

Evidence-Based Comparison of Modularity Support
Between Java and Object Teams

Arlindo Lima
CITI, Departamento de Informática

Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

+3512948536

anrl@fct.unl.pt

Miguel Goulão
CITI, Departamento de Informática

Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

+3512948536

miguel.goulao@di.fct.unl.pt

Miguel P. Monteiro
CITI, Departamento de Informática

Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

+3512948536

mmonteiro@di.fct.unl.pt

ABSTRACT

Background: Aspect-oriented programming (AOP) is an

emerging programming paradigm whose focus is about improving

modularity, with an emphasis on the modularization of

crosscutting concerns.

Objective: The goal of this paper is to assess the extent to which

an AOP language – ObjectTeams/Java (OT/J) – improves the

modularity of a software system. This improvement has been

claimed but, to the best of our knowledge, this paper is the first

attempting to present quantitative evidence of it.

Method: We compare functionally-equivalent implementations of

the Gang-of-Four design patterns, developed in Java and OT/J,

using software metrics.

Results: The results of our comparison support the modularity

improvement claims made in the literature. For six of the seven

metrics used, the OT/J versions of the patterns obtained

significantly better results.

Limitations: This work uses a set of metrics originally defined

for object-oriented (OO) systems. It may be the case that the

metrics are biased, in that they were created in the context of OO

programming (OOP), before the advent of AOP. We consider this

comparison a stepping stone as, ultimately, we plan to assess the

modularity improvements with paradigm independent metrics,

which will conceivably eliminate the bias. Each individual

example from the sample used in this paper is small. In future, we

plan to replicate this experiment using larger systems, where the

benefits of AOP may be more noticeable.

Conclusion: This work contributes with evidence to fill gaps in

the body of quantitative results supporting alleged benefits to

software modularity brought by AOP languages, namely OT/J.

Categories and Subject Descriptors

D 2.2 [Software Engineering]: Design Tools and Techniques –

object-oriented design methods.

D.2.8 [Software Engineering]: Metrics – complexity measures,

product metrics.

D.3.3 [Programming Languages]: Language Constructs and

Features – classes and objects, patterns and polymorphism.

General Terms

Measurement, Design, Languages.

Keywords

Aspect-Oriented Programming, Object Teams, Modularity,

Metrics, Evidence-Based Software Engineering.

1. MOTIVATION

1.1 Problem Statement
AOP is an emerging software composition paradigm whose main

purpose is to improve modularity in software, when compared to

traditional programming paradigms like OOP, with a strong

emphasis on the modularization of crosscutting concerns [22].

AspectJ [21, 35] is the best-known AOP representative and seems

to be the most widely used. However, many consider AspectJ to

have a negative impact on software modularity [6, 14, 28, 30].

OT/J [16, 18, 32] is a more recent AOP language and in [16]

Herrmann claims that concepts and mechanisms from OT/J

“provide a better decoupling, modularization and flexibility” than

AspectJ. However, alleged superiorities are mostly supported by

argumentation. So far, systematic studies and quantitative

evidence supporting such claims are lacking.

This paper presents an initial exploratory study of OT/J’s impact

on programs’ modularity, focused on comparing results obtained

by Java and OT/J. Comparisons with AspectJ are ongoing and are

left for future work. The study was carried out through use of the

metrics suite offered by the Eclipse [36] plug-in for developing

OT/J (OTDT) [33] that collects metrics for both Java [31] and

OT/J.

This paper’s organization is adapted from the “standard”

experimental report structure proposed in [20]. This section states

the problem of quantitatively assessing OT/J’s support for

modularity. Section 2 discusses relevant related work performed

on the quantitative assessment of other AOP languages with

respect to their support for modularity. Section 3 presents a short

overview of OT/J. Section 4 discusses the design of our empirical

evaluation of OT/J’s support for modularity, in contrast with that

of Java. Section 5 presents the execution of the empirical study.

Section 6 reports the results of that study. Section 7 discusses the

results. Section 8 concludes the paper and outlines our plans for

future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ESCOT’2010, March 16, 2010, Rennes and Saint Malo, France.
Copyright is held by the author/owner(s).

1.2 Research Objectives
Research objectives are presented in the format proposed in [20]:

Analyze the OT/J language,

for the purpose of assessing the usefulness of its language

constructs (using the Java language as a yardstick),

with respect to software modularity,

from the point of view of developers who may implement

analogous systems in both the ObjectTeams/Java and Java

languages,

in the context of an introductory observational study on a

repository that includes functionally equivalent pattern

implementations in both Java and OT/J.

1.3 Context
This study builds on previous work within our research group [11,

12], namely the implementation of the well-known Gang-of-Four

(GoF) design patterns [9] in OT/J1. Two repositories of

implementations of the GoF are used: Hannemann & Kiczales’

[15] and Cooper’s [7]. We consider results from this study valid

only in the context of the patterns’ examples used, rather than as

applying to software modules in general. Further research must be

conducted to assess which conclusions are specific to the

implementations used and which are generalisable.

2. RELATED WORK
Few metrics for AOP were proposed in the literature. Zhao was

one of the first to propose modularity metrics specific for AOP,

having formalised coupling [37] and cohesion [38] metrics.

Sant’Anna et al. developed a metrics’ suite which includes

metrics adapted from known OOP metrics [27]. Several

quantitative studies using this suite have been developed. Garcia

et al. [10] performed a quantitative assessment of the modularity

of design-patterns examples in AspectJ, comparing them to Java

implementations of the same examples. Kulesza et al. [23] studied

the effect of AspectJ with respect to maintainability. Both studies

were favourable to AOP.

Lopes and Bajracharya [24] used Design Structure Matrices and

Net Option Value to compare AOP and OOP systems. Their work

suggests that, in some cases, AOP is beneficial, while in others it

should be considered prejudicial. Similar mixed results were

obtained by Bryton [3].

Performing comparisons between two paradigms is problematic:

it’s easy to mix apples with oranges, particularly because each

paradigm uses its own language mechanisms to support the

features under scrutiny (e.g. modularity). A possible solution is to

develop paradigm-independent metrics. An example is provided

by Bryton and Brito e Abreu [4], where a paradigm independent

meta-model for modularity is proposed and a set of metrics is

formally defined upon the paradigm-independent meta-model. A

related approach is to develop a multiparadigm metric, that is, a

metric that measures concepts from multiple paradigms [25]. In

our opinion, this approach is more prone to introducing biases

than the paradigm-independent one. It mixes concepts from each

of the paradigms in the same metric, rather than translating those

concepts to an allegedly neutral representation before measuring

them. In both approaches, the challenge is to ensure that the

mapping from each paradigm to the paradigm-independent (or the

1 The material used for this study is available at:
http://ctp.di.fct.unl.pt/~mpm/AOLA/

multi-paradigm) representation is “fair”. In this context, “fairness”

means that mappings between different paradigms do not

artificially introduce any sort of bias in the metrics values.

Otherwise, significant differences observed in the metrics may

result from the mapping, rather than from fundamental differences

introduced by each of the paradigms, as desirable in a metrics-

based paradigm comparison.

3. AN OVERVIEW OF OBJECT TEAMS
This section outlines the main features of OT/J [18], which is the

implementation of the Object Teams model for Java. Refer to [18]

for an exhaustive definition of the language.

Object Teams introduces a new module concept, the Team, which

unifies the notions of class and package (and can be seen as an

aspect module). A Team can contain one or more Roles. A Role

encapsulates behaviour which can decorate one base class (in this

case, the Role is considered to be bound to the base class). Teams

and Roles can be seen, respectively, as outer and inner Java

classes.

The code sketch in Listing 1 illustrates these concepts.

PrinterAdapterTeam is a Team and Adapter is a Role

bound to the base class SOPrinter.

01
02
03
04
05
06

public team class PrinterAdapterTeam {
 public class Adapter playedBy SOPrinter {
 // Role implementation
 }
 // remaining Team implementation
}

07
08
09

public class SOPrinter {
 // normal (base) class
}

Listing 1. Examples of a Team, a Role and a base class.

The binding of a Role class to a base class has no effect on its

own, but is the basis for 2 kinds of bindings: callins and callouts.

3.1 Callin Binding
A callin binding declares that a given Role method should be

executed for every call of the associated base method (line 4 of

Listing 2). This type of binding can be of type before, after or

replace. This is similar to advice in AspectJ but it is worth noting

that this mechanism retains a polymorphic feel, with each

individual callin mapping being one-to-one. A parallel can also be

made in the context of traditional inheritance between the way a

subclass constructor implicitly calls a superclass constructor.

In Listing 2, after the execution of displayMsg, the callin

method updateObservers will be invoked:

01
02
03
04
05
06
07
08

public team class ScreenObserverTeam extends
 ObserverProtocolTeam {
 public class Subject playedBy Screen {
 updateObservers <- after displayMsg;
 // void updateObservers() inherited from the Subject
 // Role of the super-Team ObserverProtocolTeam
 }
}

09
10
11
12
13

public class Screen {
 public void displayMsg(String s) {
 print(s);
 }
}

Listing 2. Example of a callin binding

3.2 Callout Binding
Callout bindings allow Role instances to forward method calls to

base methods (or fields). This can be used to “implement” abstract

methods of a Role (see lines 5 and 6 in Listing 3 for an example)

in a way that mimics the relationship between abstract classes and

concrete subclasses in traditional inheritance. This way, a Role

can contain abstract methods and still be concrete, completed

through callouts to the base. This mechanism is not present in

AspectJ.

01
02
03
04
05
06
07
08

public team class ScreenObserver {
 public class Observer playedBy Screen {
 public abstract void update();
 public abstract int howMany();
 update -> refresh;
 howMany -> get elems;
 }
}

09
10
11
12
13
14

public class Screen {
 public int elems;
 public void refresh() {
 //implementation
 }
}

Listing 3. Example of a callout binding.

3.3 Translation polymorphism
There is no sub-type relation between a Role and its base class but

under certain conditions their instances are substitutable. Two

mechanisms allow this kind of polymorphism: lifting (translation

of a base class to one of its Roles) and lowering (the inverse of

lifting, i.e., the mapping of a Role to its associated base).

3.4 Team Inheritance
In OT/J, Teams and Roles are first class citizens, so inheritance

works as traditionally for both Teams and Roles, with respect to

their members. Roles enclosed within a super-Team are inherited

by sub-Teams via implicit inheritance. Thus, if a sub-Team has a

Role of the same name as an inherited Role, the latter is implicitly

overridden and subject to dynamic dispatch.

3.5 Other features
OT/J offers several other features like the possibility to

dynamically activate/deactivate Teams (which determines the

effectiveness of a callin bindings) and decapsulation, i.e., the

violation of access restrictions to bind Roles to otherwise

inaccessible (e.g., private) base methods and fields. Herrmann

argues that this mechanism is useful for extending an existing

module with new functionalities, without having to modify it –

but warns that it should be used as a last resort [17].

4. EXPERIMENTAL DESIGN

4.1 Goals
The research objective presented in sub-section 1.2 is too abstract

for the purposes of the proposed assessment. To make it more

concrete, we break it down into seven sub-goals (Table 1), where

the variation lies on the metric under assessment. In the sub-goals

definition “(...)” is used to denote that we keep the corresponding

part of the more abstract research objective. This allows us to

highlight the differences among the seven sub-goals.

Table 1. Research goals.

Goal Description

G1

Analyze the OT/J language,

(...)

with respect to the Coupling between object classes [5]

metric,

(...)

G2

Analyze the OT/J language,

(...)

with respect to the Number of classes used by this class

metric,

(...)

G3

Analyze the OT/J language,

(...)

with respect to the Number of classes using this class

metric,

(...)

G4

Analyze the OT/J language,

(...)

with respect to the Response For a Class [5] metric,

(...)

G5

Analyze the OT/J language,

(...)

with respect to the Number of Children [5] metric,

(...)

G6

Analyze the OT/J language,

(...)

with respect to the Depth of Inheritance Tree [5] metric,

(...)

G7

Analyze the OT/J language,

(...)

with respect to the Lack of Cohesion in Methods [5]

metric,

(...)

4.2 Experimental Units
The experimental units of this observational study are the

individual examples of the aforementioned design patterns

implementations.

4.3 Experimental Material
 All the 23 Hannemann & Kiczales’ [15] GoF design patterns

[9] examples, implemented in both OT/J and Java.

 18 of James Cooper’s [7] GoF design patterns examples,

implemented in both OT/J and Java.

Five of the James Cooper’s patterns (Builder, Façade, Factory

Method, Interpreter and State) were not yet implemented in OT/J.

We’re planning to implement them in the future.

4.4 Tasks
As noted on the previous sub-section, the subjects of this study are

design pattern implementations. As such, this common item in the

experimental design description is not applicable for this study.

4.5 Hypotheses and variables

4.5.1 Hypotheses
The goals lead us to test seven different basic hypotheses, in order

to assess the effect of OT/J on each metric (when compared to

Java). We identify the hypotheses as H1, H2, H3, H4, H5, H6 and

H7 (Table 2). For each hypothesis, we formulate both a null and

an alternative hypothesis.

Table 2. Research hypotheses.

Hypotheses

H1

H10
OT/J provides no significant improvement on the

patterns’ Coupling between object classes.

H11
OT/J provides a significant improvement on the

patterns’ Coupling between object classes.

H2

H20
OT/J provides no significant improvement on the

patterns’ Number of classes used by this class.

H21
OT/J provides a significant improvement on the

patterns’ Number of classes used by this class.

H3

H30
OT/J provides no significant improvement on the

patterns’ Number of classes using this class.

H31
OT/J provides a significant improvement on the

patterns’ Number of classes using this class.

H4

H40
OT/J provides no significant improvement on the

patterns’ Response For a Class.

H41
OT/J provides a significant improvement on the

patterns’ Response For a Class.

H5

H50
OT/J provides no significant improvement on the

patterns’ Number of Children.

H51
OT/J provides a significant improvement on the

patterns’ Number of Children.

H6

H60
OT/J provides no significant improvement on the

patterns’ Depth of Inheritance Tree.

H61
OT/J provides a significant improvement on the

patterns’ Depth of Inheritance Tree.

H7

H70
OT/J provides no significant improvement on the

patterns’ Lack of Cohesion in Methods.

H71
OT/J provides a significant improvement on the

patterns’ Lack of Cohesion in Methods.

4.5.2 Independent variables
The independent variable is the same for all the hypotheses. This

variable, which we’ll call “Is OT/J” assumes the value true for

pattern instances implemented in OT/J and false otherwise.

4.5.3 Dependent variables
The dependent variables used in this experiment represent the

various metrics collected with the OTDT plug-in. Only metrics

that could be applied to both Java and OT/J were used. However,

two sets of metrics were intentionally left out, despite being

computed for both languages: Lines of Code (due to being known

poor predictors of modularity) and Number of Classes/Interfaces

(due to OT/J Teams and Roles not being counted for these metrics

and hence rendering them not directly comparable). Except for the

Depth of Inheritance Tree metric, all our dependent variables are

normalized on the experimental unit’s number of modules

(Classes, Teams, Roles and Implementations) for which the

dependent variables apply. This is to mitigate the effect of the

implementations’ different sizes.

In summary, our dependent variables are:

Coupling between object classes (CBO). The OTDT defines this

metric as the number of classes coupled to a class X through a

uses or used by relationship (Teams, Roles and Interfaces are also

included in this definition of class), and, according to source code

comments found in [34], is implemented as defined in [5]. OTDT

offers two variations of this metric, of which “closed scope” was

selected to force the computation of CBO exclusively for the

classes composing each experimental unit.

Number of classes used by this class (NCUBC). Defined, by

OTDT, as the number of classes used by a class X (Teams, Roles

and Interfaces are also included in this definition of class). The

“closed scope” variation is used.

Number of classes using this class (NCUC). Defined, by OTDT,

as the number of classes using a class X (Teams, Roles and

Interfaces are also included in this definition of class). The

“closed scope” variation is used.

Response For a Class (RFC). The OTDT defines this metric as

the cardinality of the set containing the methods declared by and

the methods called by a class X (Teams and Roles are also

included in this definition of class), and, according to source code

comments found in [34], is implemented as defined in [5]. The

“closed scope” variation is used.

Number of Children (NOC). Defined, by OTDT, as the number

of immediate subtypes of a type X and, according to source code

comments found in [34], is implemented as defined in [5]. The

“closed scope, include implementation” variation is used (to count

the implementations of an Interface as its children).

Depth of Inheritance Tree (DIT). Defined, by OTDT, as the

number of super-types in the longest path from a type X to a root

type of its inheritance hierarchy and, according to source code

comments found in [34], is implemented as defined in [5]. The

“closed scope, include implementation” variation is used.

Lack of Cohesion in Methods (LCOM). The OTDT’s definition

for this metric is: number of method pairs that do not have any

used instance variables in common, minus the number of method

pairs that have at least one used instance variable in common. The

minimum value for this metric is zero. According to source code

comments found in [34], LCOM is implemented as defined in [5].

As RFC, this metric doesn’t apply to Interfaces.

4.6 Design
In this case study, we use a single group of subjects (the pattern

implementations) and a single observation.

4.7 Procedure
Collection of metrics was automated, using the built-in metrics

available in the OTDT Eclipse plug-in (version 1.4.0 Milestone 2,

based on Eclipse version 3.6.0 M4).

4.8 Analysis Procedure
We follow the following steps:

 Compute descriptive statistics: For all our independent and

dependent variables, we collect a set of descriptive statistics.

These descriptive statistics provide us with a first overview of

our data, which we further detail in subsequent analyses.

 Normality tests: Data is checked for normality, so that the

statistics tests which are suitable for our data can be selected.

 Analysis of differences between groups: Finally, we perform

a test to detect whether there are significant differences

between groups. This allows us to test the hypotheses stated in

sub-section 4.5.1.

5. EXECUTION

5.1 Sample
We used the metrics set on the experimental material. No

exclusions were made.

5.2 Preparation
No special preparations were required, other than installing a

version of the OTDT shipped with the metrics plug-in. The

implementations used in [11, 12] were analyzed as they were,

with no adaptations specifically for the present study.

5.3 Data Collection Performed
Data collection follows the plan outlined in the sub-section 4.7.

6. ANALYSIS

6.1 Descriptive Statistics
For each variable, we present the number of cases, the mean value

within the sample, standard deviation, minimum value, maximum

value, skewness and kurtosis (Table 3).

Table 3. Descriptive statistics of the metrics.

 H1 H2 H3 H4 H5 H6 H7

Metric CBO NCUBC NCUC RFC NOC DIT LCOM

N 82 82 82 82 82 82 82

Mean 1,6395 0,8524 0,8524 3,8468 0,2319 0,79 0,1327

Std.Dv. 0,5178 0,2802 0,2802 1,5932 0,2064 0,623 0,5712

Min. 0,67 0,33 0,33 1,25 0,00 0 0,00

Max. 3,43 1,71 1,71 8,67 0,67 3 5,00

Skew. 0,916 0,838 0,838 0,731 0,362 0,486 7,880

Kurt. 1,357 0,870 0,870 0,280 -1,153 0,526 67,057

To decide whether it is appropriate to use parametric tests for our

hypothesis, we need to check if the variable has a normal

distribution. Positive skewness indicates an asymmetric

distribution, with a higher frequency of the variable’s lower

values. In other words, the distribution is right-skewed. This

contrasts with the normal distribution, which is symmetric and

should therefore exhibit a skewness of 0, providing us a hint on

the non-normality of our data.

We use further tests to confirm the non-normality of this variable.

Table 4 presents results of two such tests: the Kolmogorov-

Smirnov with the Lilliefors correction and the Shapiro-Wilk’s

normality tests. The former is the most widely used test and

adequate for our sample size. The latter is often used with smaller

samples, and used here for confirmation purposes only. The null

hypothesis, for each of the tests, is that the sample comes from a

normal distribution. The alternative is that the sample comes from

a non-normal distribution.

Table 4. Normality tests.

 Kolmogorov-Smirnov Shapiro-Wilk

Metric Statist df Sig. Statist df Sig

CBO 0,152 82 0,000 0,945 82 0,002

NCUBC 0,147 82 0,000 0,947 82 0,002

NCUC 0,147 82 0,000 0,947 82 0,002

RFC 0,106 82 0,024 0,960 82 0,011

NOC 0,187 82 0,000 0,893 82 0,000

DIT 0,325 82 0,000 0,756 82 0,000

LCOM 0,408 82 0,000 0,226 82 0,000

These values confirm the non-normality of the sample. As such,

we use non-parametric procedures for testing our hypotheses.

6.2 Data Set Reduction
No experimental units were removed from the sample.

6.3 Hypotheses testing
We perform the Mann-Whitney U test (Table 6), which is a non-

parametric alternative to assess whether two samples of

observations come from the same population. The test starts by

ranking all observations, regardless of the sample they come from.

Values are ranked in descending order. Table 5 summarizes the

information concerning computed ranks. Note that the number of

implementations per language is constant (41) and that all OT/J’s

mean ranks are lower.

Table 5. Ranks for the hypotheses.

H Metric Lang. N Mean Rank Sum Ranks

H1 CBO
Java 41 48,44 1986,00

OT/J 41 34,56 1417,00

H2 NCUBC
Java 41 47,20 1935,00

OT/J 41 35,80 1468,00

H3 NCUC
Java 41 47,20 1935,00

OT/J 41 35,80 1468,00

H4 RFC
Java 41 51,35 2105,50

OT/J 41 31,65 1297,50

H5 NOC
Java 41 56,33 2309,50

OT/J 41 26,67 1093,50

H6 DIT
Java 41 47,83 1961,00

OT/J 41 35,17 1442,00

H7 LCOM
Java 41 43,32 1776,00

OT/J 41 39,68 1627,00

The Mann-Whitney U (M-W U) tests are summarized in Table 6.

We can observe that for hypotheses H2 and H3, the null

hypothesis can be rejected with p < 0,05. Hypotheses H1, H4, H5

and H6 can also be rejected with p < 0,01. In other words, for

these six hypotheses we found significantly lower metric values

for the OT/J instances, comparing to their Java counterparts.

For hypothesis H7, no significant differences were found, so we

can reject it.

Table 6. Mann-Whitney U test.

H Metric M-W U Wil. W Z AS(2-t)

H1 CBO 556,000 1417,000 -2,645 0,008

H2 NCUBC 607,000 1468,000 -2,169 0,030

H3 NCUC 607,000 1468,000 -2,169 0,030

H4 RFC 436,500 1297,500 -3,747 0,000

H5 NOC 232,500 1093,500 -5,735 0,000

H6 DIT 581,000 1442,000 -2,789 0,005

H7 LCOM 766,000 1627,000 -0,901 0,368

7. INTERPRETATION

7.1 Evaluation of Results and Implications
Our results support the claims on the improved modularity

brought by OT/J [16]. Six out of the seven metrics used to assess

the modularity (CBO, NCUBC, NCUC, RFC, NOC and DIT)

showed significantly better values for the OT/J implementations.

Coupling between object classes (CBO) measures the number of

classes coupled to each class of the system. Since low coupling is

a desirable feature of a modular design, this could indicate a

strength of OT/J. A possible explanation could reside on two

mechanisms introduced by OT/J, which CBO ignores: callins and

callouts. Roles and base classes coupled via these bindings are

ignored by this metric. This makes OT/J implementations’

measured coupling potentially lower than it is in reality. It must be

noted that this metric is criticized for its lack of differentiation

between coupling within a component and inter-component [2,

19].

The Number of classes used by this class (NCUBC) and Number

of classes using this class (NCUC) metrics are related to the

coupling of a system (in fact, CBO uses these two metrics). As

aforementioned, low coupling is a desirable feature of a modular

system, which could, once again, indicate a strong point for OT/J.

However, the considerations made for CBO apply likewise to

these two metrics, due to callins and callouts not being counted

for NCUBC and NCUC. The values of these two metrics are

always equal because a “closed scope” version is used (note that if

A uses B, then B is used by A).

Response For a Class (RFC), defined as the cardinality of the set

containing the methods declared by and the methods called by a

class, is improved by OT/J, as well. Originally defined as a

complexity metric [5], RFC is highly correlated to the coupling of

a system [29], being therefore also related to its modularity.

Callins and callouts are not counted for this metric, which, in

many implementations, originates Roles with a value of zero RFC

(Roles with bindings, but no methods – all its methods are

inherited). With the normalization of this metric, these zero RFC

Roles have the negative effect of reducing the value of this metric

for the whole OT/J experimental unit.

Number of Children (NOC) counts how many direct subtypes a

given entity has. Based on NOC, it is clear that OT/J significantly

reduces the use of inheritance as an extension mechanism. This

can be justified by the usage of a new extension mechanism

introduced by OT/J: the played by relationship, through which a

base class can see its behaviour extended by a Role and vice-

versa. This mechanism is ignored by the metric.

Depth of Inheritance Tree (DIT) measures how many super-types

there are in the longest path from a type X to a root type of its

inheritance hierarchy. In the context of OOP, a high DIT was

shown to be correlated to a complex design and fault-prone code

[8]. However, the lower value obtained in OT/J implementations

may be a reflection of the limitation discussed above: OT/J’s

richer set of mechanisms for module extensibility are not fully

assessed.

With respect to Lack of Cohesion in Methods (LCOM), no

significant difference was found. As LCOM has no discriminative

power in this context, no conclusions concerning differences

between the two languages can be drawn from it.

7.2 Threats to Validity
We consider two kinds of threats: the first relates to a potential

bias introduced by the metrics suite used in this study and the

second to the experimental units used.

The metrics suite was originally developed for OOP and later

adapted to AOP, and in particular to OT/J. As discussed in [3, 4],

performing comparisons among different paradigms with metrics

defined especially for one of those paradigms may yield

misleading results. Although these metrics have been validated in

the context of OOP, their applicability to AOP is yet to be

demonstrated. In our opinion, we would ideally strive for a

paradigm-independent set of metrics when performing these kinds

of inter-paradigm assessments. However, paradigm-independent

metrics are still in an “embryonic” stage.

As for the external validity of our experiment, we should note that

the design pattern implementations, in both languages, are fairly

small. This is especially relevant, as modularity is a quality

attribute that becomes increasingly important as systems grow

larger and more complex. In addition, our implementation set is

composed solely of design pattern implementations and, in that

sense, may lack heterogeneity. This may potentially introduce

biases related to idiosyncrasies of this group. Furthermore, the

implementations were built by a small number of developers and

may therefore be tainted with their personal style, although special

effort was made, as much as possible, to mitigate this effect.

7.3 Inferences
The analysis performed in this observational study should hold for

implementations of similar characteristics (in particular their

complexity). Extrapolating these results to larger implementations

should be performed with caution, as discussed in the previous

section.

7.4 Lessons Learned
With respect to the operationalisation of the observational study

itself, there were a few challenges to overcome, to ensure the data

quality for our analysis.

The interoperability of the metrics collection tool was insufficient,

as no export feature for the metrics results was available. This

resulted in a time-consuming and error-prone manual copying of

the results to a statistical analysis tool, which would make this

experience unfeasible for larger data sets. This problem can be

overcome with the inclusion of such a feature in a future version

of the tool.

To assure a fair comparison of the different sets of pattern

implementations, some refactoring was carried out prior to the

study, due to unsuitable coding style in one repository. This

allowed us to factor out potential discrepancies introduced by

different levels of expertise of the developers of the pattern

examples. While this heterogeneity would be a desirable feature in

a larger study (thousands of implementations), not performing

those refactorings would introduce noise in our sample, due to the

relatively small number of developers involved in it and to the

fact that each developer typically contributed either to the Java or

the OT/J repository, but not to both.

8. CONCLUSIONS AND FUTURE WORK

8.1 Summary
The results of this experiment provide evidence supporting the

claims of improved modularity in OT/J implementations.

However, we do not regard this as definitive evidence in favour of

those claims. 6 out of the 7 metrics employed in this study were

favourable to the OT/J implementations and one was

inconclusive. However, this might be explained by the metrics

obliviousness to some of the new OT/J’s mechanisms. Another

possible shortcoming of these metrics is that they have not been

proved to be paradigm independent in the past, which may

potentially introduce bias. One of the main contributions of this

work is that this is, to the best of our knowledge, the first

quantitative study to assess OT/J with respect to its support to

modularity. A second contribution concerns the critical evaluation

of the use of OOP metrics, when applied to another paradigm. The

impact of that paradigm shift, on the set of metrics, is yet to be

fully understood.

8.2 Impact
With AOP technology gaining importance in current software

system developments, as well as on the evolution of legacy

systems, the community should be made aware of the lack of

quantitative evidence supporting the alleged benefits of AOP. Our

results are consistent with these type of claims, but we believe

more efforts in the experimental assessment of those claims are

necessary. In particular, it may be the case that some claims only

hold for particular domains. Experimentally identifying those

domains would help practitioners to make informed and sound

decisions concerning the effective usage of AOP.

8.3 Future Work
Most of the existing quantitative studies involving AOP focus on

comparing AOP with OOP, usually using AspectJ and Java as

paradigm representative languages. To the best of our knowledge,

no quantitative studies explicitly comparing two instances of AOP

languages have been published so far, although there have been

studies using more than one AOP language – for instance, in the

study reported in [13] AspectJ and CaesarJ [1, 26] were used.

However, it was made clear that the study was geared to

comparisons across paradigms, not between different AOP

languages. In future, we plan to contribute in filling this gap by

developing studies similar to the one described in this paper so as

to cover multiple AOP languages.

Ongoing work includes a rigorous comparison between different

instances of the AOP paradigm (e.g. AspectJ, OT/J and CaesarJ).

This way, potentially important insights may be derived about the

relative advantages and disadvantages of the various AOP

languages, thus contributing to mature the AOP paradigm. In

addition we plan to work on the development of paradigm

independent metrics.

9. ACKNOWLEDGMENTS
The authors would like to thank CITI for the support received

during this research.

10. REFERENCES
[1] Aracic, I., Gasiunas, V., Mezini, M. and Ostermann, K. An

Overview of CaesarJ. in Transactions on Aspect-Oriented

Software Development I, Springer Berlin / Heidelberg, 2006,

135-173.

[2] Binkley, A.B. and Schach, S.R., Impediments to the Effective

Use of Metrics within the Object-Oriented Paradigm. in

Proceedings of the OOPSLA '96 Workshop on Object-

Oriented Product Metrics, (San Jose, California, USA, 1996),

1-7.

[3] Bryton, S. Modularity Improvements with Aspect-Oriented

Programming. M.Sc. Thesis, Universidade Nova de Lisboa,

2008.

[4] Bryton, S. and Brito e Abreu, F., Towards Paradigm-

Independent Software Assessment. in 6th International

Conference on the Quality of Information and

Communications Technology, 2007 (QUATIC 2007), (2007),

40-54.

[5] Chidamber, S.R. and Kemerer, C.F. A Metrics Suite for

Object Oriented Design. Software Engineering, IEEE

Transactions on, 20 (6). 1994, 476-493.

[6] Clifton, C. and Leavens, G.T., Obliviousness, Modular

Reasoning, and the Behavioral Subtyping Analogy, in

Software-engineering Properties of Languages for Aspect

Technologies (SPLAT!) workshop at AOSD 2003. 2003:

Boston, Massachusetts, USA.

[7] Cooper, J.W. The Design Patterns Java Companion. 1998

[cited 2010, 10 January]; Available from:

http://www.patterndepot.com/put/8/JavaPatterns.htm.

[8] El Emam, K., Melo, W. and Machado, J.C. The prediction of

faulty classes using object-oriented design metrics. Journal of

Systems and Software, 56 (1). 2001, 63-75.

[9] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.M.,

Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley Professional Computing Series.

1995, Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc.

[10] Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U.,

Lucena, C. and von Staa, A. Modularizing Design Patterns

with Aspects: A Quantitative Study. in Transactions on

Aspect-Oriented Software Development I, Springer Berlin /

Heidelberg, 2006, 36-74.

[11] Gomes, J.L.L. Analysis of Support for Modularity in Object

Teams based on Design Patterns. M.Sc. Thesis, Universidade

Nova de Lisboa, 2009.

[12] Gomes, J.L.L. and Monteiro, M.P., Design Pattern

Implementation in Object Teams, in Proceedings of the 25th

ACM Symposium on Applied Computing. 2010, ACM Press:

Sierre and Lausanne, Switzerland.

[13] Greenwood, P., Bartolomei, T., Figueiredo, E., Dosea, M.,

Garcia, A., Cacho, N., Sant’Anna, C., Soares, S., Borba, P.,

Kulesza, U. and Rashid, A. On the Impact of Aspectual

Decompositions on Design Stability: An Empirical Study. in

http://www.patterndepot.com/put/8/JavaPatterns.htm

ECOOP 2007 – Object-Oriented Programming (21st

European Conference, Berlin, Germany, July 30 - August 3,

2007 Proceedings), Springer Berlin / Heidelberg, 2007, 176-

200.

[14] Griswold, W.G., Sullivan, K., Song, Y., Shonle, M., Tewari,

N., Cai, Y. and Rajan, H. Modular Software Design with

Crosscutting Interfaces. IEEE Software, 23 (1). 2006, 51-60.

[15] Hannemann, J. and Kiczales, G. Design pattern

implementation in Java and aspectJ. ACM SIGPLAN Notices,

37 (11). 2002, 161-173.

[16] Herrmann, S. Object Teams: Improving Modularity for

Crosscutting Collaborations. in Objects, Components,

Architectures, Services, and Applications for a Networked

World (International Conference NetObjectDays, NODe

2002 Erfurt, Germany, October 7-10, 2002 Revised Papers),

Springer Berlin / Heidelberg, 2003, 248-264.

[17] Herrmann, S. Sustainable architectures by combining

flexibility and strictness in Object Teams. IEE Proceedings -

Software, 151 (2). 2004, 57-66.

[18] Herrmann, S., Hundt, C. and Mosconi, M. ObjectTeams/Java

Language Definition v1.3. 2009 [cited 2010, 10 January];

Available from:

http://www.objectteams.org/def/1.3/index.html.

[19] Hitz, M. and Montazeri, B. Chidamber and Kemerer's

Metrics Suite: A Measurement Theory Perspective. Software

Engineering, IEEE Transactions on, 22 (4). 1996, 267-271.

[20] Jedlitschka, A., Ciolkowski, M. and Pfahl, D. Reporting

Experiments in Software Engineering. in Guide to Advanced

Empirical Software Engineering, Springer-Verlag London,

2008, 201-228.

[21] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.

and Griswold, W.G. An Overview of AspectJ. in ECOOP

2001 – Object-Oriented Programming (15th European

Conference Budapest, Hungary, June 18–22, 2001

Proceedings), Springer Berlin / Heidelberg, 2001, 327-354.

[22] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,

C., Loingtier, J.-M. and Irwin, J. Aspect-Oriented

Programming. in ECOOP'97 – Object-Oriented

Programming (11th European Conference Jyväskylä,

Finland, June 9–13, 1997 Proceedings), Springer Berlin /

Heidelberg, 1997, 220-242.

[23] Kulesza, U., Sant'Anna, C., Garcia, A., Coelho, R., von Staa,

A. and Lucena, C., Quantifying the Effects of Aspect-

Oriented Programming: A Maintenance Study. in Software

Maintenance, 2006. ICSM '06. 22nd IEEE International

Conference on, (2006), 223-233.

[24] Lopes, C. and Bajracharya, S. Assessing Aspect

Modularizations Using Design Structure Matrix and Net

Option Value. in Transactions on Aspect-Oriented Software

Development I, Springer Berlin / Heidelberg, 2006, 1-35.

[25] Pataki, N., Sipos, Á. and Porkoláb, Z., Measuring the

Complexity of Aspect-Oriented Programs with

Multiparadigm Metric. in Proceedings of the 10th ECOOP

Workshop on Quantitative Approaches in Object-Oriented

Software Engineering (QAOOSE 2006), (Nantes, France,

2006), 1-10.

[26] Project, C. CaesarJ Homepage. 2008 [cited 2010, 10

January]; Available from: http://caesarj.org/.

[27] Sant’Anna, C., Garcia, A., Chavez, C., Lucena, C. and von

Staa, A., On the Reuse and Maintenance of Aspect-Oriented

Software: An Assessment Framework. in XVII Brazilian

Symposium on Software Engineering, (Manaus, Brazil,

2003).

[28] Steimann, F. The Paradoxical Success of Aspect-Oriented

Programming. ACM SIGPLAN Notices, 41 (10). 2006, 481-

497.

[29] Succi, G., Pedrycz, W., Djokic, S., Zuliani, P. and Russo, B.

An Empirical Exploration of the Distributions of the

Chidamber and Kemerer Object-Oriented Metrics Suite.

Empirical Software Engineering, 10 (1). 2005, 81-104.

[30] Sullivan, K., Griswold, W.G., Song, Y., Cai, Y., Shonle, M.,

Tewari, N. and Rajan, H., Information Hiding Interfaces for

Aspect-Oriented Design. in Proceedings of the 10th

European software engineering conference held jointly with

13th ACM SIGSOFT international symposium on

Foundations of software engineering, (Lisbon, Portugal,

2005), ACM Press, 166-175.

[31] Sun Microsystems, Inc. Java Technology. 1994-2010 [cited

2010, 10 January]; Available from:

http://www.sun.com/java/.

[32] Technische Universität Berlin. Object Teams. 2010 [cited

2010, 10 January]; Available from:

http://www.objectteams.org/.

[33] Technische Universität Berlin. Object Teams Development

Tooling. 2010 [cited 2010, 10 January]; Available from:

http://www.objectteams.org/distrib/otdt.html.

[34] Technische Universität Berlin. /trunk/src/plugins/org.

 objectteams.otdt.metrics. 2010 [cited 2010, 10 January];

Available from:

http://trac.objectteams.org/ot/browser/trunk/src/plugins/org.o

bjectteams.otdt.metrics?rev=22496.

[35] The Eclipse Foundation. The AspectJ Project. 2010 [cited

2010, 10 January]; Available from:

http://www.eclipse.org/aspectj/.

[36] The Eclipse Foundation. Eclipse.org home. 2010 [cited

2010, 10 January]; Available from: http://www.eclipse.org/.

[37] Zhao, J., Measuring Coupling in Aspect-Oriented Systems. in

10th International Software Metrics Symposium (Metrics 04),

(Chicago, Illinois, USA, 2004).

[38] Zhao, J. and Xu, B. Measuring Aspect Cohesion. in

Fundamental Approaches to Software Engineering, Springer

Berlin / Heidelberg, 2004, 54-68.

http://www.objectteams.org/def/1.3/index.html
http://caesarj.org/
http://www.sun.com/java/
http://www.objectteams.org/
http://www.objectteams.org/distrib/otdt.html
http://trac.objectteams.org/ot/browser/trunk/src/plugins/org.objectteams.otdt.metrics?rev=22496
http://trac.objectteams.org/ot/browser/trunk/src/plugins/org.objectteams.otdt.metrics?rev=22496
http://www.eclipse.org/aspectj/
http://www.eclipse.org/

