itself, there were a few challenges to overcome, to ensure the data 

quality for our analysis. 

The interoperability of the metrics collection tool was insufficient, 

as no export feature for the metrics results was available. This 

resulted in a time-consuming and error-prone manual copying of 

the results to a statistical analysis tool, which would make this 

experience unfeasible for larger data sets. This problem can be 

overcome with the inclusion of such a feature in a future version 

of the tool. 

To assure a fair comparison of the different sets of pattern 

implementations, some refactoring was carried out prior to the 

study, due to unsuitable coding style in one repository. This 

allowed us to factor out potential discrepancies introduced by 



 

 

different levels of expertise of the developers of the pattern 

examples. While this heterogeneity would be a desirable feature in 

a larger study (thousands of implementations), not performing 

those refactorings would introduce noise in our sample, due to the 

relatively small number of developers involved in it and to the 

fact that each developer typically contributed either to the Java or 

the OT/J repository, but not to both. 

8. CONCLUSIONS AND FUTURE WORK 

8.1 Summary 
The results of this experiment provide evidence supporting the 

claims of improved modularity in OT/J implementations. 

However, we do not regard this as definitive evidence in favour of 

those claims. 6 out of the 7 metrics employed in this study were 

favourable to the OT/J implementations and one was 

inconclusive. However, this might be explained by the metrics 

obliviousness to some of the new OT/J’s mechanisms. Another 

possible shortcoming of these metrics is that they have not been 

proved to be paradigm independent in the past, which may 

potentially introduce bias. One of the main contributions of this 

work is that this is, to the best of our knowledge, the first 

quantitative study to assess OT/J with respect to its support to 

modularity. A second contribution concerns the critical evaluation 

of the use of OOP metrics, when applied to another paradigm. The 

impact of that paradigm shift, on the set of metrics, is yet to be 

fully understood. 

8.2 Impact 
With AOP technology gaining importance in current software 

system developments, as well as on the evolution of legacy 

systems, the community should be made aware of the lack of 

quantitative evidence supporting the alleged benefits of AOP. Our 

results are consistent with these type of claims, but we believe 

more efforts in the experimental assessment of those claims are 

necessary. In particular, it may be the case that some claims only 

hold for particular domains. Experimentally identifying those 

domains would help practitioners to make informed and sound 

decisions concerning the effective usage of AOP. 

8.3 Future Work 
Most of the existing quantitative studies involving AOP focus on 

comparing AOP with OOP, usually using AspectJ and Java as 

paradigm representative languages. To the best of our knowledge, 

no quantitative studies explicitly comparing two instances of AOP 

languages have been published so far, although there have been 

studies using more than one AOP language – for instance, in the 

study reported in [13] AspectJ and CaesarJ [1, 26] were used. 

However, it was made clear that the study was geared to 

comparisons across paradigms, not between different AOP 

languages. In future, we plan to contribute in filling this gap by 

developing studies similar to the one described in this paper so as 

to cover multiple AOP languages. 

Ongoing work includes a rigorous comparison between different 

instances of the AOP paradigm (e.g. AspectJ, OT/J and CaesarJ). 

This way, potentially important insights may be derived about the 

relative advantages and disadvantages of the various AOP 

languages, thus contributing to mature the AOP paradigm. In 

addition we plan to work on the development of paradigm 

independent metrics. 
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